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Abstract

This paper proposes a data fusion technique aimed at achieving highly ac-
curate localization in a wireless sensor network with low computational cost.
This is accomplished by fusing multiple types of sensor measurement data
including received signal strength and angle of arrival. The proposed method
incorporates a powerful data fusion technique, one that has never before been
used in low cost localization of a stationary node, known as Dempster-Shafer
Evidence Theory. Many useful functions of this theory, including sampling,
aggregation, and plausibility, are integrated into the localization method.
From there, the algorithm determines whether a set of given measurements
belong to a particular county. Motivated by the �exible nature of Dempster-
Shafer Theory, a multitude of network setups and combinations of available
measurement features are tested to verify the performance of the proposed
method. Performance of the proposed approach is evaluated using numerical
results obtained from extensive simulations. When compared with the re-
sults of existing approaches in similarly constructed scenarios, the proposed
localization technique achieves up to 98% accuracy in less than a tenth of
the run-time required under presently established algorithms.
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1. Introduction

Wireless sensor networks have been of great interest in today's world due
to their wide variety of practical applications and purposes. Practicality can
range from long distance navigational systems and localized contact points
for emergency services to industrial detection of carbon monoxide (Yang,
Zhou, Lv, Wei, and Song, 2015) and community detection of social clusters
(Li, Qin, and Song, 2016). In addition to emergencies and navigation, typical
uses of these networks can include tracking, security, and information (Lloret,
Tomas, Garcia, and Canovas, 2011).

While the demand for and scope of wireless sensor networks (or WSNs)
continue to grow, the need for identifying a node's location within such a
network becomes increasingly vital. However, achieving localization with a
steady balance of minimal power, low overall cost, and high accuracy (Mao,
Fidan, and Anderson, 2007) remains one of the greatest challenges in the
area of WSNs.

1.1. Localization Techniques

A brief overview of the most common unimodal localization techniques of
both low cost and high cost categories is presented in Fig. 1. In this scenario,
cost refers to the amount for signi�cant computational resources required to
achieve accurate localization. Some of the most common modern localiza-
tion techniques are well-known even outside of scienti�c research areas due to
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Figure 1: Classi�cation of localization techniques.

their popularity in modern consumer electronics. These include global posi-
tioning systems (GPS), wireless local area networks (WLAN), and bluetooth
(BT). GPS is perhaps the most widely known method due to its frequent use
in navigational assistance through standalone devices and through embedded
navigational capabilities in smartphones and tablets. Bluetooth is primarily
appealing for short range solutions and thus can be ideal speci�cally for local
positioning within a WSN (Shen, Chen, and Lu, 2008). WLAN, or Wi-Fi, is
another short range solution whose signi�cance lies within its high localiza-
tion accuracy throughout indoor WSN environments (Shen, Chen, and Lu,
2008). Inertial Navigation Systems (INS) are not quite as common as the
other three methods but are noteworthy due to their high potential for seam-
less integration with GPS systems (Bhatt, Aggarwal, Devabhaktuni, and
Bhattacharya, 2012). All four of these techniques share the common charac-
teristic of requiring a high computational cost to achieve a desirable level of
accuracy. For instance, a GPS-based solution requires su�cient resources in
every node to receive a signal from a positioning satellite, resulting in long
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Figure 2: Depiction of RSS Trilateration in a three-monitor WSN Setup.

connection times, external signal outages, and shorter battery life (Bulusu,
Heidemann, and Estrin, 2000). Bluetooth and WLAN are also prone to faster
battery drain, as any smartphone or laptop user is quick to observe. One
potential resolution to this resource issue involves restricting measurement
capabilities to a small handful of nodes while reducing all other nodes to a
bare minimum level of communication capability. These specialized, higher
powered nodes are known as cluster heads, or anchor nodes (Mao, Fidan,
and Anderson, 2007). In order to utilize the remaining nodes, however, a
vital further step is to apply lower cost methods of a less computational and
more mathematical nature in order to achieve the full potential of e�ective
localization.

Many common low cost techniques include received signal strength (RSS),
angle of arrival (AOA), time of arrival (TOA), time di�erence of arrival
(TDOA), and hop count. In the context of this research, RSS is de�ned
as the electric �eld at the receiving node divided by the distance between
said node and the transmitting antenna. In outdoor environments, RSS can
be considered as a simple mathematical method of distance calculation, free
from the restrictions of walls, multipath e�ects, and humidity (Garcia, Mar-
tinez, Tomas, and Lloret, 2007; Garcia, Tomas, Boronat, and Lloret, 2009)
that are typically associated with indoor WSN environments. Due to RSS's
inverse relationship with squared distance (Xu, Lin, Lang, Zhang, and Wang,
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Figure 3: Depiction of AOA-based localization.

2010) in outdoor WSNs, highly accurate locations can be determined with
three or more RSS measurements from three unique points. This is accom-
plished by trilateration (Mazuelas et al, 2009), as can be seen in Fig. 2.
Trilateration is particularly bene�cial when three or more anchor nodes are
available but is ine�ective in WSN setups in which only two measurements
are available. That is, under two RSS measurements, only bilateration can
achieved, resulting in two possible intersecting points and thus a 50% chance
of achieving accurate localization. AOA is the arrival angle of the emitted
source signal observed at an anchor node (as shown in Fig. 3) and is a mea-
surement dependent on TDOA. More speci�cally, AOA is calculated using
the di�erences between arrival times of a transmitted signal (Patwari et al,
2005). TDOA is dependent on time di�erences between nodes (Cakir, Kaya,
and Cakir, 2014) and is another e�ective means of localization by process
of multilateration (Pelant and Stejskal, 2011). TOA, on the other hand, is
simply the amount of time required for a signal to move from a transmitting
node to a receiving node (Patwari et al, 2005). Like RSS, AOA provides
a 50% chance of accurate localization using intersecting angles, but it also
requires expensive antenna arrays (Patwari et al, 2005). In addition, TOA
faces the drawback of having a dependence on source signal transmission
time to measure propogation time between sensors (Shen, Ding, Dasgupta,
and Zhao, 2008). TDOA measurements, on the other hand, strengthen noise,
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leading to hindered performance (Shen, Ding, Dasgupta, and Zhao, 2008).
In spite of the aforementioned drawbacks, many of these techniques, such

as RSS and AOA, function adequately on their own. However, it has been
shown that combining multiple, varied types of data can enhance results and
understanding, e�ectively providing the best of all worlds in regards to each
data type's advantages (Xing et al, 2009; Tseng, Kuo, Lee, and Huang, 2004).
However, the very act of combining measurement types�data fusion�poses
a unique challenge.

1.2. Dempster-Shafer Theory and Its Existing Applications

Decision fusion is a form of data fusion in which the desired output is
a decision rather than a quantitative value. Dempster-Shafer (DS) The-
ory is a decision fusion technique that is based on Bayesian combinational
probability but undertakes a drastically di�erent foundation with regards to
combinational factors (Nguyen and Walker, 1993). While Bayesian statistics
rely primarily upon combinations of internal probability factors within a sys-
tem (Chiodo and Mazzanti, 2006), typically through the use of propositions
or random variables, DS Theory is contingent upon external evidence fac-
tors (Limbourg, Savic, Petersen, and Kochs, 2007; Lipeng, Juan, and Laibin,
2011). Each factor consists of (i) a range of data in which the desired output
value can be found as well as (ii) a probability of con�dence that the data
range is in fact reliable. DS Theory is meant to model information that,
under more traditional Bayesian methods, would be considered incomplete
(Nguyen and Walker, 1993). Some localization problems have incorporated
DS Theory in the past, such as robot localization (Clerentin, 2000) and in-
door localization of a mobile user (Kasebzadeh, 2014). Prior to the validation
of this research, however, Dempster-Shafer Theory has never before been ap-
plied to low cost localization of a stationary node in a large outdoor WSN.

1.3. Research Motivations

The overall objective of this research is to develop an algorithm for local-
ization in a wireless sensor network that is both highly accurate and of low
computational cost. Time-critical localization of WSNs is a topic of increas-
ing concern in today's world, as a variety of civil and military applications
are heavily dependent on these two properties. For instance, many college
campuses and some urban areas have a network of emergency phones scat-
tered across town so that individuals in distress can reach emergency services
(Meyer, 2012). Using e�ective localization techniques such as that proposed
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in this paper, emergency services can dispatch police, �re, or medical services
to a caller's location at a signi�cantly improved response time. In addition,
the wireless aspect of these networks would ease any infrastructure-based
complexities that currently exist with current wired phone stations.

1.4. Overview of Subsequent Sections

The remainder of this paper is organized as follows. Section 2 expands
upon many of the previous subsections by providing an extensive theoreti-
cal background of DS Theory and WSN localization techniques. Section 3
provides an overview of how the research study was conducted, including
generation of the relevant WSN data, the properties and parameters of the
sensor network, and the determination of the method's accuracy and per-
formance. Section 4 presents the results of the experiment in a variety of
scenarios, a comparison of said results to those of existing localization tech-
niques, and a brief discussion of the impact thereof. Lastly, conclusions are
presented in Section 5.

2. Mathematical Background and Formulation

This section establishes three vital concepts that comprise the core of this
research study, provided in three subsections. The �rst is Dempster-Shafer
Theory, or more speci�cally the concepts and properties thereof. The second
contains the types of sensor node measurements needed for the localization
technique. Finally, the third subsection describes the technique itself, which
formulates the relationship between the two concepts to form a comprehen-
sive location-estimating algorithm.

2.1. Dempster-Shafer Theory

From a theoretical context, Dempster-Shafer Theory can be best de-
scribed as a dynamic generalization of Bayesian probability theory, form-
ing a divergence based on the concept of ignorance (Bloch, 1996). Typical
Bayesian approaches assume an ignorance quantity of zero, or equivalently
100% con�dence, for any probabilistic value, which is usually appropriate
when a probability factor is internal. Because DS Theory is based upon
external factors, however, this property can no longer by unconditionally as-
sumed. Hence, an array of evidence factors is used to determine all possible
outcomes in a given scenario (e.g. the distance between a sensor node and
an anchor node in a WSN). The �nite set of all possible mutually exclusive
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values is known as the frame of discernment and is denoted by Θ. From
there, the union of all subsets is given by the power set 2Θ.

One of the most signi�cant fundamental concepts of DS Theory is the
basic probability assignment (BPA) function, which is essentially the equiv-
alent of the random variable in Bayesian probability theory. It is also known
as the belief variable (Auer, Luther, Rebner, and Limbourg, 2010) and is
denoted as m. Suppose A1, . . . , An are all possible sets within a frame of
discernment, noting that Ai ∈ 2Θ. Then

m : 2Θ → [0, 1],
n∑

i=1

m(Ai) = 1,m(∅) = 0, (1)

where ∅ denotes the empty set. Each set Ai takes the form of the interval
([
¯
x, x̄]), denoting the lower and upper bounds of an evidence factor, respec-

tively (Auer, Luther, Rebner, and Limbourg, 2010). Each BPA m consists
of three vital properties: a lower bound, an upper bound, and a degree of
con�dence µ that lies between the values of 0 and 1 (University of Duisenberg-
Essen, 2012). Thus, ignorance can be de�ned as simply 1− µ.

2.1.1. Belief and Plausibility

Belief and Plausibility are two of the most vital core functions of an
aggregate BPA, as they represent upper and lower bounds in probability,
respectively. In a frame of discernment, they are de�ned as

Bel(B) =
∑

Ai⊂B
m(Ai) (2)

Pl(B) = 1−
∑

Ai∩B=∅
m(Ai), (3)

where m(Ai) denotes the BPA mass function for a set Ai.

2.1.2. Set Representation

A BPA contains three vital properties: a lower bound
¯
x, an upper bound

x̄, and a degree of con�dence µ. Hence, representation of a BPA as a set of
these three properties becomes a highly convenient organizational method.
In such a case, the resultant BPA m would be de�ned as

m = {
¯
x, x̄, µ}. (4)

Likewise, because calculation of belief and plausibility requires multiple BPAs,
or the CDF of an aggregate BPA, representation of the individual assignments
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as a set of sets is also bene�cial. Suppose mu
1 ,m

u
2 , . . . ,m

u
n represent all BPAs

in Θ such that

m =


mu

1

mu
2

...

mu
n

 =


{
¯
xu
1 , x̄

u
1 , µ

u
1}

{
¯
xu
2 , x̄

u
2 , µ

u
2}

...

{
¯
xu
n, x̄

u
n, µ

u
n}

 (5)

and x̄u
1 < x̄u

2 < · · · < x̄u
n. The latter property is of particular importance, as

this sorted order of upper bounds can be used to de�ne belief from a more
speci�c, set-oriented context. Let the superscript u indicate that contents of
m are arranged in order of increasing upper bound. Also, recall that µ is the
degree of con�dence in each BPA and thus can be de�ned as µu

1 , µ
u
2 , . . . , µ

u
n.

Then belief can be represented as

Bel =



{x̄u
1 , µ

u
1,new}

{x̄u
2 , µ

u
2,new}

{x̄u
3 , µ

u
3,new}
...

{x̄u
n, µ

u
n,new}


, (6)

where
µu
1,new = µu

1 (7)

and

µu
n,new =

n−1∑
i=1

µu
i,new. (8)

Now suppose m is rearranged and mu
1 ,m

u
2 , . . . ,m

u
n are renamed such that

m =


ml

1

ml
2

...

ml
n

 =


{
¯
xl
1, x̄

l
1, µ

l
1}

{
¯
xl
2, x̄

l
2, µ

l
2}

...

{
¯
xl
n, x̄

l
n, µ

l
n}

 , (9)

where
¯
xl
1 < ¯

xl
2 < · · · < ¯

xl
n and the superscript l indicates that contents of m

are now arranged in order of increasing lower bound. Hence, all conditions
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are available to de�ne plausibility as

Pl =



{x̄l
1, µ

l
1,new}

{x̄l
2, µ

l
2,new}

{x̄l
3, µ

l
3,new}
...

{x̄l
n, µ

l
n,new}


, (10)

where
µl
1,new = µl

1 (11)

and

µl
n,new =

n−1∑
i=1

µl
i,new. (12)

In other words, the top and bottom rows represent the least and most
believable outcomes, respectively. The latter is the row of greatest impor-
tance, where x̄u

n is the value of the most believable outcome and µu
n,new is

the belief probability, which in this case is always 100% or 1, since it is the
sum of all con�dence values. Similarly, the top and bottom rows of the be-
lief set respectively represent the least and most plausible outcomes. Also
likewise to belief, the most believable row is of most signi�cance, as

¯
xl
n sig-

ni�es the most plausible outcome and µl
n,new is another 100% probability.

Due to these powerful methods of outcome prediction, extensive analysis of
belief and plausibility serve as the initial foundations and formations of this
research.

2.2. Categories of Sensor Node Measurements

The proposed localization technique is dependent on a multitude of sensor
measurements, namely RSS, AOA, and standby. Before these values can be
mathematically de�ned, however, the distance between any sensor node and
any anchor node must also be evident. Suppose the coordinate [xn, yn] refers
to the position of a sensor node and [xm, ym] is the position of a monitor, or
anchor node. Then, the distance d can be de�ned as

dactual =
√

(x2
m − x2

n) + (y2m − y2n), (13)

where all aforementioned variables are measured in meters. For RSS cal-
culation in outdoor WSN environments, multiple formulas exist for exact
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calculation but share the common property of having an inverse proportion-
ality with squared distance (Xu, Lin, Lang, Zhang, and Wang, 2010; Patwari
et al, 2005). Hence, in the context of this research, RSS is simply de�ned as
the inverse of distance squared, or RSS = 1/d2actual.

Due to the generic nature of this interpretation, no speci�c unit is needed,
as long as the generic unit contains the factor of m−1. AOA, however, is
de�ned in a more speci�c context as

AOA =


tan−1( yn−ym

xn−xm
) if yn > ym and xn > xm

tan−1( yn−ym
xn−xm

) + 180 if yn ̸= ym and xn < xm

tan−1( yn−ym
xn−xm

) + 360 if yn < ym and xn > xm

(14)

with resultant units in degrees. Standby is a unique type of distance mea-
surement in which a sensor node with this feature enabled is detected by
a dedicated standby node, which measures the distance thereof by inverse
square root RSS calculation. This is enabled primarily in network terrains
with smaller area, as each sensor node's signal strength must be within range
of the standby node. Let [xsb, ysb] be the location of the standby node. Then
the standby distance is de�ned mathematically as

dSB =
√
(x2

sb − x2
n) + (y2sb − y2n). (15)

2.3. Proposed Representation of Distance Range as BPA

In order to fuse any of the varied measurement types together, each mea-
surement must be converted into a common value. Such a value in this case
is best represented as the distance from a sensor node to an anchor node,
as determined by inverse square root RSS calculation. Due to this method
of distance calculation, the experimental setup will require RSS to be en-
abled at all times. If a distance or range of distances can be found for all
available cluster heads, then a node's location can be estimated by an en-
hanced process of trilateration, in which enhancement is based on the e�ects
of data fusion. The challenge associated with reaching such a goal becomes
the task of estimating such a distance range for each monitor. Thus, the
need for e�ective organization and evaluation of optimal distance values is
where Dempster-Shafer Theory becomes a mechanism of great interest.

Because external evidence factors are the primary means by which DS-
based estimation can occur, it becomes necessary to obtain distances and
measurement sets that are independent of those given as functional inputs.
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This distinction will be explained at greater length in Subsection 3.2 by means
of test data and full data sets. Because such data is external, the amounts and
ranges of measurements must be reduced based on feature-speci�c criteria.
Suppose these range values, r, are de�ned as

r = {rRSS, rAOA, rSB}, (16)

where rRSS > 1, 0 < rAOA < 1, and rSB = −1, the latter value indicating that
there is no range for standby. If the inverse of a given feature measurement
is less than the range ri and the range is not −1, then the lower and upper
limits of such ranges are de�ned as |0, 1/ri|. Otherwise, if the value is greater
than or equal to ri, then the limits are | si

risi+1
, si|, where si is the particular

feature measurement and i is the feature type. A range of −1, on the other
hand, matching feature measurements between both data sets. The next step
is to �nd external distance values from external feature measurements that
lie within the corresponding range. After �ltering of all such distance values,
the minimum and maximum of the remaining values become the lower and
upper bounds of the resultant BPA. Because all BPAs will aggregate in a
later step, the con�dence value can simply be 1 for the time being. Thus,
based on Equation 4, we have

mi = {dmin, dmax, 1}, (17)

where dmin denotes the minimum external distance value and dmax denotes
the maximum.

Once a BPA is formed for each active feature, aggregation can then occur.
At certain times, manually adding new BPAs can be an exhaustive process,
in which case sampling from a distribution becomes an ideal solution. This
process, also known as discretization, involves generating n discrete samples
based on a lesser amount of initialized BPAs, which collectively form a cu-
mulative density function (CDF) of BPA structures (Tonon, 2004). Thus,
to smoothen the transition between BPAs, sampling each mi by a consis-
tent function handle, such as inverse normalization, is recommended. Once
sampling has been applied, the aggregate BPAs can now be considered as
an adimensional, unit neutral entity, as required for mass assignments. Now
each BPA closely �ts the parameters of Equation 4 and is written as

mi = {
¯
x, x̄,

1

fn
}, (18)
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where 1
fn

denotes an evenly distributed con�dence probability in terms of f
active features and n BPAs. The resultant aggregate BPA for n samples thus
becomes

λ = {λRSS, λAOA, λSB}, (19)

where

λRSS =


m1,RSS

m2,RSS

...

mn,RSS

 , λAOA =


m1,AOA

m2,AOA

...

mn,AOA

 , λSB =


m1,SB

m2,SB

...

mn,SB

 (20)

This is under the assumption that all three features are enabled. If one or
more features are unavailable, then their corresponding λ values are sim-
ply omitted. With all aggregation intact, the next step is the actual data
prediction process.

2.3.1. Formulation of Proposed Algorithm

Because Dempster-Shafer Theory is a new concept of keen interest in the
area of low cost WSN localization, a clear relation between actual distance
and believed or plausible distance was not available in any found literature.
Thus, some preliminary experimentation was needed to understand how Bel
and Pl functions could potentially correlate measured values with calculated
values. The resultant analysis from belief and plausibility calculations showed
that the former method contained little to no e�ect in predicting a given
distance while the latter showed encouragingly high correlation. Thus, after
extensive exploration, we propose a completed high accuracy algorithm based
on plausibility, as presented in Fig. 4.

As a simple example of how the proposed method works, suppose there
exists a WSN of �ve sensor nodes, two sensor nodes, a standby node, and a
fusion center, as depicted in Fig. 5 that encompasses a one square meter area
(details of these node types are explained further in Subsection 3.1). Here,
we wish to locate the sensor node located at [0.4, 0.6] meters, given only a
list of possible node locations and a set of signal measurements (RSS, AOA,
and standby, as measured by the standby node). For each anchor node, or
monitor, the technique (via the fusion center) conducts an external survey of
candidate distance values that satisfy feature-based constraints. Out of these
values, the minimum and maximum thereof encompass the bounds of a BPA.
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Figure 4: Flowchart of proposed DS localization algorithm.
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Figure 5: WSN of 5 sensor nodes, 2 anchor nodes, standby node, and fusion center.

After the algorithm repeats this process for every feature type, it aggregates
all BPAs. Next, it executes the plausibility function on the distance BPAs
and selects the resultant distance value of greatest con�dence. This results
in a radius of plausibility for each monitor, as indicated by the lightly colored
circles of Fig. 5.

The end goal here is to generate a region of feasibility in which the target
node could lie. For this, the algorithm incorporates a pair of coe�cients,
determined by preliminary WSN con�guration, which forms inner and outer
radii, as indicated by the dark circles in the �gure. Finally, we inspect the
intersection of inner and outer circles to �nd that only one node location
lies within the region and thus matches the given set of measurements. In
essence, this problem can be perceived as a multiple choice exam, and while
choosing from only �ve nodes in this case does not seem too daunting, it is
in large scale WSNs with more than a hundred nodes that this technique can
truly �ourish.
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3. Simulation Setup

A variety of WSN simulation scenarios was created and analyzed using the
MATLAB scienti�c programming environment (The Mathworks, Inc., 2013).
The resultant software package includes all facets needed for experimental
simulation. This includes speci�c parameters and qualities of the WSN,
selectively randomized generation of data, and a complete implementation
of the technique proposed in Fig. 4. In addition, two auxiliary algorithms
designed to aid the execution of the core technique are also proposed as well
as multiple methods for calculating the algorithm's accuracy.

An overview of the default simulation parameters in the experimental
setup is as follows:

1. 100 nodes deployed throughout a rectangular region of 1000-by-1000
meters

2. Two or three anchor nodes (both options tested separately in identical
networks)

3. Anchor nodes in both two-monitor and three-monitor setups located
at [150,100] and [850,100] meters; third anchor node in three-monitor
setups located at [500,100] meters

4. Standby node placed at [500,800] meters; location of fusion center is
negligible

5. One-to-one mapping of counties and nodes
6. Range criteria of 20, 0.002, and -1 for RSS, AOA, and standby, respec-

tively
7. Setup tested for every combination of features in which RSS is active

(as RSS is needed to calculate distance from node to monitor)
8. Discretization consisting of 10 samples as an inverse normalized distri-

bution
9. Di�erences of -1.5 meters or less for actual distance minus predicted

distance not considered in determining a minimum di�erence between
distances

10. Distance range weights determined through iterative training (see Sub-
subsection 3.4.1) to be 1.3 and 0.95

11. Experimental results as the average of ten independent experiments in
which the WSN is regenerated upon every trial

12. Zero noise factor assumed

Details of the variables and terminologies above are explained in the pro-
ceeding subsections.
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Figure 6: WSN of 100 sensor nodes, 3 anchor nodes, standby node, and fusion center.

3.1. WSN Setup

The sensor network in this simulation consists of four vital components:
the sensor nodes, the anchor nodes, the standby node, and the fusion center.
The sensor nodes comprise the vast majority of the components in this setup,
totaling 100 out of 105 nodes in a three-monitor setup. The anchor nodes,
also known as monitors or cluster heads, are placed strategically throughout
the WSN to measure the available properties of each and every sensor node,
such as RSS, AOA, and operating condition (standby). Such data is then
transferred from an anchor node to a fusion center node, which processes all
information using the algorithms and methods given in the following sub-
sections. In other words, the fusion center assumes the role of the entire lo-
calization software, minus the data generation stage. In addition, a standby
node measures the distance of any sensor nodes that are in standby mode.
The complete WSN setup is presented in Fig. 6.
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3.1.1. Data Value Ranges

In this network setup, the origin of the coordinate system is positioned
at the lower left hand corner of the map, as indicated in Fig. 6. County
names and monitor names are given as numbers ranging from one to the
total number of counties and monitors available, respectively. All monitors
are horizontally aligned by having a common latitudinal coordinate of 100
meters as well as longitudinal coordinates from 150 to 850 meters. Ranges of
sensor node coordinates are based on the size of the WSN and can be placed
anywhere more than 30 meters from any border. Based on the criteria of
the latter two data types, distances between sensor nodes and monitors can
vary from 40 to 1360 meters. Because RSS is merely the inverse square root
of distance in the case of outdoor environments, it can range from 1/13602

to 1/402. AOA can be any positive number of degrees up to 360, and the
operating condition, or standby, distance can range from 0 to 920 meters.

3.2. Data Generation

A multitude of sensor nodes, counties to which each node belongs, and
various measurements of nodes relative to various monitors have been written
to and read from a single comma separated value (CSV) �le. This is known
as the full data set. Each sensor node encompasses multiple rows of data, in
which each row corresponds to a particular monitor observing the node and
its measurements. Each category of data, such as county number, distance,
or a type of measurement, takes the form of a column. The full data set
contains 100 samples of sensor node data for every one of the 100 counties in
the WSN, and each county is measured from three monitors, thereby totaling
30,000 rows overall.

A second CSV �le known as the test data set contains the county lo-
cations and measurements that are to be tested against the full data set.
The test data contains only one sensor node per county. The location and
measurement values are di�erent from any of the nodes of the corresponding
county in the full data. Hence, the test data set contains 300 total rows of
data for three monitor WSN setups and 200 rows for two monitor setups.

Each sample of data in each �le contains ten columns, determined as
follows:

1. Anchor node number

2. X coordinate of anchor node

3. Y coordinate of anchor node
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4. County number

5. County x coordinate

6. County y coordinate

7. Distance from county to anchor node

8. RSS value

9. AOA value

10. Standby value

Worth noting is that the �rst three values are intended to be treated inde-
pendently of measurement data in accordance with the objectives provided in
Subsection 3.5. In addition, the seventh column is optional to the algorithm,
as any distance value can be calculated directly from the corresponding RSS
value due to a consistent inverse proportionality between RSS and squared
distance.

3.3. IPP Toolbox

Aiding in the MATLAB implementation of DS Theory is the acquisition
of the open source IPP Toolbox (University of Duisenberg-Essen, 2012), re-
leased under the GNU General Public License (GPL). For the �rst time in
WSN localization, this package has been utilized to execute all DS-speci�c
functions in the simulation, such as formation of BPAs, aggregation and
sampling of BPAs, and calculation of plausibility.

3.4. Algorithmic Implementation

The algorithm was programmed by following the �owchart provided in
Fig. 4 and re�ning the technique in the form of the pseudocode provided
in Algorithm 1. The pseudocode was then converted into MATLAB-speci�c
syntax and thoroughly tested to ensure proper functionality and accurate
representation of the proposed algorithm.

An important distinction to note is that of the two data �les presented
in Subsection 3.2. The localization algorithm uses the full data set only
for obtaining distance values for corresponding measurements that �t given
range criteria in the distance collection stage. This essentially serves as an
external data set that helps to establish the lower and upper bounds of an
evidence factor, or BPA. The rest of the algorithm utilizes the internal test
data set, particularly for establishing input values for county locations and
measurement sets.
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1: test_data ← read measured data
2: full_data ← read potential data
3: range ← feature-speci�c range values
4: for all monitors do
5: for all active features do
6: distances ← all distances from full data features satisfying range
7: BPA_per_feat ← min_distance, max_distance, 1
8: apply sampling to and aggregate BPA
9: end for

10: pl_dist ← most plausible distance
11: min_accept, max_accept ← coe�cients of acceptable distance range
12: meas_dist ← measured distance from county to monitor
13: decision_per_mon ← measured distance is in acceptable range
14: di�erence_per_mon ← measured - plausible distance
15: end for

16: decision ← all decisions per monitor are positive
17: di�erence ← minimum di�erence per monitor
18: return decision, di�erence

Algorithm 1: Pseudocode of DS localization algorithm.

3.4.1. Determination of Acceptable Distance Values

As stated in Line 12 of Algorithm 2, a major factor in determining the de-
sired outputs in the next subsection is the formation of acceptable distance
values. Unlike arti�cial neural networks and other conventional machine
learning techniques, DS Theory does not require an elaborate training stage.
Conversely, however, care must be taken to determine a precise distance range
to ensure optimal localization accuracy. Hence, a simple iterative approach
is taken to �nd the most e�ective weights for the lower and upper bounds
of an acceptable distance range. The resultant approach is detailed in Algo-
rithm 3. For the sake of preserving the training-independent property of DS
Theory, and due to the highly intensive time requirement when compared to
Algorithm 2, this method is not intended to be executed upon every run of
the core algorithm. Instead, it is only to be run during the initial formation
of the WSN as well as signi�cant changes thereof. In other words, if a WSN
undergoes minor changes, such as the addition or removal of one anchor node
or the relocation of sensor nodes across short distances, the impact of the
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1: test_data ← read measured data
2: full_data ← read potential data
3: for all candidate upper bounds do
4: for all candidate lower bounds do
5: for all combinations of available features do
6: generate WSN data
7: run Alg 3 set number of times given bounds and features
8: decision_matrix, matching_county ← average outputs of Alg 3
9: longAcc ← long accuracy
10: shortAcc ← short accuracy
11: matchAcc ← match accuracy
12: end for

13: avgAcc ← 1
3

1
no.feat.

∑
features(longAcc + shortAcc + matchAcc)

14: end for

15: end for

16: bestAcc ← maximum avgAcc
17: best_lower, best_upper ← bounds that result in best accuracy
18: for all combinations of available features do
19: generate WSN data
20: evaluate Alg 3 using best bounds and given features
21: end for

Algorithm 2: Pseudocode of distance range training algorithm.

acceptable distance ranges is too low to noticeably alter the accuracy of the
core algorithm. The three types of accuracy portrayed in Algorithm 2 as well
as the details of Algorithm 3 are provided in Subsection 3.6.

In machine learning techniques, the data used for training is intended
to contain many more training samples than validation samples (Krogh and
Vedelsby, 1995). Hence, in this approach, WSN data generation and Al-
gorithm 3 execution are run repeatedly and independently three times as
much as they are run in validation and training-independent stages. Due to
the high computational time and cost required for training, only a limited
number of weight combinations are considered. As will be indicated in the
experimental results in Subsection 4.1, the resultant lower and upper bound
coe�cients of the maximum plausibility value are ultimately chosen to be 1.3
and 0.95, respectively.
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3.5. Desired Outputs

In order to address two distinctly di�erent methods of application, the
proposed technique delivers two separate outputs that respectively address
the following questions:

1. Given a set of di�erent measurement types and the location of a given
county, do the measurements belong to said county?

2. Given a set of di�erent measurement types and the locations of all avail-
able counties, which county most closely matches the measurements?

3.6. Accuracy Calculation

Three di�erent types of accuracy are established in calculating the e�ec-
tiveness of the two questions posed in the previous subsection: long accuracy,
short accuracy, and matching accuracy. The former two methods correspond
to the �rst question, in which a single county location and a single list of
measurements are given as inputs and a binary decision of one or zero is the
sole output. To test long accuracy, every combination of county and mea-
surement set is run through the algorithm as the two inputs. From there,
each output is a square matrix whose side length is equal to both the num-
ber of counties and the number of measurement sets. In such a matrix, each
row corresponds to each measurement set and each column corresponds to
each county. Finally, long accuracy is calculated by comparing the resultant
matrix against an identity matrix of the same dimensions. The resultant
formula is as follows:

Accuracy = 100 ∗ cellsmatching

cellstotal
. (21)

Short accuracy follows a similar process except that only the matching coun-
ties and measurement sets are tested, e.g. county 1 with measurement set
1, county 2 with measurement set 2, etc. The results are recorded in an
output vector of length equal to the number of counties, rather than a two-
dimensional square matrix of the same side length. The vector is then com-
pared against a vector of ones of equal length, once again using Equation
21.

The third accuracy type is based on the second question, in which a single
list of measurements and a full list of all counties are the two inputs and the
number corresponding to the most likely county match is the output. To
test matching accuracy, every measurement set (in order of their matching
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1: test_data ← read measured data
2: full_data ← read potential data
3: range ← feature-speci�c range values
4: for all measurement sets do
5: for all counties do
6: decision, di�erence ← Alg 1 using test_data, full_data, range
7: end for

8: index ← minimum di�erence
9: matching_county ← county at index
10: end for

Algorithm 3: Pseudocode of DS testing algorithm.

county numbers) is tested against the list of counties to form a resultant
output vector of size similar to that in short accuracy. The contents of said
vector take the form of county numbers. This array is then compared against
the ideal vector, which is simply every county number in numerical order, on
the basis that the measurement sets are given in the same order. The two
matrices are then compared with the same formula as before for calculating
accuracy.

In order to thoroughly evaluate all three types of accuracy, a simple test-
ing algorithm is portrayed in the pseudocode of Algorithm 3, evaluating the
core localization algorithm in order to extract all desired distance di�erence
and county match values.

4. Simulation Results and Discussion

This section provides the results for the MATLAB simulation setup and
parameters detailed in the previous section. This includes both the prelimi-
nary training-based approach intended only for initial WSN implementations
and the core training-independent approach. The latter of the two serves as
the primary focus of discussion due to its resultant combination of high ac-
curacy and low computational cost.

4.1. Results Under Distance Range Weight Training

20 possible combinations of desired values, as detailed in Subsubsection
3.4.1, served as the candidate inputs for the training-based portion of the
simulation. The results for all three accuracy types as well as the averages
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(d) Average Accuracy

Figure 7: Plots of accuracy versus upper bound weight versus lower bound weight for
preliminary weight training.
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thereof are presented in Fig. 7. Each result is the average of 30 indepen-
dent trials, that is, three times the amount of trials run in the proceeding
subsection. As the surface plots in the �gure indicate, full accuracy reaches
optimal levels when the lower bound weight is maximized and the upper
bound weight is minimized. Short accuracy appears to be almost indepen-
dent of lower bound weight values and optimizes at the maximum upper
bound. Matching accuracy follows the most uniform distribution of accuracy
values, varying from 76.000% to 76.002%, optimizing at multiple possible
points. E�ectively, this form of accuracy can be considered negligible in the
attempt to �nd a single best weight combination. The average accuracy is
the primary decision factor of weight selection and optimizes upon a max-
imum lower bound of 0.95 and an upper bound of 1.3, located in a tightly
contained region in which average accuracy narrowly exceeds 90%. Hence,
the respective upper and lower weights of 1.3 and 0.95 have been veri�ed
to produce the most accurate data and are thus used consistently under the
implementation detailed in the following subsection.

4.2. Training-Independent Results

The training-independent portion of the simulation was tested in 24 dif-
ferent scenarios resultant from four independent variables: the set of active
features, the number of monitors, the type of accuracy, and the trial-based
random generation of the WSN. These results re�ect the overall e�ective-
ness of Dempster-Shafer Theory, data fusion, and plausibility, as established
in Section 2. This simulation used two and three as the desired numbers of
monitors, as these amounts have been established minimums under unimodal
RSS and AOA based localization methods. For reliability and redundancy
purposes, the simulator regenerated the WSN prior to each of the ten exper-
imental trials for each of the above combinations of scenarios. The accuracy
results for all test cases are given in Table 1, and the runtime results are
provided in Table 2, where each value for each table is the average run time
for all trials.

4.2.1. Accuracy

As Table 1 indicates, the full accuracy test generates consistently high re-
sults in the steady area of 97.0-97.5% accuracy for all eight scenarios. Thanks
to the powerful core of the localization technique that is DS Theory, the algo-
rithm is proven to be consistently e�ective for both two-monitor and three-
monitor setups under all feasible combinations of active features. Results
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Accuracy Full (%) Short (%) Match (%) Average (%)

Monitors 2 3 2 3 2 3 2 3

RSS 97.04 97.49 97.20 98.50 56.17 66.64 83.47 87.54

RSS, SB 97.00 97.43 100.0 100.0 94.58 96.07 97.19 97.83

RSS, AOA 97.03 97.47 98.13 98.97 57.81 67.29 84.33 87.92

RSS, AOA, SB 97.01 97.44 100.0 100.0 92.52 94.21 96.51 97.22

Table 1: Simulation results for two-monitor and three-monitor WSNs.

of the short accuracy test climb even higher with a value range of 97-100%.
Under the matching accuracy test, results span a wider range of accuracy re-
sults from 56.1% to 94.6%. The average of all three accuracy types indicate a
somewhat less diverse range of 83.5% to 97.8%. Empirically, county match-
ing can be considered most e�ective when only RSS and operating condition
are enabled. The absence of operating condition results in the only accuracy
values lower than 94% as well as the only short accuracy values below 100%.
In other words, when a WSN is distributed across a small enough terrain that
a standby node is usable, average accuracy of over 95% is easily achieved. In
contrast, larger terrains in which standby measurements are unfeasible can
only reach average accuracy values of 80-90%.

The full accuracy test appears to be the only evaluation type that results
in a higher percentage in the absence of data fusion. While fusing multiple
types of data is intended to enhance an accuracy relative to that of a sin-
gle type of data, this test shows that full accuracy is most e�ective when
only RSS data is available. The other evaluation methods, however, clearly
demonstrate that fusion of multiple measurement types do in fact enhance
accuracy. Combining this observation with the fact that di�erences in full
accuracies are minimal (all values for each monitor are within 0.06% of one
another) can easily infer that data fusion in this context is still an overall
success.

Also worth noting is that RSS as a sole feature forms the weakest accuracy
and may pale in comparison to traditional RSS-based localization when only
RSS is available. One should keep in mind, however, that all other remain-
ing feature combinations, that is, any combination of two or more features,
proves that fusion of multiple available types of data in this algorithm is sig-
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Runtime (ms) 2Mon 3Mon

Total 787478.00 1375261.00

Per Feature Set 196869.00 343815.20

Per Iteration 19.69 34.38

Per Node 0.197 0.344

Table 2: Runtime results for two-monitor and three-monitor WSNs.

ni�cantly more e�ective than any conventional unimodal technique. Thus,
RSS should be considered of lower importance, as the scope of this research
focuses primarily on the advantages and successes of data fusion.

Another successful outcome is the high accuracy involved in two-monitor
WSNs. Most established localization methods require three or more monitors
to observe a sensor node's measurements, but in this algorithm, two-monitor
WSNs can localize reliably with a less-than-0.5% decrease in accuracy. From
the standpoint of having RSS as the only enabled feature, achieving a high
accuracy with three monitors is trivial, as this can be achieved purely through
trilateration. Under two monitors, however, only bilateration is available,
meaning that if distance values calculated from RSS measurements are exact,
there is still only a 50% chance of obtaining the correct location. Thus,
the monumental incorporation of DS Theory can achieve highly accurate
localization with only two monitors just as easily as with three or more.

4.2.2. Computational Runtime

For each trial, we recorded the total runtime for an entire simulation under
all four available feature sets. From there, we averaged the calculated time
per feature set, then divided by all 1002 = 10000 possible input combinations
to �nd average runtime per iteration. Finally, we divided the latter runtime
by all 100 nodes to �nd the average runtime per node. Table 2 provides the
average of each result for both two-monitor and three-monitor WSNs. The
program conducted each trial on consistent computer hardware and software,
with speci�cations consisting of a standard Windows version of MATLAB on
a quad core 2.60 GHz processor and 8.0 GB of RAM. The signi�cance of these
results will be explained in greater detail over the next subsection.

27



Algorithm PSO WSLA WSRA DS

Runtime (µs) 114570 7800 9700 344

Table 3: Comparison of computational runtime among di�erent localization techniques.

4.3. Comparisons to Other Established Algorithms

To gain further perspective into the e�ectiveness of the proposed tech-
nique, we compared our results to those of four previously established local-
ization approaches. These consisted of particle swarm optimization (PSO),
maximum-likelihood estimation (MLE), and a weighted search-based local-
ization algorithm (WSLA). Also included is a weighted search-based re�ne-
ment algorithm combined with the latter technique that is referred by Yao
and Jiang as WSLA+WSRA but is reported here as simply WSRA. For
the compared methods, the simulated network consisted of 100 sensor nodes
with eight anchor nodes while each experiment contained 30 independent
trials averaged together.

4.3.1. Accuracy

The results are based on those presented in (Yao and Jiang, 2015) under
the assumptions of no positioning error on anchor nodes and no noise fac-
tor. Hence, we determined our error values under aforementioned conditions,
then subtracted each value from one and converted the result to a percent-
age. Because the authors reported their error values as a plot rather than
in exact numerical form, we had to estimate the error values by eyeing and
measuring the plots. Hence, to minimize any potential reporting error, we
indicated the accuracy of each algorithm was reported as a whole number
percentage. For the DS-based technique, we based our accuracy by the aver-
age of full accuracy values for three-monitor setups, rounded to the nearest
whole number percentage for consistency.

As Fig. 8 indicates, the proposed technique contains a noticeable edge in
accuracy in comparison to the other methods as well as a signi�cant lead over
PSO. Although some parameters had to be tweaked between this method and
the others, results are undeniably positive. Thanks to the novel capabilities
of Dempster-Shafer Theory, the proposed localization technique has a dis-
tinct advantage on par with, if not over, multiple established state-of-the-art
localization techniques.
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Figure 8: Comparison of accuracy among di�erent localization techniques.

4.3.2. Computational Runtime

In addition, we compared the average runtime per node for a three-
monitor WSN setup with three of the four aforementioned techniques, based
on data given in (Yao and Jiang, 2015). The table provides the competing
data as the average CPU time per node with no noise factor. Hardware
speci�cations and MLE runtime were not reported. All method runtimes are
provided in Table 3. Due to the unique and e�cient nature of DS Theory, the
proposed technique has an overwhelmingly shorter CPU runtime when com-
pared to all reported competing methods, hence solidifying such an algorithm
as a novel low cost technique.

5. Conclusions and Future Work

This paper presented an e�cient approach to localization in wireless sen-
sor networks. This approach was based heavily upon the innovative statistical
framework known as Dempster-Shafer Evidence Theory, a novel data fusion

29



technique that has never before been used in low cost WSN localization.
While DS Theory contains many unique and powerful properties that can
aid in data prediction and analysis, the concept of prediction by plausibility
is of the most vital levels of importance and interest. This is the result of
its consistently high accuracy, ranging up to 98%, under a variety of network
setups and feature sets as well as its overwhelmingly low computational cost
requirements when compared to other established techniques.

5.1. Future Work

Support vector machines (SVMs) have been of a high level of interest
in the �eld of WSN localization, almost to the same extent as DS Theory,
due to its fast localization potential and e�cient use of processing resources.
Thus, the most likely next step in this research will involve the fusion of
DS Theory with SVMs. As for more speci�c details of future work, training
of the upper and lower bound weights was done from a limited iterative
approach. Although this brief technique resulted in multiple high levels of
accuracy above 90%, accuracy could be even further enhanced through more
elaborate optimization methods. Possibilities include biologically inspired
methods, such as Genetic Algorithm or Ant Colony Optimization.
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