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Abstract— This paper presents the design of a monocular
vision based particle filter localization system for urban settings
that uses aerial orthoimagery as the reference map. One of
the design objectives is to provide a low cost method for
outdoor localization using a single camera. This relaxes the
need for global positioning system (GPS) which may experience
degraded reliability in urban settings. The second objective
is to study the achievable localization performance with the
aforementioned resources. Image processing techniques are
employed to create a feature map from an aerial image, and also
to extract features from camera images to provide observations
that are used by a particle filter for localization.

I. INTRODUCTION

The ability to localize is essential for an autonomous

mobile robot to successfully navigate in its workspace. This

paper proposes the design of an urban outdoor localization

system that uses a high resolution aerial image to create a

feature map of an operation workspace, and uses a single

monocular camera as an exteroceptive sensor. An assumption

made in the design is that most observable features of

buildings in the workspace are either orthogonal or parallel

with the ground plane, which is the case in many urban

settings. To use the aerial image, processing is required

to transform it into a representation that is usable by a

robot. Being able to achieve this will increase the degree

of autonomy for a robot system. In urban environments,

beacon based sensing and localization such as with the use of

global positioning system (GPS) may become impractical or

has degraded performance due to buildings in the operation

area that interfere with beacon signals [1]. The end objective

of the design is to achieve autonomous localization in

an outdoor urban environment defined by an aerial image

without knowledge of the initial position (x, y) and heading

(ϑ).

Other researchers have also used monocular vision in lo-

calization because of the simplicity of hardware involvement.

In recent publications, researchers have tried using a database

of images to serve as the map in localization. Zhang et al. [2]

captured images at various points in an operating workspace

and tagged them with GPS position readings to create an

image database. Matching of features between the database

images and an on board camera images for localization was

carried out by performing scale invariant feature transform

(SIFT). In the work by Johns et al. [3], the appearances of

city skylines from various locations were used collectively

as the map. Similar work have also been done by looking at

the details of building facades. In the most related and recent

work presented in [1], a robot is first guided through a course

as it records a video of the surrounding. This information

is used offline where distinct image features are selected to

generate a three dimensional map. The robot is then shown to

localize itself using on board camera images while navigating

a trajectory close to the path which the robot first took in gen-

erating the map. The methods highlighted share the similarity

of requiring a map to be first created by capturing images

at known locations. This map is subsequently compared to

on board camera images when localization is performed.

The approach taken by the proposed localization method

is different in that it is not necessary to obtain on board

images of the environment before performing localization.

Instead, this information will come from an aerial image.

Aerial orthoimages are geographic information system (GIS)

resources that are becoming more readily available, and are

usually obtainable through government sources or private

agencies.

Image processing techniques are applied to an aerial image

to highlight building boundaries (walls). The details of this

process is presented in section II. Building boundaries are

considered good features to detect because they can be

seen from both an aerial image and from an on board

camera equipped by a robot on the ground. Thus there is a

similar type of object that can be compared for localization.

The identification of relevant wall features from camera

images is presented in section III, which involves the use

of vanishing point analysis in order to infer 3d information

from 2d images. The orientation of building boundaries are

compared to determine the importance factor of particles

in the particle filter. This particle filter is used because

of its ability to perform state estimation with unknown

initial pose. In the testing of the particle filter, a camera

is moved manually while information required to generate

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 551

 



state transition (odometric data) is recorded. The system is

tested offline using saved camera footage, and the results are

presented in section IV.

II. FEATURE MAP GENERATION

Aerial images are resources that are becoming readily

available. The goal of extracting boundary features from

aerial imagery is similar to the practice of building detection.

Automatic detection of buildings from aerial images is of

great interest in many geographic information system (GIS)

related fields [4]. In general there are three ways to approach

the building detection problem: stereo vision, line analysis,

and using auxiliary information. However, there exists no

single method that can perfectly detect all buildings in every

aerial image. For the proposed localization system, the line

analysis approach is adopted to extract features from an aerial

image. Lines are considered appropriate since most man

made structures are rectangular or contain mostly straight

edges [5]. Most building detection methods start with low

level image processing methods of edge and line detection.

The problem is made difficult with the presence of shadows,

surface markings, vegetation, and other distractions which

may add unwanted boundary lines or fragmented boundaries

of interest. These effects together are known as the figure-

ground problem, and it has a much more significant impact

compared with sensory noise [6]. As a result the resulting

feature map is not an absolutely accurate representation of

the environment.

The aerial maps that will be used in the localization

system are orthoimages, which are images derived from

normal perspective images in a way such that displacements

caused by sensor (camera) placement and relief of terrain

are removed. These high resolution images are in the format

of grayscale bitmaps, where 10cm in real life resolves

to approximately 1 pixel length. The aerial image of the

220m × 180m workspace where the proposed localization

system will be tested is shown in figure 1.

Fig. 1. The aerial image of the proposed localization system test site,
located at the University of Waterloo

The first step in obtaining a feature map is the processing

of raw image data using Canny’s edge detector [7] to create

an edge map which highlights the pixels that are likely to

be part of building boundaries. The next step is to remove

the effects of shadows. Shadows can be easily identified in

an aerial image as they appear much darker compared to all

other objects. To correctly remove the effects of shadow, it

is necessary to distinguish whether a shadow edge is shared

with a building boundary (which should not be removed),

or incident with the ground (which should be removed).

One approach to this is to take into account the source of

illumination (sunlight). Sobel operators are used to estimate

the intensity gradient over the edge of a shadow. If the

intensity gradient increases in the direction of illumination

(away from the light source), the corresponding edge is

considered a shadow edge and is eliminated from the edge

map.

The edge map is further filtered by masking edges that

may have been generated from distractions in the aerial

image, such as vegetation in the environment. In general

image intensities in distraction areas vary in a way that

give the appearance of rough texture. A corner response

measure obtained using the Harris corner detector [8] is

used to discriminate these distractions. It was found that

most distractions that appear in an aerial image are within

a certain range of corner response values. Any pixel with a

corner response value within the range will contribute to a

mask that is applied over the edge map. The morphological

closing operation is used on the mask prior to its usage to

fill in small gaps.

From the filtered edge map, high level line segment

(boundary) features are identified using a modified version of

the Progressive Probabilistic Hough Transform (PPHT) [9],

summarized in figure 2. The modified PPHT algorithm is de-

signed to alleviate the figure-ground problem. The algorithm

uses multiple edge maps as inputs derived from different

edge detection settings and is able to vary its threshold pa-

rameters as it iterates so that longer line segments are always

extracted first. Furthermore, the algorithm discourages the

extraction of multiple overlapping line segments in areas of

the edge map where edge density is high. For more detail,

refer to [10].

Extracted line segments are further processed so that

segments that are almost parallel and close to each other

are merged to a single line. A simple building model is

then used to distinguish whether a line segment is a real

boundary. A building should be enclosed and therefore the

line segments making up its boundary should theoretically

have overlapping endpoints. However, since the edge map

is not perfect, this requirement is relaxed by accepting

endpoints that are near one another. Line segments that fail

this test are removed from the map. The final result of the

map generation process can be seen in figure 3. The feature

map is not perfect, meaning that a robot using this map will

have errors in its interpretation of the real world. Fortunately,

Bayes filters are known to remain robust even with such

discrepancies.
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Fig. 2. The modified progressive probabilistic Hough transform algorithm

Fig. 3. The feature map derived through image processing of Fig.1

III. CAMERA OBSERVATIONS

The orientations of observed building walls needs to be

interpreted from camera images. This information can be re-

covered from the effect of perspective using vanishing point

analysis. A benefit of using vanishing point analysis and

selecting building orientation as a measure for comparison is

that it makes the system tolerant to significant camera rolling

and tilting. Edge detection and the PPHT algorithm are used

again to extract useful features from an image scene.

The concept of vanishing point has been known for

centuries. When parallel lines in 3d space (or object space)

are projected onto an image plane using a central projection

model, the lines on the image plane will intersect at a

point known as the vanishing point [11] [12]. The Gaussian

sphere [13] shown in figure 4 was introduced as a method

of quantifying the location of vanishing points. It is a unit

sphere centered on the focal point of a vision system. Using

the Gaussian sphere, a vanishing point can be defined by its

projection on the sphere, where it has a unique coordinate

(azimuth and elevation). When a vanishing point has been

identified in an image, it is possible to infer the orientation

of 3d objects from an image [14].

Fig. 4. The Gaussian Sphere [15]

To autonomously identify vanishing points in an image,

an approach similar to that presented by Gallagher [16]

is used. Intersections of line segments discovered by the

PPHT are projected onto the Gaussian sphere. Vanishing

points are likely to appear where there is a high density

of intersection points, which are identified by subtractive

clustering [17] [18]. To aid the clustering process, it is

assumed that the on board camera will normally remain

leveled and not experience severe tilting and rolling. With

this assumption, it follows that vanishing points will likely

appear near the pole (from vertical lines in an image) and

the equator (from horizontal lines in object space) of the

Gaussian sphere. Therefore, the clustering problem can be

divided into two parts; one that searches above a certain

angular elevation for a vanishing point near the pole, and

one that searches between two elevations slightly above and

below the horizon. This implementation has been tested and

confirmed to generate better and more accurate vanishing

point detection results.

Line segments previously identified by the PPHT are

classified and associated with a vanishing point to determine

their orientation in 3d space. This is done by projecting each

line segment onto the Gaussian sphere and measuring the arc

distance to each identified vanishing point. Membership of

a class is won by the shortest distance measure. Figure 5 is

an example of the result of vanishing point analysis and line

segment classification. In this figure, detected line segments

are colour coded according to an associated vanishing point.

Red lines belong to the first vanishing point, green lines

belong to the second, and blue lines belong to the third. A

black line segment is one which its orientation is unknown
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due to failure to associate it with any vanishing point.

The location of the corresponding vanishing points on the

Gaussian sphere has also been identified in the figure by

their azimuth and elevation in units of degrees. The azimuth

is of greater interest as it indicates the orientation of the

associated line segments (and the wall they belong to) in 3d

space.

Fig. 5. Result of the vanishing point analysis on an image captured by the
camera. The location where the image is taken is within in the workspace
defined by fig.1 at the University of Waterloo

IV. PARTICLE FILTER IMPLEMENTATION

The particle filter is an implementation of the Bayes

filter using a finite number of particles in state space to

describe the belief state probability density distribution.

The algorithm propagates particles through time using the

survival of the fittest concept. Initially, the particles are

uniformly distributed throughout the workspace to represent

the unknown starting state. Then, the algorithm iterates with

two steps, the first of which propagates particles forward

in time based on control inputs. In the second step, sensor

measurements are used to determine an importance factor for

each particle. This factor is used in particle resampling. A

more detailed explanation of the particle filter can be found

in [19]. A benefit of the particle filter is that it works for

probability distributions of any shape and is able to achieve

localization with an unknown initial state.

To experimentally validate the proposed localization sys-

tem, on board camera images were rerecorded for conduct-

ing offline localization. Unfortunately, neither the vehicle

odometry nor control inputs were available directly, which

are typically required for the algorithm propagation step.

As a substitute, the vehicle forward velocity (v) and yaw

rate (ω) were extracted by differencing the position and

yaw between images. Zero-mean Gaussian noise was then

added to account for actuator uncertainties. For the results

presented, the standard deviations for forward velocity and

yaw rate are 10 cm
s

and 5
o

s
respectively.

The state transition model shown in equation (1) is used

in the propagation step of the algorithm. For each iteration,

this model propagates the particles forward according to the

velocities v and ω.





xt

yt

ϑt



 =





v∆t cos (ϑ + (ω∆t)/2)
v∆t sin (ϑ + (ω∆t)/2)

ω∆t



 +





xt−1

yt−1

ϑt−1



 (1)

The importance factor is a weighting for particles that

indicates the likelihood of the particle state being the true

vehicle state. This factor is determined by observations made

by exteroceptive sensors (in this case the camera), and is a

function of the similarity between expected measurements

and observed measurements. The expected measurement are

determined for each particle. By referring to the feature map,

each particle can determine the relative orientation of features

observable in its field of view as a function of bearing

ψr = ψr(α).
The observed measurements come from the vanishing

point analysis. Depending on the scene, it may be possible

to observe multiple features at various relative orientation

ψs,i(α) (where i is the index for different features). To keep

track of multiple features at a given bearing, the camera

image is divided into view sections e (bounded by starting

and ending bearing limits αe,start, αe,end), within which the

non-empty set of observable features remain constant.

The importance factor for each particle Wm is evalu-

ated by first considering the similarity between observed

and expected measurements in individual view sections e.

This similarity (ηe) is determined heuristically according to

equation (2).

ηe = max
i

[

1 −

1

1 + exp (
20−|ψs,i−ψr|

2
)

]

(2)

A weighting factor ρe is also determined for each view

section depending on its size with respect to the combined

size of all view sections, as expressed in equation (3).

ρe =
αe,end − αe,start

∑emax

e=1
(αe,end − αe,start)

(3)

The importance factor for a particle is then calculated by

considering all view sections using equation (4), and the

low variance sampling method [20] is used during particle

resampling in each iteration of the particle filter. It should be

noted that particles that move through a building boundary

on the feature map are automatically regenerated with a new

random state.

Wm =

emax
∑

e=1

ρeηe (4)

Through numerous trials with different sizes of particle

sets, it has been shown that offline localization can be

achieved with as little as 300 particles. However, it was

determined that 2000 particles are required to assure a high

likelihood of convergence.

For the path shown in figure 6, snapshots of the particle

set for a particular execution of the particle filter process are
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shown in figures 7 through 9. To evaluate the performance

of the particle filter, the positioning error is tracked over

the test course. This error is determined by the difference

between the true position and the location where the belief

state probability density is determined to be a maximum by

using the mean shift clustering algorithm [21]. The result

for several runs of the particle filtering process is shown in

figure 10. This figure indicates that convergence of particles

is achieved for all test runs at around 150s, after which a

small positioning error is maintained.

Fig. 6. Particle filter localization test course with the true path shown

Fig. 7. Particle filter localization result - elapsed time: 0s

Closer examination reveals that during a couple of the test

runs (1 and 2), the positioning error became very low but

increased again. This occurred because there were multiple

dominant particle clusters existing concurrently which ex-

changed the role of the most dominant cluster in a back and

forth manner. To show that once convergence is maintained

once it has been achieved, the particle filter process is

executed by initiating particles at the true starting position.

Positioning error for this case is shown in figure 11 and it

can be seen to remain relatively stable (note the difference in

scale compared to figure 10). The main source of error in this

particle filter localization process is the imperfect map. By

Fig. 8. Particle filter localization result - elapsed time: 60s

Fig. 9. Particle filter localization result - elapsed time: 150s

examining the trajectory taken in the test course, instances

where the positioning error was relatively high in figure 11

corresponded to inaccuracies in the feature map. The average

positioning error is determined to be 3.40m, with 95% of

the error measurements being below 4.80m. This result is

comparable to that of the standard positioning service for

GPS, which can achieve a positioning accuracy of 4.83 in

95% of horizontal (2d) measurements according to [22].

However, the particle filter process takes considerable time

before particle convergence is achieved. On the other hand,

GPS availability and performance are not reliable in some

urban settings due to multipath. Therefore, the particle filter

process presented may serve as an alternative localization

tool.

Timing analysis indicates that the current implementation

of the particle filter on a computer with a 1.5GHz Pentium

M processor is unable to achieve real time operation while

processing camera images at 1Hz. A large proportion of

computational time is spent on processing images captured

from the camera and performing the vanishing point analysis.
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Fig. 10. Localization Errors Recorded in 5 instances of the particle filter
process with unknown initial state

Fig. 11. Localization Errors Recorded in 5 instances of the particle filter
process with known initial state

On average an image frame requires about 9s of processing

time. However, it is predicted that the system real time

implementation may be feasible given a faster computer and

through program code optimization.

V. CONCLUSIONS

The design of a monocular vision based particle filter lo-

calization system was presented. The system is designed for

urban settings consisting mainly of orthogonal structures. An

aerial image is given from which information is extracted to

autonomously generate a feature map for localization. Image

processing techniques and the vanishing point analysis are

used to estimate building wall orientations as observations for

the particle filter. Experimentation was conducted in a large

urban environment and the results indicate that localization

is achievable by the system. Positioning error is determined

to be comparable to that of a GPS receiver using standard

positioning service, but a considerable duration of movement

in the workspace is necessary. Still, this particle filter process

may be a useful alternative if GPS performance is degraded

due to multipath or when GPS service is not available.

Although testing was conducted at only one urban setting, it

is hypothesized that similar results can be achieved in other

urban settings provided that it consists mainly of orthogonal

structures. In the future, further verification in other urban

environments will be performed using a real robot.

ACKNOWLEDGMENT

Funding of this research is provided by Auto21 Canada.

The aerial images used in this research are properties of the

Regional Municipality of Waterloo, Ontario, Canada

REFERENCES

[1] E. Royer, M. Lhuillier, M. Dhome, and J.-M. Lavest, “Monocular
vision for mobile robot localization and autonomous navigation,”
Internation Journal of Computer Vision, vol. 74, no. 3, pp. 237–260,
2007.

[2] W. Zhang and J. Kosecka, “Image based localization in urban envi-
ronemnts,” in Proceedings of the International Symposium on 3D Data

Processing, Visualization, and Transmission, 2006.
[3] D. J. amd G. Dudek, “Urban position estimation from one dimensional

visual cues,” in Proceedings of the Canadian Conference on Computer

and Robot Vision, 2006.
[4] J. Shufelt and J. D.M. McKeown, “Fusion of monocular cues to detect

man-made structures in aerial imagery,” CVGIP: Image Understand-

ing, vol. 57, no. 3, pp. 307–330, 1993.
[5] A. Croitoru and Y. Doytsher, “Right-angle rooftop polygon extraction

in regularised urban areas: Cutting the corners,” The Photogrammetric

Record, vol. 19, no. 118, pp. 311–341, 2004.
[6] C. Lin and R. Nevatia, “Building detection and description from a

single intensity image,” Computer Vision and Understanding, vol. 72,
no. 2, pp. 101–121, 1998.

[7] J. Canny, “A computational approach to edge detection,” IEEE Trans.

Pattern Analysis and Machine Intelligence.
[8] C. Harris and M. Stephens, “A combined edge and corner detector,”

in 4th Alvey Vision Conference, 1998.
[9] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using

the progressive probabilistic hough transform,” Computer Vision and

Image Understanding, vol. 78, pp. 119–137, 2000.
[10] K. Leung, “Monocular vision based particle filter localization in urban

environments,” Master’s thesis, University of Waterloo, Waterloo, ON,
Canada.

[11] F. van den Heuvel, “Vanishing point detection for architectural pho-
togrammetry,” International Archives of Photogrammetry and Remote

Sensing, vol. 32, no. 5, pp. 652–659, 1998.
[12] V. Vantoni, L. Lombardi, M. Porta, and N. Sicard, “Vanishing point

detection: Representation analysis and new approaches,” in Proceed-

ings of the Internation Conference on Image Analysis and Processing,
2001.

[13] S. Barnard, “Interpreting perspective images,” Artificial Intelligence,
vol. 21, no. 4, pp. 435–462, 1983.

[14] A. Tai, J. Kittler, M. Petrou, and T. Windeatt, “Vanishing point
detection,” Image and Vision Computing, vol. 11, no. 4, pp. 240–245,
1993.

[15] J. Shufelt, “Performance evaluation and analysis of vanishing point
detection techniques,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 21, no. 3, pp. 282–288, 1999.
[16] A. Gallagher, “A ground truth based vanishing point detection algo-

rithm,” Pattern Recognition, vol. 35, no. 7, pp. 1527–1543, 2002.
[17] R. Yager and D. Filev, “Generation of fuzzy rules by mountain

clustering,” Journal of Intelligent and Fuzzy Systems, vol. 2, no. 3,
pp. 209–219, 1994.

[18] S. Chiu, “Fuzzy model identification based on cluster estimation,”
Journal of Intelligent and Fuzzy Systems, vol. 2, no. 3, pp. 267–278,
1994.

[19] M. Arulampalam, S. Maskell, N. Gordon, and T.Clapp, “A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[20] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotcs. USA: The
MIT Press, 2005.

[21] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

556

 




