
146 IEEE TRANSACTIONS ON ROBOTICS, VOL. 29, NO. 1, FEBRUARY 2013

Localization in Urban Environments Using
a Panoramic Gist Descriptor

Ana C. Murillo, Gautam Singh, Jana Košecká, and J. J. Guerrero

Abstract—Vision-based topological localization and mapping for
autonomous robotic systems have received increased research in-
terest in recent years. The need to map larger environments re-
quires models at different levels of abstraction and additional abil-
ities to deal with large amounts of data efficiently. Most successful
approaches for appearance-based localization and mapping with
large datasets typically represent locations using local image fea-
tures. We study the feasibility of performing these tasks in urban
environments using global descriptors instead and taking advan-
tage of the increasingly common panoramic datasets. This paper
describes how to represent a panorama using the global gist de-
scriptor, while maintaining desirable invariance properties for lo-
cation recognition and loop detection. We propose different gist
similarity measures and algorithms for appearance-based local-
ization and an online loop-closure detection method, where the
probability of loop closure is determined in a Bayesian filtering
framework using the proposed image representation. The extensive
experimental validation in this paper shows that their performance
in urban environments is comparable with local-feature-based ap-
proaches when using wide field-of-view images.

Index Terms—Appearance-based localization, computer vision,
gist descriptor, omnidirectional images, recognition.

I. INTRODUCTION

G
ENERATING metric and topological maps from streams

of visual data has become an active area of research

in recent years. This increased interest has been facilitated to

a large extent by improvements in large-scale wide-baseline

matching techniques and advances in appearance-based local-

ization by means of place recognition. Place recognition, for

purely appearance-based strategies, is typically formulated as

an image-based retrieval task; given a database of views from

certain geographical area, and a new query view, the goal is

to determine the closest view from the reference database. The

related loop-closure detection task aims to recognize previously
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Fig. 1. Google maps visualization of Street View dataset.

visited locations either in an online or batch manner. One of the

key issues in both tasks is the choice of image representation

and similarity measure between two images.

In this paper, we investigate the suitability of the gist descrip-

tor, proposed by Oliva and Torralba [1], [2], for panoramic im-

age representation and propose how to build this representation.

Along with this representation, we introduce and compare sev-

eral similarity measures between panoramic views captured at

individual locations. We evaluate the proposed omnidirectional

gist descriptor on a large-scale place-recognition task given the

database of reference panoramas of an urban environment, such

as the one shown in Fig. 1. Given the proposed image represen-

tation, we introduce an online loop-closure detection method,

where the probability of loop closure is determined in a Bayesian

filtering framework.

Experimental results in this study show that despite the sim-

plicity and compactness of the gist descriptor, its effectiveness

and discrimination capability in urban settings is quite high. This

is partly due to the 360◦ field of view (FOV). We also present

a discussion of efficiency and scalability tradeoffs between gist

descriptor and local-feature-based methods. Our extensive ex-

periments applied in panoramic images demonstrate similar or

superior performance and higher efficiency of gist descriptor for

both location recognition and loop-closure detection compared

with local-feature-based methods.

In the rest of this paper, Section II briefly discusses the related

work. The proposed panoramic gist representation and associ-

ated similarity measures are detailed in Section III. Our ap-

proach for place recognition is evaluated on two different urban

panoramic datasets in Section IV, including comparisons with

local-feature-based methods. The proposed method for loop-

closure detection is detailed and experimentally validated in

Section V. The conclusions are in Section VI.

1552-3098/$31.00 © 2012 IEEE
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II. RELATED WORK

Appearance-based localization and mapping has been stud-

ied extensively in robotics, using a large variety of different

approaches and camera systems. In recent years, notable scal-

ability and robustness have been achieved in acquiring both

metric and topological maps. This progress has been fueled

by an increase in computational speed, capabilities to handle

and discriminate large amounts of image data, and advances

in effective image representations. An essential component of

vision-based localization is the choice of image representation

and associated similarity measure, which has to be sufficiently

invariant yet discriminative and enable efficient search in large

databases. Another key component deals with means of mod-

eling temporal and online aspects of the loop detection and

localization process. Next, we review some related approaches.

A. Image Representation

The existing image representations vary depending on the

choice of local image measurements and means of aggregating

them spatially. Most of the recent advances in appearance-based

localization are based on local scale-invariant features [3], [4]

and a geometric verification stage [5]–[7]. The effectiveness of

local features for wide-baseline matching is facilitated by ap-

proximate nearest neighbor methods and quantization schemes,

such as k-means clustering, vocabulary trees, and inverted file

structures [8]–[10], which enable scalability of these methods

to large datasets with large appearance variations. For example,

Cummins and Newman presented an appearance-based local-

ization method, handling extremely large trajectories with their

FAB-MAP approach [11], and Valgren and Lilienthal [12] eval-

uated localization across different season variations.

Alternative image representations are based on global image

descriptors, which often forgo the feature location information

and aggregate various image statistics globally or over large

support regions. Early examples of these, both using conven-

tional or omnidirectional images, were global color histograms,

histograms of gradient orientations, Fourier transform compo-

nents, or color invariant moments [13]–[17]. These works typ-

ically dealt with small-scale datasets. More recently, the gist

descriptor [1] has been shown to work well for scene catego-

rization, scene alignment, or duplicate detection in large datasets

of millions of images [18]–[20]. The gist of an image captures

image statistics of responses to a filter bank, while weakly spa-

tially integrating the responses over a coarse image grid. More

recent attempts to use the gist descriptor in the context of robotic

localization include [21] and [22]. In [22], initial location recog-

nition is achieved using gist descriptor and is refined by tracking

salient image regions. In [21], vanishing points are used as ad-

ditional cues to obtain more robust place-recognition results.

Some previous works combine local feature information with

the global descriptors to augment a gist-based place-recognition

approach with object recognition [23] or to rerank the top candi-

dates selected by other types of global descriptor similarity [16],

[24]. Some of the known disadvantages of purely global descrip-

tors include lower invariance, difficulties with occlusions, and

inability to incorporate stronger geometric constraints. Their

main advantage is the efficiency of computation and compact

representation, allowing enhancements in storage and computa-

tional speed, facilitating working with millions of images [25].

The majority of the aforementioned works consider conven-

tional monocular images. While the representations based on

local scale-invariant features can be naturally extended to an

omnidirectional setting, the computation and the number of lo-

cal features per location increase, bringing down the efficiency

of the matching stage [26].

In our work, we explore the effectiveness of the gist descriptor

and show how to compute “the gist of a location” as captured by

a panoramic image. We will demonstrate the use of this repre-

sentation in the context of location recognition and loop-closure

detection. In order to maintain some of the invariance proper-

ties required for image-based localization and place recogni-

tion, we propose a similarity measure which weakly exploits a

Manhattan world property [27], assuming that camera/vehicle

headings at revisited locations are related by multiple of 90◦

degrees. This assumption is reasonable for urban outdoors and

indoors environments which can be often viewed as networks of

streets/corridors and intersections, with the preferred directions

of travel being related by 90◦.

Our initial location recognition and loop-closure detection ex-

periments using the proposed representation were shown in [28]

and [29]. In this study, we extend them and incorporate an online

temporal model for loop-closure detection which computes the

probability of loop closure in a Bayesian filtering framework.

We compare the proposed methods with state-of-the-art tech-

niques based on local features and discuss in detail the tradeoffs

between local and global representations and associated retrieval

strategies as the size of the dataset increases. We can find initial

experiments toward adapting the proposed panorama represen-

tation for different types of omnidirectional images in [30].

B. Appearance-Based Localization and Loop Closure

Given the image representation and associated similarity mea-

sure, the simplest version of appearance-based localization can

be accomplished by means of place recognition. In this set-

ting, the environment is represented by a set of images acquired

at previously visited locations. In the localization stage, given

the query view, one seeks the closest view from the reference

set. In our approach, the model of the environment is simply an

unorganized database of images, as done, for instance, by Fraun-

dorfer et al. [5]. One can endow the model of the environment

with additional topological structure, which captures neighbor-

ing relationships between the locations, as in the approach for

catadioptric systems by Goedemé et al. [17] or the proposed

method for conventional images from [31]. The methods to in-

fer the topology vary from supervised to unsupervised settings.

We find many place-recognition approaches built on vocabulary

tree-based methods, such as the work from Schindler et al. [32],

who showed that the recognition performance improves when

using more informative features and heuristics in nearest neigh-

bor search.

In the map building stage, another important problem is the

loop-closure detection. The existing loop-closure strategies can
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be broadly partitioned into online and offline (batch) methods.

Among the online methods, the FAB-MAP [33] uses a bag

of words image representation and explicitly models the depen-

dences between different visual words. In FAB-MAP, each view

is considered as a separate location, and the probability of loop

closure is determined for each view at run-time. Ranganathan

et al. [34] present a representation called probabilistic topolog-

ical maps that approximates posterior distribution over possi-

ble topologies using odometry and appearance measurements.

Other examples for topological map building and loop-closure

detection that integrate metric information in hybrid topological-

metric approaches can be found in [35] and [36]. They model

the environment with a global topological map that relates local

metric maps with each node of the topological model. In [37],

loop closures are detected using “bag of features” representa-

tion in the Bayesian setting, where at each instance, the most

likely sequence of loop/no-loop hypotheses is computed on-

line. Our temporal model for loop detection is closely related

to [37], using a different model for image likelihoods and tran-

sition probabilities. The offline methods typically compute the

similarity matrix between all pairs of views acquired during the

run. Ho and Newman [38] detect loop closures directly from

the similarity matrix, by detecting statistically significant se-

quences from this matrix. Anati and Daniilidis [26] formulate

the loop-closure detection in a Markov random field frame-

work and propose a novel similarity measure to compare two

panoramas. The rotational invariance with respect to changes in

heading is achieved by alignment of local features projected on

the horizontal plane using a dynamic programming approach.

There is also a group of place-recognition methods that try to

obtain a globally consistent set of matches given a set of lo-

cal loop-closure hypotheses. These methods can be seen as a

postprocessing step to filter out the false positives. For example,

Olson presented an approach [39] that uses spectral cluster-

ing [40] to efficiently determine the globally correct matches.

III. GIST IN PANORAMAS

Panoramic images are becoming a popular way of visually

mapping large environments. Both in the process of building

these models and at the time of using them, a measure for

the similarity between two given panoramas is needed. Finding

similar images is essential to build a topological map, detect re-

visited areas, or localize new measurements with regard to refer-

ence ones. In this paper, we investigate if the more detailed place

information and configuration contained in panoramic images

compensate for the lower discriminability of global descriptors.

This section describes our proposed gist-based panorama repre-

sentation and similarity evaluation approaches.

A. Image Representation

The gist descriptor [1], [2] aggregates image statistics of the

responses of several filters combined with the input image. The

advantage of the descriptor is that it is very compact and fast

to compute. In the standard configuration, each image is repre-

sented by a 320-D vector per color band, resulting in a 960-D

descriptor per image. The feature vector corresponds to the mean

Fig. 2. Gist descriptor extraction. Example of intermediate responses of an
image to the 20-filter bank used to build the descriptor.

Fig. 3. Clustering reference view gists into a k = 40 vocabulary. Sample
views from three of the clusters show how views with similar structure get
clustered together.

response to steerable filters at different scales and orientations.

Sample responses in a conventional image to these filters are

shown in Fig. 2. This resulting descriptor vector coarsely en-

codes the distribution of orientations and scales in the image.

To get an intuition of what this descriptor captures, images are

clustered together according to their gist descriptor, and refer-

ence views from some of these clusters are visualized in Fig. 3.

One can note that images with similar scene structure have

the same type of gist descriptors. The gist descriptor has been

demonstrated to be a good solution for scene categorization

problems [1], and it has been used effectively to retrieve nearest

neighbors from large-scale image databases, both for place and

object recognition [41], suggesting how it could be combined

with local features to further improve the recognition system.

In our experiments, each location is represented with a Street

View panorama acquired by a 360◦ FOV multicamera system. A

single panorama is obtained by warping the five radially undis-

torted perspective images onto the sphere assuming one virtual

optical center. One virtual optical center is a reasonable assump-

tion, considering that the structure around the sensor is very far,

compared with the discrepancy between optical centers of all the

cameras. The sphere is backprojected into a quadrangular prism

to get a piecewise perspective panoramic image [see Fig. 4(a)].
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Fig. 4. Panorama acquisition. (a) Multicamera system with five side cameras,
whose composed panorama can be reprojected into any kind of f -faced prism,
providing f subviews from the whole scene. (b) Four subviews from panoramic
piecewise perspective image as an outer surface of the quadrangular prism.
(c) Finer partitioning of the panorama into eight subviews.

The top camera acquisition is discarded as it does not provide

much information. Then, our panorama is composed of four per-

spective images covering 360◦ horizontally and 127◦ vertically.

We discard the bottom part of all views, which always contains

parts of the vehicle acquiring the panoramas.

The gist descriptor for the entire panorama is obtained by

computing the standard gist descriptor for each of the four views

and stacking them together. The panorama is then represented

by a four-tuple of gist descriptors computed for left, front, right,

and back portion of the panorama denoted by

g = [g1 , g2 , g3 , g4 ] = g1234 . (1)

The aforementioned back-projection could be done to any

arbitrary number of faces. In urban environments, it is more

natural to follow the Manhattan world directions and use four

individual views. Partitioning the gist descriptor into the four

parts as described previously, along with an appropriate sim-

ilarity measure detailed next, will enable us to strike a good

balance between discriminability of the proposed descriptor,

viewpoint invariance, and compact representation. This parti-

tioning is suitable for urban indoors and outdoors environments

which can be well described as networks of roads/corridors and

intersections, such that the possible camera headings at a par-

ticular location are related by multiple of 90◦. Deviations from

these assumptions are discussed in Section IV, where we can

see that obtaining finer panorama partitioning does not provide

significant improvements, but it does carry significant compu-

tational overload.

B. Image Similarity Measure

Given the proposed representation, this section details how

to compare two panoramas with three different methods. They

are all run and evaluated in the following section to study the

advantages and issues in each of them. We first introduce a

similarity measure for exact neighbor search followed by two

approximate more efficient methods.

1) Exact Gist Distance—Egist: We are given the four-tuple

of gist descriptors computed for the reference panoramic im-

age, which are denoted by gr = [gr
1 , gr

2 , gr
3 , gr

4 ] = gr
1234 , and

the query image with corresponding gist descriptor of gq =
[gq

1 , g
q
2 , g

q
3 , g

q
4 ] = g

q
1234 , where the short-hand index 1234 de-

notes the order of individual components of the descriptor. In

order to compare the two panoramic images, we want to take

into account the possibility that they have been taken at different

orientation headings. To accommodate this level of viewpoint

invariance, we propose to consider in the matching the following

descriptor permutations, which are obtained by circular shifts:

g1234 , g2341 , g3412 , and g4123 . The similarity measure between

two panoramic images is then defined in the following way:

dist(gq ,gr ) = minm de(g
q , πm (gr

1234)) (2)

where πm is the mth circular permutation of the gist component

vectors (m = 1, 2, 3, 4), and de is the sum of the norms of

differences between the gist vector components

de(g
q ,gr ) =

4
∑

i=1

‖gq
i − gr

i ‖. (3)

When using the exact distance measure, the computational com-

plexity of the problem of finding the nearest neighbor in the im-

age database is linear with the size of the database. While this

strategy is acceptable for relatively small databases, it does not

scale to large ones, where sublinear strategies for nearest neigh-

bor have to be sought. We now present two strategies based on

methods commonly used for sublinear nearest neighbor search:

descriptor quantization and approximate nearest neighbor

methods.

2) Gist Vocabulary—V Qgist: Following the commonly

used bag of words approach [8], the space of all gist descriptors

is quantized to build a vocabulary of k gist words. A subset of

training reference panoramas is used to build the gist vocab-

ulary Vgist = {w1 , w2 , . . . , wk}. k-means clustering is run on

gist descriptors from each of the four parts of all these reference

images. The k cluster centroids are considered to be the words,

w, of the gist vocabulary. Typical values for k and their impact in

the results are discussed later in the experiments in Section IV.

Fig. 3 shows how views with similar basic structure get clus-

tered together. Fig. 5 presents the average image of all views

that belong to each cluster. Notice that qualitatively different

features of urban areas are revealed by individual clusters.

We define the similarity measure distV Q between two panora-

mas using the gist vocabulary Vgist . It is defined using the dis-

tance between the closest cluster (word) assigned to the each

of the original gist descriptors. Each of the four gist descriptors

composing the panoramic image descriptor is assigned to the

nearest gist word from Vgist :

gq = [gq
1 , g

q
2 , g

q
3 , g

q
4 ] ← [wa , wb , wc , wd ]

gr = [gr
1 , gr

2 , gr
3 , gr

4 ] ← [we , wf , wg , wh ].
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Fig. 5. Average view in several gist vocabulary (k = 40) clusters built from
≈9000 reference panoramas (36 000 views).

The complexity of this nearest neighbor search depends on the

number of words in the gist vocabulary k, since the nearest

word for each gist descriptor needs to be found. Once the gist

word assignments are obtained, the distance between the two

panoramas is computed as described in (2):

distV Q (gq ,gr ) = dist([wa , wb , wc , wd ], [we , wf , wg , wh ]).
(4)

In case the size of the vocabulary is small, further efficiency

can be gained by precomputing the distance matrix between all

gist words: Dw (i, j) = ‖wi − wj‖. Using only distV Q , we can

efficiently retrieve a small set of likely candidates including the

best alignment of each candidate with the query panorama. In a

second stage, exact gist similarity measure Egist , as described

before, is used to rerank these candidates with regard to the

query.

3) k-d Tree-Based Similarity—KDgist: Another commonly

used approach for speeding up nearest neighbor search are k-d

trees. In the basic k-d tree algorithm, the splitting dimension at

a node is the one with the highest variance, and the threshold for

split is set to be the median value along that dimension. The first

candidate for the nearest neighbor is obtained from a traversal

through the tree by comparison with the thresholds at each level.

This can be optionally followed by the process of backtracking

in which other unexplored branches of the tree are searched for

better candidates. The search efficiency was improved by Beis

and Lowe [42] who described a priority queue-based backtrack-

ing known as Best Bin First. An improved version of the k-d tree

algorithm in which multiple randomized k-d trees are used was

proposed by [43]. The randomized trees are built by choosing

the split dimension randomly from the set of dimensions with

high variance. The aforementioned priority queue is maintained

across all these randomized trees, and the nearest neighbor is

found through simultaneous independent searches in different

trees.

In previous works, such as [44], it has been shown that given a

desired precision for an approximate nearest neighbor method,

the efficiency decreases dramatically with the increased dimen-

sionality, making them comparable with linear search methods.

Therefore, we perform principal component analysis (PCA) for

dimensionality reduction. Given a four-tuple of standard gist

descriptors (4 × 960 = 3840 dimensions), we compute the prin-

cipal components for the set of reference views and select the

top principal components such that they explain 99% of the

variance in the data. In our experiments, we kept the first 500

components. Projecting the original descriptors on the principal

components, we get a lower dimensional representation gp for

each composite gist descriptor.

The randomized k-d tree is built from the projected descriptor

values gp of the reference image set. In order to exploit the

Manhattan world assumption in the image comparison stage,

the k-d tree is queried with the projected gist descriptor from all

four possible permutations of the query image four-tuple

min
m

de(g
kd , πm (gq

p))

de(g
kd ,gq ) = ‖gkd − gq

p‖ (5)

where gkd is the approximate nearest neighbor returned by the

k-d tree method, and πm is the mth circular permutation of the

four-tuple gist elements (m = 1, 2, 3, 4) in the full gist descrip-

tor. The permutation yielding the smallest distance de is kept as

result.

IV. APPEARANCE-BASED LOCALIZATION

Appearance-based localization (location recognition) and

loop-closure detection are closely related tasks. All of them

share the basic goal of finding the closest view in the reference

set, given some similarity measure.

In the localization problem, we evaluate the similarity of a

query view with respect to a given set of reference images that

cover the whole considered environment. For the loop-detection

task, we evaluate the similarity in an online manner, comparing

the current view only with the set of images acquired so far.

This section evaluates our proposed image representation and

similarity measures for localization. The techniques and results

for loop-closure detection are described in Section V.

A. Experimental Settings

Experiments in this section are designed to evaluate the pro-

posed panorama representation and image similarity measures.

We present results for the three similarity measures proposed in

the previous section (Egist , V Qgist , and KDgist) and compare

them with standard local feature “bag of words” representation.

All our experiments were run in MATLAB. The vocabulary and

k-d tree for the V Qgist and KDgist approaches are built using

the VLFeat open source library [45], and gist descriptors were

computed using the code provided by the authors.1

We evaluate the performance as a function of the top-k re-

trieved neighbors using the different similarity measures. Quan-

titative evaluation of the localization accuracy is done using the

ground truth GPS annotations.

B. Localization in Street View Dataset

This section analyzes and demonstrates several key design

issues and evaluates the performance of the proposed approaches

on a large dataset of Street View images.2 The set consists of

12 000 panoramas acquired from a vehicle along a 13-mile-long

1http://people.csail.mit.edu/torralba/code/spatialenvelope/
2Dataset provided for research purposes by Google.
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Fig. 6. Street View dataset. A general overview of this dataset is shown in
Fig. 1. Red locations (a) are the reference set; blue locations (c) are later revisits
to different areas used as test set for the localization experiments and ground
truth for the loop-closure experiments. The zoomed view of the rectangular
dashed area (b) shows some superposed reference and test locations, where the
vehicles traverse the same streets at different time in different travel directions.

TABLE I
LOCALIZATION RESULTS VARYING THE PARTITIONING

run in an urban environment shown in Fig. 1. All the locations in

the dataset were provided with GPS coordinates of the vehicle.

The dataset is divided into a reference set and a test set (Fig. 6

visualizes the train-test split of the dataset).

1) The reference set contains all the images from the first

time the vehicle passes by a particular location (≈9000

panoramas).

2) The test set is composed by the rest of images acquired at

a later time, when the vehicle passed through those places

again (≈3000 panoramas).

In the following results, we provide the accuracy for cor-

rect localization (defined as the number of correctly localized

query views divided by the total amount of query views) us-

ing different distance (dist) thresholds (10, 20, or 40 m). Each

column presents the results to consider the nearest retrieved

location within the top-k results. We present the results for top-

k = 1, 10, 20, 40. Top 1 is the localization result provided by

our approach, while the other columns evaluate results if we

consider a set of top candidates.

1) Panorama Partitioning: The first set of experiments,

summarized in Table I, analyzes the proposed partitioning of

the panoramas into four views. We also evaluate if it can be

improved by finer grained image partitioning with the corre-

sponding alignment estimation. Localization is obtained for all

the test set images using the basic approach Egist and a finer

partitioning into eight segments (see Fig. 4). It is observed that

the finer image partitioning does not lead to any major improve-

ment with changes up to 2% increase in the recognition rates.

However, the time to process each query view increases. In our

MATLAB implementation, the time to compute the matches in-

TABLE II
LOCALIZATION RESULTS VARYING THE FIELD OF VIEW: 360◦ FOV (ALL

FACES) VERSUS STANDARD FOV (SINGLE FACE)

creased from 5 to 15 s when a finer grained image partitioning

is used. Therefore, for the rest of our localization experiments,

we use a partitioning of the panoramas into four views.

We have also run this experiment without computing the dis-

tance over all circular permutations, i.e., with similarity which

is not invariant to any rotation. For this dataset, even with just

a few locations which are revisited from opposite direction, it

decreased localization performance by 5%.

2) Field-of-View Impact: In this set of experiments, summa-

rized in Table II, we evaluate the importance of using panoramic

images in our approach. We compare localization results using

wide FOV panoramas and narrow FOV images. Localization in

both cases is obtained using the Egist approach. To facilitate the

comparison, we run the localization experiments on the entire

panorama (360◦ FOV) and on a single face of the panorama.

As expected, using the entire panorama has a higher compu-

tational cost compared with using a single face (search for a

single query needs about 5 and 1.5 s, respectively). However,

using the whole FOV provides a significantly higher accuracy,

with an increase of more than 12%. Notice that localization for

conventional FOV images, using the proposed image represen-

tation, achieves a performance above 90% when considering a

set of top-40 candidates, and therefore, a final reranking step of

these candidates would be required for the case of conventional

FOV images.

3) Exact Versus Approximate Gist Similarity: This section

provides an evaluation of the different similarity measures,

which use either the exact gist similarity or the approximate

approaches described in Section III-B, namely, Egist , V Qgist ,

and KDgist . The results, which are summarized in Table III and

Fig. 7, point out that the most accurate localization, among the

gist-based approaches, is achieved by an exhaustive search on

the exact gist representation Egist . However, accuracy with the

other approaches is only slightly lower and presents advantages

with regard to memory and computational time requirements,

as described in more detail later in Table V.

We tested different vocabulary sizes k in the V Qgist exper-

iments (k = 40, 100, 1000). As the size of the vocabulary

increases, the accuracy of localization improves. We only eval-

uated up to a vocabulary size of 1000 words since a vocabulary

of a larger order of magnitude will be the same size as the

number of images in the reference set.

The KDgist approach uses a descriptor of reduced dimen-

sionality (500 dimensions). We used a single k-d tree in our

experiments. We experimented with a higher number of trees,
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TABLE III
LOCALIZATION RESULTS VARYING THE IMAGE SIMILARITY EVALUATION

(EXACT VERSUS APPROXIMATE SEARCH; GLOBAL VERSUS LOCAL FEATURES)

Fig. 7. Correct localization results for all approaches run in Street View
dataset, with acceptance threshold of 10 m.

and there was no performance improvement but the execution

time per query increased from 0.09 (using a single tree) to 0.17 s

(using a forest of five trees). We also evaluated the approach for

using the entire descriptor instead of the reduced one obtained

through PCA. The performance was similar, but the execution

time increased to 0.29 s per query.

4) Gist-Based Versus Local Features: This section compares

results obtained for the three gist based localization approaches

with a standard local-feature-based approach, Vsurf . The Vsurf

method uses SURF local features [4], extracted from the whole

panorama, in a bag of features approach which is based on

the hierarchical k-means clustering proposed by Nistér and

Stewénius [8]. Each of the obtained cluster centers represents

a visual-word, and the local features of an image are quantized

by assigning them to the nearest visual word. An image is then

represented by a weighted histogram of visual words where the

individual bin weights are determined by the inverse frequency

of the visual word across all reference images. Normalized his-

togram distance is used to evaluate image similarity and select

the top-k most similar images as most likely locations. As in

our previous experiments, we have used the publicly available

Fig. 8. Street View dataset. The two most similar panoramas found for two
query views. Left column shows one test where the most likely candidate is not
correct but the second is.

VLFeat library [45]. We use hierarchical k-means to build a

vocabulary tree with the following parameter values for the tree

construction: tree depth of 4 and branching factor of 10, resulting

in 10 000 leaves. Table III and Fig. 7 include the results obtained

with this approximated local feature representation. The qual-

ity of the localization in urban panoramic datasets using the

local features is comparable with the gist-descriptor-based ap-

proaches proposed in our work. A discussion of why we have

chosen quantized local features as baseline for our comparisons

is included in Section IV-D together with a detailed analysis

of memory and computational requirements presented for all

approaches.

Fig. 8 shows examples of the top two retrieved results for two

different queries. Note that even though the matched panoramas

may look quite alike at the shown scale, sequence frame index

shows that these panoramas are actually far from each other

(in time). As can be seen in the examples, the result provided

using only gist-based representation, i.e., first match, may not

always be the correct localization as we can see in the figure

on the left. If we would consider a set of top candidates se-

lected by our approach, results can be refined by postprocessing

the top candidates with exact nearest neighbor matching us-

ing local features (for instance, SURF [4]) and choosing the

candidate with the highest number of correspondences. We val-

idate in our experiments that selecting the candidate (from the

top-10 retrieved results) with the highest number of SURF cor-

respondences, without any spatial verification, finds the correct

solution 98% of the time if a correct solution existed within the

top-10 retrieved results.

C. Localization in New College Dataset

We have also evaluated our place-recognition algorithms on

the New College dataset [46].3 It provides panoramic data ac-

quired from a multicamera system mounted on a mobile robot

platform. The trajectories are performed along pedestrian paths

around college buildings and parks. The provided dataset con-

tains images which are stitched panoramas. The dataset consists

of three parts, shown in Fig. 9. The locations in the dataset have

been provided with GPS tags, but as can be seen in the figure,

3http://www.robots.ox.ac.uk/NewCollegeData/
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Fig. 9. New College dataset. Plot of GPS tags from its three parts (provided by
the dataset authors [46]), manually aligned with an aerial view of the traversed
environment. Data detailed description at authors’ website.

Fig. 10. New College dataset. Each row visualizes a query view (left column)
and its corresponding top retrieved result (right column). In the top two rows,
besides lightning changes, the query’s best match occurs rotated by 180◦. Our
proposed similarity measure detects the match correctly in the three examples.

some revisited parts of the dataset contain GPS errors of up to

40 m, even though they correspond to same locations, e.g., the

small loops on the top left.

Part C, which covers the entire area once, is used as the ref-

erence set and images from trajectories A and B are used as

test images. Fig. 10 shows three examples of test images and

the most similar reference image retrieved. Fig. 11 presents a

visual summary of the localization results in this experiment.

A line is drawn between each test image (black colored) and

the most similar reference image (blue colored) found using

Egist . We can observe that generally the most similar panorama

selected corresponds to a correct location. Results in the figure

are shown for a GPS acceptance threshold of 40 m. Table IV

shows the quantitative localization results. Note that as we in-

crease the threshold distance to accept a localization result, the

performance improves drastically. For example, when distance

is set at 10 m, the accuracy is 25%. However, when the distance

threshold is increased to 40 m, it improves to 99%. This accounts

for the errors in the GPS annotations, which is corroborated by

the visualization in Fig. 11.

Fig. 11. Localization results. Test images (colored in black) are connected with
the most similar reference image found (in blue). Green and red lines visualize
correct and incorrect results, respectively, using an acceptance threshold of 40 m.

TABLE IV
LOCALIZATION RESULTS WITH NEW COLLEGE DATASET

D. Space and Time Complexity Issues

The previous sections evaluated the quality of the localization

results for the different proposed approaches. We have seen in

the summary from Table III and Fig. 7 that results based on the

gist representation, i.e., Egist and KDgist , are comparable or

outperform local feature “bag of words” model Vsurf in our set-

ting. In this section, we discuss in more detail the space and time

of execution tradeoffs for the different proposed approaches.

Gist-based representation provides advantages in memory

requirements and execution times. The evaluation by Douze

et al. [20] illustrated considerable difference in using exact lo-

cal feature image representation compared with gist-based ap-

proaches with a difference of more than an order of magnitude

for the memory requirements. We have chosen quantized local

features as a baseline for our comparisons because although

quantized approaches are less accurate than exact methods, the

representations using the quantized local features are compara-

ble with gist representations with regard to memory and effi-

ciency. As shown in the aforementioned evaluation, when using

the exact methods for local features, scalability turns unfeasi-

ble for standard computers due to memory and computational

requirements.

The approximate requirements of the different approaches

for a dataset of 10 000 images (a size comparable with our

Street View dataset) are provided in Table V. The table includes

the parameters used to estimate the required storage—N is the

number of images, f is the number of features per image, d is the
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TABLE V
MEMORY BYTES REQUIRED AND EXECUTION TIME PER TEST FOR A 10 000

IMAGE DATASET

length of the feature descriptor, and, if applicable, k is the size

of the vocabulary used. It also provides the time complexity of

the execution of a single search in the different methods. From

the results, we note that the k-d tree-based method provides

the best compromise between accuracy, memory requirements,

and speed of the retrieval. The advantage of “bag of words”

approaches (V Qgist and Vsurf ) is the flexibility to handle bigger

datasets: They require lower memory and search time when

large datasets are used, since their time search growth is constant

with the size of the database N , and the storage depends less

significantly on it. However, performance of the “bag of words”

method critically depends on the size of the vocabulary. The

performance improves as we augment the size of the vocabulary,

but it also raises the computational cost and memory storage

requirements, making V Qgist similar to KDgist for our settings

without reaching as good recognition rates and efficiency.

It was already pointed out in previous evaluations of lo-

cal features versus gist-based representations in conventional

images [20] that, memory and efficiency wise, the gist im-

age representation presents clear advantages for scalability to

large datasets. Their work showed that quality of recognition

for global descriptor image representation was only compa-

rable with local feature approaches when searching for near-

duplicates. Our current problem is related to the duplicate detec-

tion problem because, in spite of weather, lighting, or occlusion

condition changes that make it harder, we consider that the ref-

erence information covers the whole environment, and we can

usually expect a good solution among the reference information.

This, together with the fact that large FOVs are more discrimi-

native than conventional images, makes the good performance

of gist-based approaches to find the most similar location not

surprising.

The work in [47] presents a detailed analysis of complex-

ity and storage requirements for approaches similar to ours.

Following their analysis, with datasets of 50 000 images, using

exact local feature descriptors memory requirements start to be

problematic for a conventional computer and “bag of words”

methods is recommended with vocabularies about 1 million

words. In our case, due to the smaller memory requirements

of global descriptors, 150 kB for the conventional image local

feature descriptors versus 15 kB for our panorama gist descrip-

tor, we could then handle datasets up to one order of magnitude

higher before using quantized descriptor spaces.

As a summary, we state that in our settings, the approximate

nearest neighbor technique based on k-d tree is the best compro-

mise between performance (execution time and discriminabil-

ity) and storage requirements. It runs around eight times faster to

localize a new query in MATLAB, as well as has the advantage

of reduced dimensionality of the descriptor. However, if the size

of the reference image database grows by more than an order of

magnitude, memory requirements of this approach would start

to be problematic, and the quantized version of local or global

descriptors should be used. Local descriptors may provide better

discriminability in some cases, although global descriptors de-

crease computation requirements since far less features have to

be evaluated per image and smaller representative vocabularies

can be obtained.

V. LOOP-CLOSURE DETECTION

As previously mentioned, appearance-based localization and

loop-closure detection are closely related tasks. They share the

basic goal of finding the closest view in the reference set, but

loop detection considers, as a reference set for a given view,

all images acquired previously during current trajectory. Loop

detection requires to evaluate the similarity in an online manner.

This framework raises different issues and possibilities that can

be exploited through spatiotemporal constraints. In this section,

we first present a basic approach to detect revisited places (see

Section V-A1). We then describe steps to incorporate temporal

context for an improved loop-detection method which explicitly

models the probability of loop-closure detection in a Bayesian

filter framework (see Section V-A2).

A. Loop-Closure Detection Approaches

1) Basic Revisited Places Detection: The problem of loop-

closure detection involves detecting a return to a previously

visited location while traversing the environment. In our basic

loop-closure detection method, we extend the place-recognition

approaches described in the previous section to an online set-

ting. Given a query view, to decide if it corresponds to a re-

visited place, we search for similar views among the locations

visited so far. From the previously described gist-based similar-

ity measures, we use Egist since it provided the best accuracy in

the localization experiments. At each location of the vehicle’s

traversal of the environment, the following criteria are used to

detect a revisit at that location.

Gist similarity distances are computed between the current

location and past locations. The closest match to the current

location (at time t) is defined as the location which has the

minimum gist similarity distance, i.e.,

dmin = min
i∈[0,t−p ]

(dist(gt ,gi))

where dist(gt ,gi) is computed using (2). If the gist similarity

distance to the closest match (dmin ) is below a threshold (τloop ),

we predict a loop closure at that location. Otherwise, it is con-

sidered a visit to a new location. The search is not performed for

the last p locations to discard immediately preceding locations
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since the appearances of scenes from neighboring locations are

very similar to each other.

A drawback to this approach is that it requires a user-specified

threshold to predict loop-closure detections. We now propose a

method which overcomes this drawback and incorporates tem-

poral information.

2) Bayesian Filter for Loop-Closure Detection: Instead of

considering only the current view for loop-closure detection,

we introduce a simple temporal model to determine the prob-

ability of loop closure. This model captures the fact that if the

current view has a high probability of being a loop closure, the

subsequent view is more likely to be a loop closure. As the vehi-

cle traverses through the environment and acquires new images,

the gist-based panorama representation is used to evaluate the

probability of loop closure in a Bayesian filtering framework.

We now describe how the state is represented and estimated

at each time instance. Our approach is motivated by [37]. Let

St be the random variable that represents the loop-closure event

at time t. The observable output is the visual appearance It of

the current location xt , which is represented as the tuple of gist

descriptors of the current location’s image. St = i represents

the event that the location with image It is a revisit of previously

traversed location xi with image Ii . St = 0 represents the event

that no past location is being revisited at time t; hence, a new

location is visited. In the Bayesian framework, the problem of

loop-closure detection can be formulated as searching for a past

location j which satisfies

j = argmax
i∈[0,t−p ]

p(St = i|I t) (6)

where I t = I1 , I2 , . . . , It are the images of the locations visited

so far in chronological order. Therefore, we need to estimate the

posterior probability p(St = i|I t) for all i ∈ [0, t − p] in order

to detect if a loop closure has occurred or not. Expanding the

expression for the posterior probability, we get

p(St = i|I t) = p(St = i|I1 , I2 , . . . , It).

= p(St = i|I t−1 , It) (7)

Applying Bayesian rule to the right-hand side of (7)

p(St = i|I t) =
p(It |St = i) p(St = i|I t−1)

p(It |I t−1)

= α p(It |St = i) p(St = i|I t−1) (8)

where α is a normalization constant (since the denominator

p(It |I
t−1) is constant relative to the state variable). The condi-

tional probability p(It |St = i) is the likelihood of the currently

observed image It (represented by the tuple of gist descriptors)

given St = i. The right part of (8) can be further decomposed

as

α p(It |St = i)

t−p
∑

j=0

p(St = i|St−1 = j) p(St−1 = j|I t−1)

(9)

where p(St = i|St−1 = j) is the state transition probability for

observing event St = i given St−1 = j. We now describe the

Fig. 12. Diagram of the HMM modeling of the loop-closure or non-loop-
closure events.

state transition probabilities and how to estimate the likelihood

term of this model.

a) Likelihood: The likelihood function for loop-closure

event St is based on the similarity between the panoramas of

the two locations:

p(It |St = i) = exp

(

−dist(gt , gi)

σ2

)

(10)

with dist(gt , gi) computed as in (2) and σ2 a user-defined vari-

ance. This assumes an exponential decay with the gist similarity

distance for the observation likelihood.

We also need to compute the likelihood for the non-loop-

closure event, St = 0, which has no image associated with it.

Therefore, to compute the likelihood for this event, we construct

a virtual image using the gist descriptors of traversed locations.

The virtual image at time t, which is denoted by I0t , is built as

the average of the gist tuples of the past K locations:

I0t =

∑t−1
i=t−K gi

K
(11)

where gi is the four-tuple described in Section III. For loca-

tions at time t < K, all the past locations are used to calculate

the virtual image. The virtual image I0t represents the average

appearance of the environment at time t. Its construction re-

flects the idea that the gist similarity distance associated with

this virtual image will change according to the current location.

When a new location is visited (i.e., no loop-closure occurs),

the image at the current location It should appear more similar

to the average appearance of the environment I0t than an image

Ii from a previous time step. However, when the vehicle returns

to a previously visited location xi , the image It should appear

more similar to the image Ii since Ii is more specific to that

location than the average appearance described by I0t .

b) State transition: The probability p(St |St−1) is used to

model all possible transitions between states at times t − 1 and

t. The state transition diagram is summarized in the diagram in

Fig. 12, and we use the following transition probabilities:
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1) p(St = 0|St−1 = 0) = p0→0 is the probability of non-

loop-closure event at time t given that no loop closure

occurred at t − 1.

2) p(St = i|St−1 = 0) = 1−p0→0

t−p
, with i ∈ [1, t − p], stands

for the probability of a loop-closure event at time t

given that none occurred at t − 1. The possible states

for a moving vehicle are either the visit of a new lo-

cation or the revisit of the past locations (except the

immediately preceding p locations). This implies that
∑t−p

i=0 p(St = i|St−1 = 0) = 1, and we assign equal prob-

abilities to all the t − p possible loop-closure events.

3) p(St = 0|St−1 = j) = pj→0 , with j ∈ [1, t − p], the

probability of non-loop-closure event at time t given that

loop closure occurred at t − 1.

4) p(St = i|St−1 = j) = pj→i , with i, j ∈ [1, t − p] is the

probability of loop closure at time t at viewpoint xi

given that loop closure occurred at t − 1 at viewpoint

xj . This probability is represented by a Gaussian distribu-

tion based on the distance between viewpoints xi and xj .

It uses the assumption that among loop-closure events,

the probability of transitioning to the nearest neighbor

locations will be higher, and it will decrease as their dis-

tance to the current location increases. The variance of

the Gaussian distribution is chosen in such a way that

it is nonzero for exactly 2w neighbors of viewpoint xj ,

i.e., pj→i > 0 if i ∈ [j − w, j + w]. This represents the

varying image similarity between neighboring viewpoints

according to the distance between them. The nonzero

probabilities in this case must sum to 1 − pj→0 since
∑t−p

i=0 p(St = i|St−1 = j) = 1.

B. Experiments on Loop Detection

This section evaluates the proposed image representation and

methods for loop-closure detection. We first discuss the met-

rics used for evaluation. We then show the effect of the main

design decisions in our proposed panorama representation for

loop-closure detection. This basic approach is run on two differ-

ent datasets, including a comparison with a local-feature-based

image representation. We then illustrate the advantages and

improvements obtained with the Bayesian filter loop-detection

approach.

1) Evaluation: Our metrics to evaluate the performance of

the framework are precision and recall:

Precision =
TP

TP + FP
100%, Recall =

TP

TP + FN
100%

where TP is true positive, FP is false positive, and FN is false

negative. A location is considered a true positive if loop closure

is successfully detected at that location. Loop-closure locations

in the ground truth for which loop closure is not detected suc-

cessfully are false negatives, while locations incorrectly pre-

dicted as loop closure are false positives. It is trivial to obtain

perfect recall by predicting loop closure at every query location,

but it will lead to poor precision due to the high number of false

positives. Hence, it is essential to achieve high precision while

trying to maintain a good recall.

Fig. 13. Street View dataset. Performance of Egist for basic loop-closure
detection using the top-k nearest neighbors. Our approach results are shown
in red with squared markers. (a) Maximum recall rate of our approach (whole
panoramic view) versus a subset of the views. (b) Maximum recall rate of our
approach (doing circular permutation check) versus not checking the views
alignment.

To evaluate our results, for a given query view, locations

within a threshold distance are considered to be correct loop-

closure detections. In order to avoid considering immediately

preceding locations as loop closures, we use a window of p

preceding frames so that views taken within short time of each

other are not considered for loop-closure evaluations.

2) Influence of Image Representation Decisions: Similar to

our experiments for the localization problem, we analyze the

impact of choices for panorama representation: the use of wide

FOV images and the alignment analysis, i.e., using the four

circular permutation possibilities when computing the gist sim-

ilarity, as described in (2).

These experiments are run on the previously described Street

View dataset (see Section IV-B). To set the ground truth of ac-

tual revisited locations, we used a threshold distance of 10 m

and a window of size p = 25, yielding a ground truth set of

3362 revisited locations (the same as the test set locations in

Fig. 6). The effect of using 360◦ FOV for loop-closure de-

tection is demonstrated in Fig. 13(a). Notice that having the

full FOV significantly improves the discrimination capability

of the loop-closure detection. Considering a smaller portion of

the panorama, e.g., only two faces, which resembles the lo-

calization with traditional cameras, is shown to be detrimental

to the overall performance. Fig. 13(b) shows the effectiveness

of the proposed similarity measure, which compares each query

panorama with all rotational permutations of the reference views

instead of using one single alignment between the panoramas.

3) Comparison With Local-Feature-Based Methods: The

comparison is carried out on the New College dataset (detailed

previously in Section IV-C) since results for a local-feature-

based method are publicly available and they provide us an

opportunity to carry out a direct comparison. We use only part

C of the dataset, because errors between GPS tags of the other

parts are too high. Loop-detection results for this experiment

are obtained by running the basic loop-closure detection from

Section V-A1. We discard a window of p = 50 preceding frames

as nonvalid candidates for loop closure. A loop detection is pre-

dicted by setting the threshold τloop = 0.5. This value for the

threshold provides the maximum recall for a precision of 100%.

Fig. 14 visualizes the loop-closure detection results by draw-

ing a line between later images and the previous location they
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Fig. 14. New College dataset loop-detection results. Green lines represent
correct detected loops. Locations are plotted according to the GPS tags available:
Trajectory used for this experiment (part C) uses blue dots; locations shown in
pink are the ground truth for revisited locations. The black dots correspond to
GPS tags of images from other parts of the dataset. They were not used in this
experiment but visualize the available GPS accuracy.

TABLE VI
Egist -BASED BASIC LOOP DETECTION COMPARED WITH PUBLISHED RESULTS

FOR THE NEW COLLEGE DATASET FOR PRECISION = 100%

are revisiting. The loop detection is considered correct if the

two views are located within 15 m according to the reference

GPS tags. Successful detections are shown with green lines and

incorrect ones with red lines.

Table VI presents the precision for our system in compari-

son with the results in [48] on the same dataset.4 We achieve a

higher recall than the basic FAB-MAP approach, and are com-

petitive with FAB-MAP 3D [48], where visual information is

augmented with range data. The proposed gist representation

does not suffer from the ambiguities, responsible for matching

errors, generated by approaches using local feature quantiza-

tion methods. An additional advantage is the compactness of

gist-based descriptors.

4) Bayesian Loop-Closure Detection: We now present the

evaluation of the Bayesian filtering approach which uses tempo-

ral context in comparison with the basic loop-detection method.

We also illustrate the impact of different parameters to the task

of loop-closure detection. The experiments have been performed

on the Street View dataset.

As we gradually evaluate individual frames, the posterior

probability for nonloop and all possible loop-closure events

at each query location is computed with (8). The event with

the maximum posterior probability is then chosen as its best

match. Experiments were carried out varying the state transi-

4The test sets for the final recall numbers may differ as the exact test set used
was not provided in [48].

TABLE VII
PRECISION-RECALL BY VARYING pj→0 (p0→0 = 0.8, σ2 = 1)

TABLE VIII
PRECISION-RECALL VARYING p0→0 (pj→0= 0.01, σ2 = 1)

TABLE IX
PRECISION-RECALL VARYING σ2 (pj→0 = 0.1, p0→0 = 0.8)

tion probabilities and the method for virtual image generation.

In the final configuration for all the experiments shown next,

the virtual image was computed as the average four-tuple gist

descriptor of the past 1000 locations, i.e., when computing I0t ,

K = 1000. The number of neighbors which take nonzero val-

ues for transition from loop-closure event to loop-closure event

p(St = i|St−1 = j) was set to 10.

The results for varying pj→0 , i.e., p(St = 0|St−1 = j), are

shown in Table VII. A high value for pj→0 should lead to a low

recall rate because the possibility of a non-loop-closure event

at time t after a loop-closure event at time t − 1 is considered

more probable compared with loop closure. The table shows

that the results are consistent with the above assumption. It can

be observed that a relatively high value detected fewer loop-

closure locations. Consequently, a decrease in pj→0 leads to

higher recall rates and lower precision.

Similarly, a high value for p0→0 , i.e., p(St = 0|St−1 = 0),
should lead to detection of fewer loop-closure locations. By

increasing p0→0 , we increase the probability of nonloop closure

at time t after no loop closure is observed at time t − 1 or, in

other words, decrease the possibility of observing a loop closure.

However, by increasing p0→0 , we can achieve a higher precision

since the possibility of predicting an incorrect loop closure will

decrease leading to fewer false positives. The results shown in

Table VIII validate this assumption.

By changing the variance σ2 used to compute p(It |St = i)
in (10), we vary the probability of observing the image given

the state. If σ is decreased, the value of the likelihood function

subsequently increases. This could lead to a higher recall due to

the increase in the likelihood values. Table IX shows the result

at different values of σ. As expected, the recall rate increases as

we decrease σ but precision drops.
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Fig. 15. Green-colored locations are TP, Blue-colored locations are TN, Red-
colored locations are FN, and Yellow-colored locations are FP. (a) Analysis of
loop detection in areas not fitting the “Manhattan world” assumption. Some of
the locations are still correctly identified by using the Bayesian loop-detection
method. (b) Sample panoramas from the same location with a relative rotation
violating the “Manhattan world” assumption. (Best viewed in the color version.)

Fig. 16. Precision-recall curves comparing basic loop-detection method with
the Bayesian loop detection.

The robustness of the proposed image representation and sim-

ilarity measure along with a hidden Markov model (HMM) can

be illustrated in the following example. Fig. 15(a) corresponds to

a zoomed area of top left corner of the whole trajectory where

the vehicle turns on streets which are not intersecting at 90◦.

Note that due to the temporal model, if the loop closures were

detected successfully in the past, the model continues to cor-

rectly detect loop closure, despite the relatively oblique turns.

Fig. 15(b) shows two panoramas segmented into the four parts

from the same location but more oblique relative orientation.

Note that the content in each part is quite different and not re-

lated by a simple circular permutation of the four views. The gist

similarity based on permutations of the views will not give a high

score between these two images. As the vehicle progresses, the

views will be eventually better aligned with the HMM helping

to overcome some of these issues.

5) Discussion: We have shown that in the case of urban

panoramic data, the proposed approach provides comparable

or better performance to previously published results which

use local features. Besides, using temporal information proves

useful compared with a standalone loop-detection method.

Fig. 16 provides the precision-recall curve comparing the

basic loop-detection method with the Bayesian loop-detection

Fig. 17. Comparison of loop-detection results at 100% precision. (a) Basic
loop-detection method. (b) Bayesian loop-detection method. There were three
areas in the city where using temporal information improved the loop detection.
The color scheme is the same as Fig. 15. (Best viewed in the color version.)

method. To generate the precision-recall curve for the ba-

sic loop-detection method, we vary τloop for the basic loop-

detection method described in Section V-A1. As τloop increases,

the recall increases (more locations satisfy the gist similarity dis-

tance threshold) and precision decreases. For the Bayesian loop-

detection precision-recall curve, we set σ2 = 0.81 and pj→0 =
0.1. The precision-recall values are computed for varying p0→0 .

As p0→0 is decreased, precision decreases and recall increases.

At 100% precision, the basic loop detection achieves a recall

of 20.9%. At the same precision, the Bayesian loop-detection

method had 29.4% recall, an increase of more than 8% over the

basic loop-detection method. This proves the usefulness of tem-

poral information for such methods. A visualization comparing

the basic loop-detection method results with that of Bayesian

loop detection at 100% precision is provided in Fig. 17.

The Bayesian filtering framework presented further improves

loop-closure detection compared with a non-Bayesian approach.

However, the current design of the Bayesian approach will not

be able to deal efficiently with very large datasets. From (8), we

note that after the traversal of N locations, the posterior prob-

ability is computed for all previous locations, except for the

last p locations. To compute this, the posterior from all the past

time steps has to be kept at runtime. Therefore, the time com-

plexity is O(N) and the memory cost is O(N 2). This makes it

computationally expensive for large-scale experiments. Instead

of the exact method described here, we can use an approxi-

mate method, which will reduce the number of computations

at runtime. One such model used in the past is the particle-

filtering-based approximation presented in [49], which had a

constant runtime and O(N) memory requirements.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented how to adopt a global gist de-

scriptor for panoramas and proposed associated similarity mea-

sures which strike a good performance between discriminabil-

ity and computational complexity in urban environments. For

the proposed representation and similarity measures, we have
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evaluated performance and scalability of location recogni-

tion using different strategies and introduced a novel algo-

rithm for loop-closure detection. The effectiveness of the ap-

proach has been demonstrated on extensive experiments with

360◦ FOV panoramas, comparing them with local-feature-based

approaches.

For location recognition, the best results were obtained using

a k-d tree-based approach with a PCA reduced version of the

panoramic gist descriptor. The performance of the proposed rep-

resentation was comparable or better than local feature-based

approaches, with the advantage of higher efficiency and smaller

memory storage requirements for datasets up to 100 000 images.

We also compared the proposed approach with a state-of-the-art

technique for loop-closure detection based on local features, re-

porting favorable or comparable performance. Moreover, we de-

scribed an approach to incorporate temporal consistency, where

the probability of a loop closure is determined in a Bayesian

filtering framework with an HMM model.

The presented work emphasizes the issue of a compact im-

age representation and its effect on scalability and efficiency

for image-based localization. Additional improvements can be

achieved by endowing the database of images acquired along

the route with additional topological structure to achieve a more

efficient loop-closure detection framework and incorporating

stronger geometric constraints in the final verification stage.
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