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Localization Methods for a Mobile Robot
in Urban Environments

Atanas Georgiev, Member, IEEE, and Peter K. Allen, Member, IEEE

Abstract—This paper addresses the problems of building a func-
tional mobile robot for urban site navigation and modeling with
focus on keeping track of the robot location. We have developed
a localization system that employs two methods. The first method
uses odometry, a compass and tilt sensor, and a global positioning
sensor. An extended Kalman filter integrates the sensor data and
keeps track of the uncertainty associated with it. The second
method is based on camera pose estimation. It is used when the
uncertainty from the first method becomes very large. The pose
estimation is done by matching linear features in the image with a
simple and compact environmental model. We have demonstrated
the functionality of the robot and the localization methods with
real-world experiments.

Index Terms—Localization, machine vision, mobile robots.

I. INTRODUCTION

T
HE problem of building a functional autonomous mobile

robot that can successfully and reliably interact with the

real world is very difficult. It involves a number of issues such as

proper design, choice of sensors, methods for localization, nav-

igation, planning, and others, each of which is a challenge. A

key factor of this complexity is the targeted environment of op-

eration. The current state of mobile robotics is that most of the

research has been focused on solving these issues indoors be-

cause of the slightly more predictable nature (e.g., flat horizontal

floors, well-structured space partitioning, and smaller scale). On

the other hand, many of the interesting applications are outdoors

where fewer assumptions can be taken for granted.

In this paper, we target outdoor urban environments. These

environments pose their own unique set of challenges that dif-

ferentiate them from both the indoor and the open-space out-

door landscapes. On the one hand, they are usually too large

to consider applying certain techniques that have achieved suc-

cess indoors. On the other hand, typical outdoor sensors, such as

global positioning system (GPS), have problems with reception

around buildings.

While we have tried to keep the methods presented here

general, we have focused on the development of our mobile

robot system (Fig. 1) with a specific application in mind. The
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Fig. 1. Mobile platform used in this work.

AVENUE project at Columbia University’s Robotics Labo-

ratory (New York, NY) targets the automation of the urban

site modeling process [1]. The main goal is to build geometri-

cally accurate and photometrically correct models of complex

outdoor urban environments. These environments are typified

by large three-dimensional (3-D) structures that encompass

a wide range of geometric shapes and a very large scope of

photometric properties.

High-quality site models are needed in a variety of appli-

cations, such as city planning, urban design, fire and police

planning, historical preservation and archaeology, virtual and

augmented reality, geographic information systems, and many

others. However, they are typically created by hand which is ex-

tremely slow and error-prone. The models built are often incom-

plete and updating them can be a serious problem. AVENUE

addresses these issues by building a mobile system that will au-

tonomously navigate around a site and create a model with min-

imum, if any, human interaction.

1552-3098/04$20.00 © 2004 IEEE
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The design and implementation of our mobile platform in-

volved efforts that are related and draw from a large amount

of existing work. For localization, dead reckoning has always

been attractive because of its pervasiveness [2]–[4]. With the

rapid development of technology, GPS receivers are quickly be-

coming the sensor of choice for outdoor localization [5]–[7].

Imaging sensors, such as charge-coupled device (CCD) cameras

and laser range finders, have also become very popular mobile

robot components [8]–[11]. Various methods for sensor integra-

tion and uncertainty handling have been proposed [12]–[16].

A very popular and successful idea is to exploit the duality

between localization and modeling and address both issues in

the same process, known as simultaneous localization and map

building (SLAM) [14], [15], [17], [18]. Sensors and methods for

indoor localization have been comprehensively reviewed in two

books [19], [20]. Another excellent book presents case studies

of successful mobile robot systems [21].

Researchers from the Australian Centre for Field Robotics

have made significant progress toward using SLAM in outdoor

settings. Dissanayake et al. have proved that a solution to the

SLAM problem is possible and presented one such implemen-

tation [22]. Guivant et al. have further looked into optimizing

the computational aspects of their algorithm and have applied it

to an unstructured natural environment [23].

The problem of mobile robot localization in urban environ-

ments has been addressed by Talluri and Aggarwal by using

feature correspondences between images taken by a camera on

the robot and a CAD or similar model of its environment [24].

Chen and Shibasaki have improved on the accuracy and stability

of GPS in urban areas by adding a camera and a gyro [25]. They

have also relied on an environmental model obtained from a geo-

detic information system. Nayak has used a sensor suite con-

sisting of four GPS antennas and a low-cost inertial measure-

ment unit for localization of a car in urban areas; however, their

resulting localization errors were on the order of meters, which

is not acceptable for mobile robot navigation [26].

Our approach delivers a mobile robot system capable of op-

erating autonomously under the challenges of urban environ-

ments. Whenever needed, we are making use of unique urban

characteristics to facilitate the estimation of the robot location.

Of all outdoor environments, urban areas seem to possess the

most structure in the form of buildings. The laws of physics dic-

tate common architectural design principles according to which

the horizontal and vertical directions play an essential role, and

parallel line features are abundant. The system presented here

takes advantage of these characteristics. We believe that the

main contributions of our study are the practical realization of

a functioning mobile robot for site navigation and modeling

and a novel method of supplementing odometry and GPS with

visual image processing to allow accurate localization of the

robot under varying conditions, including odometry error and

GPS degradation.

The rest of this paper is organized as follows. The next section

briefly describes our mobile system and software architecture.

Section III describes the first of our localization methods, based

on odometry, a digital compass module, and global positioning.

Section IV presents our vision-based localization methods. Ex-

perimental results are shown in Section V, and in Section VI we

conclude with a summary and a discussion on future extensions

of this work.

II. SYSTEM DESIGN AND IMPLEMENTATION

The mobile robot used as a test bed for this work is an ATRV-2

model manufactured by iRobot (Fig. 1). It has built-in odometry

and 12 sonars and carries a regular PC on-board. For modeling,

we have installed a Cyrax 2500 laser range scanner with a range

of up to 100 m. For navigation, we have added a Honeywell

HMR3000 digital compass module with an integrated roll-pitch

sensor, an Ashtech GG24C GPS GLONASS1 receiver which is

accurate down to 1 cm in real-time kinematic (RTK) mode, and

a color CCD camera mounted on a pan-tilt unit (PTU). Commu-

nication with the robot is done via a 802.11b wireless network.

The combination of dead reckoning and GPS is known to be

beneficial. GPS tends to exhibit an unstable high-frequency be-

havior manifested by sudden “jumps” of the position estimates

but is fairly reliable over a longer period of time. On the other

hand, dead-reckoning sensors drift gradually and rarely suffer

the sudden jump problem.

The camera is needed to address some of the limitations of

GPS operation that are quite consistent in urban areas. Tall

buildings in the vicinity may obstruct the clear view to the satel-

lites, the SNR could be attenuated by trees or large structures

standing in the way or one may encounter signal reflections or

multipath. The result is unstable, wrong, or has no position fixes

in some areas. However, due to the nature of urban sites and

the overall goal of AVENUE, it is mostly around buildings that

degradation in GPS performance is likely to occur. With the

addition of a camera, we make use of this by exploiting typical

urban characteristics, such as abundance of linear features,

parallel lines, and horizontal and vertical principal directions,

which are relatively easy to find and process using computer

vision techniques.

Our system architecture (Fig. 2) addresses the various tasks

associated with an autonomous navigation and modeling in a

modular and distributed fashion. Its main building blocks are

concurrently executing distributed software components which

can communicate across the network. The robot is designed to

operate according to the following scenario. Its task is to go to

desired locations and acquire requested 3-D scans and images of

selected buildings. The locations are determined by the sensor

planning system and are used by the path planning system to

generate reliable trajectories which the robot follows. When the

rover arrives at the target location, it uses the sensors to acquire

the scans and images and forward them to the modeling system.

The modeling system registers and incorporates the new data

into the existing partial model of the site (which in the begin-

ning could be empty). After that, the view planning system de-

cides upon the next best data acquisition location and the above

steps repeat. The process starts from a certain location and grad-

ually expands the area it has covered until a complete model of

the site is obtained. The user interface (Fig. 3) provides a com-

prehensive view of the robot location and activities within its

1Throughout this paper, we will use GPS to designate either or both of the
U.S. NAVSTAR GPS and the Russian GLONASS infrastructures.
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Fig. 2. System architecture. Solid rectangles represent components, dotted rectangles are processes, and dashed rectangles group processes running on the same
machine. The arrows show the data flow between components.

Fig. 3. User interface. The window shows the outlines of the 2-D map and
simplified 3-D models of buildings. The actual trajectories of two robots are
visible along with the planned path for one of them (denoted with flags).

environment and allows the user to monitor the progress and

exercise control of the mission.

The entire task is quite complex and requires the solution of a

number of additional fundamental problems which we have ad-

dressed in our project. Due to limited space, we refer the reader

to [27]–[29].

III. LOCALIZATION IN OPEN SPACE

The first of our localization methods is designed for real-time

usage in open-space outdoor environments. It uses the built-in

robot odometry and the added digital compass/tilt sensor and

GPS receiver. We exploit the redundancy in the measurements

of these sensors to fuse their estimates using an extended

Kalman filter shown in Fig. 4 [30].

The control input to the robot consists of the scalar transla-

tional velocity and the scalar angular velocity . Due

to the kinematics of the robot (Fig. 5), the translational ve-

locity vector always points forward and the angular ve-

locity vector always points up. With respect to the robot

coordinate frame, these velocities can be expressed as

and , where and

.

Denote the position of the robot at time by

and its orientation as expressed by

the Euler angles by . Let

be the roll–pitch–yaw

matrix corresponding to the Euler angles , let be
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Fig. 4. Diagram of the extended Kalman filter configuration.

Fig. 5. ATRV kinematics.

the function that returns the Euler angles of a roll–pitch–yaw

matrix , and let be the standard matrix that transforms

3-D angular rate to Euler angle time derivatives. Then, in

the world coordinate frame, the velocities of the robot are

and and our

system model for the robot motion becomes (with implicit

dependence on )

(1)

where state vector is the robot pose and

the vector is added noise accounting for system misrepre-

sentation.

Let be an estimate of the robot pose and let the error of

this estimate be . Applying first-order Taylor series

approximation, we linearize equation (1) about to yield

(2)

where is a 6 6 matrix obtained from the partial derivatives

in (1) and includes both the system misrepresentation term

from (1) and the uncertainty in the estimate . We assume it to

be zero-mean Gaussian white noise, . Next, we

solve the differential equation and discretize in time to obtain

the state transition matrix

(3)

and the Kalman filter prediction equations

(4)

(5)

The notation adopted here is that the hat denotes values es-

timated by the filter, the minus superscript denotes predicted

values, the plus superscript denotes corrected values, and the

subscript denotes the time interval. The matrix is the co-

variance of the estimated error state and is the noise

covariance for the time period . Details of the deriva-

tions can be found in [31].

We obtain the reference trajectory from odometry. Counts

from encoders on the axles are regularly sampled by the robot

firmware and converted into angular displacement and

travel distance during the sampling interval. Note that

the odometry sampling times do not necessarily coincide with

the update times of the Kalman filter (which happen when

measurements from the other sensors become available). Since

we only have discrete samples, we need to interpolate to obtain

a continuous trajectory. For a sampling interval of the

odometry, we have

(6)

(7)

where the displacements , and are with

respect to the robot pose at time and neces-

sarily assume a planar local motion. In cases where we can as-

sume that the ground is flat, the reference plane for each sam-

pling period will be the same (the ground) and a running total of

these displacements will give us the overall odometry estimate

of the robot pose in 2-D. Here, we are interested in the full 3-D

pose, however, and need to account for the robot pitch and roll

as follows:

(8)

(9)

If a new measurement comes from another sensor at time

, then that measurement is fed through the filter together

with the odometry pose as computed from (8) and (9) and

the resulting error estimate is transferred to to produce

a corrected odometry estimate . Then, the remaining por-

tion of the displacements and (which occurred during

) is added to the odometry according to (8) and (9),

only this time using the corrected odometry estimate as a

reference. In essence, whenever the filter updates the odometry

trajectory, it updates the local reference plane of motion used in

the subsequent odometry iterations.

We would like to point out that regardless of whether a 2-D

or a 3-D odometry formulation is used, minute measurement er-

rors during each sampling interval accumulate and reach a point

when they can no longer be neglected. Typically, a robot may
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be able to accurately traverse a few meters, but after that re-

lying on odometry becomes impractical. These errors cannot be

avoided without some means of more direct measurements, such

as GPS. It is nevertheless possible to address them. Systematic

errors, which are ones caused by kinematic imperfections of the

vehicle, can be estimated and compensated for using accurate

calibration. We have used the UMBmark method to do so [2].

Generally, the point of performing such a calibration is to make

sure the systematic errors will be reduced to negligible com-

pared to the nonsystematic ones. Nonsystematic errors (e.g., due

to slippery spots or over-acceleration) are by definition random

and nonpredictable. They are accounted for by the system dis-

turbance vector in (2). In essence, we have modeled their “av-

erage” behavior so that we keep track of the uncertainty in the

robot pose estimates. Our model is a Gaussian probability distri-

bution with standard deviation proportional to the distance trav-

eled. While technically not exact, this is a good enough approx-

imation over a short distance until the robot obtains external ob-

servations of its location.

Although (8) and (9) work in 3-D, they cannot produce an

accurate 3-D pose based solely on odometry, because odometry

lacks the necessary observational power. To provide a full three

degrees of freedom (DOF) in orientation, we have added a com-

pass and tilt sensor module which reports the heading (yaw),

pitch, and roll angles. It is mounted level on the robot and is

calibrated for magnetic variation and deviation. The observation

model is quite simple as it is already linear, given as follows:

(10)

(11)

(12)

where is the sensor measurement vector, is the observa-

tion matrix, and is the observation uncertainty. The nega-

tive signs in are due to the sensor coordinate system being

oriented forward-right-down while the robot frame is forward-

left-up. We assume a Gaussian distribution of the measurement

error with tilt and heading standard deviations, and , based

on the manufacturer’s specifications. The sensor data is used

to update the state vector according to the standard Kalman

filter equations

(13)

(14)

(15)

(16)

The GPS receiver is very useful because it limits the error ac-

cumulated by the dead reckoning sensors. It provides periodic

fixes of the location of the GPS antenna, .

Since the antenna is placed at location with respect to

the robot coordinate frame, the observation model is not linear,

shown as follows:

(17)

(a) (b)

Fig. 6. (a) A building facade and (b) a sample model of it.

The fix is incorporated into the filter via (13)–(16) where the

observation matrix is and the measurement

uncertainty is the one reported by the receiver.

The GPS is the only sensor in this method that makes ab-

solute position measurements and thus the overall accuracy of

the method depends strongly on the accuracy of the GPS fixes.

If GPS quality deteriorates, the uncertainty in the pose esti-

mates may become too large. In such cases, positioning data

are needed from additional sensors. However, in order to seek

such data, there has to be a way to detect these situations. This is

done by monitoring the variance-covariance matrix representing

the uncertainty in the Kalman filter. Each of the diagonal ele-

ments of this matrix reflects the variance of the corresponding

element (position or orientation coordinate) of the state vector.

Whenever a new GPS update is processed by the filter, a test

is performed to check if the variance associated with the robot

position is greater than a threshold. If so, we consider this as an

indication that additional data are needed and attempt to use the

visual localization method described next. Only the uncertainly

in position is considered, because if the orientation is wrong it

will quickly cause the position error to also increase.

IV. VISUAL LOCALIZATION

To expand the working range of our localization system, it

is sufficient to provide occasional “on-demand” updates only

when the open-space configuration fails. Visual pose-estimation

algorithms are well poised to do that. By acting less frequently

and on demand, they can be allowed more time for image pro-

cessing operations which can be used to increase the robustness

of the overall system.

This is the underlying idea in the use of our visual localization

system. As the robot moves, it uses the open-space localization

method described in the previous section to keep track of its

pose along with the uncertainty. As long as it is confident in

these pose estimates, no attempts are made to use vision. If the

confidence becomes low, then the robot is allowed to stop and

compute a more accurate estimate using the vision-based pose

estimation method described in this section.

A. Environmental Model

The visual pose estimation is based on matching an image of

a building taken by the camera with a model. The environmental

model we use is a database of smaller scale facade models. Each

facade model depicts the features of a near-planar region around

a building facade (Fig. 6). The features modeled are dominant
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Fig. 7. Choosing a model: a top-down view of modeled facades of buildings
are shown on the map. The two circles show the minimum and maximum
distance allowed. The dotted lines are models that are outside of this range.
The dashed lines are models that are within the range but are viewed at a very
low (or negative) angle. The solid lines are good to use. The thick one is chosen
because it is closest to the robot.

straight lines—typical and abundant in a human-made environ-

ments. All lines are finite segments represented by the 3-D coor-

dinates of their endpoints in a local coordinate system, which is

registered with the “world” coordinate system for the entire site.

In order to be useful, each facade model needs to capture

enough features to provide sufficient information for the robot

to find its pose. The number of features varies across buildings

but, beyond a certain limit, adding more detail quickly reaches

the point of diminishing return. There is no need to model every

facade or every building either—what is needed is that enough

building facades are modeled to allow continuous localization

throughout the area of interest. Hence, the model we use is

simple and compact. The model used in this paper was created

by hand, however, our approach on how to create the models

automatically is discussed in Section VI.

B. Choosing a Model to Use

When visual pose estimation is attempted, a rough estimate of

the robot pose is available from the other sensors. This estimate

is used to search the model database for the most appropriate

building facade to use for visual localization. This is done in

two steps according to two criteria: distance and viewing angle

(Fig. 7).

The first step is to scan through the model database index

to determine the facade models that are within a good distance

from the robot. Both minimal and maximal limits are imposed:

if a building is too close, it may not have enough visible features

on the image; if it is too far, the accuracy of the result may be

low because of the fixed camera resolution.

The second step is to eliminate facade models from the first

step based on the viewing angle (ranging from for an ante-

rior view to for a posterior view). Only models that are

viewable under a sufficiently large angle are considered. This

eliminates both facades that are not visible (negative angles) and

ones that are visible at too low an angle to produce a stable match

with the image.

The models that successfully pass this two-step selection

process form the set of good candidate models to use. Any

subset of this set can be used in the pose estimation step. As

the processing time is not trivial, however, we choose to use

only the one that is closest to the robot. Because of the finite

resolution of the camera, this choice is likely to provide the

most accurate result.

Finally, the pan-tilt head holding the camera is turned toward

the chosen facade and an image is taken. The pan and tilt angles

are computed from the known rough pose of the robot so that

the camera faces the center of mass of the model. In practice,

the final orientation of the camera is different from the ideal

one because of the uncertainty in the current pose. However, for

the small distances involved and the typical accuracy of the pose

estimates, the resulting orientation error of the camera is usually

within the tolerance of the processing steps that follow. Further,

since the camera is aimed at the center of the model, any small

deviation will have minimal effect.

C. Pose Estimation

At this stage, a pair of an image and a model of the building

facade are available and the task is to determine the pose of the

robot. Since the camera is tracked by the pan-tilt unit rigidly

affixed to the robot, if the camera pose is known, then the pose

of the robot can be easily derived. Thus, the focus from now on

is on the computation of the camera pose.

The pose computation is done by matching identical linear

features in the image and the model. We have adopted a proba-

bilistic approach following the well-known RANSAC paradigm

first introduced by Fischler and Bolles [32]. The method consists

of the following five steps. The first step is executed once, while

the rest of the steps are repeated in a loop with a predetermined

number of iterations.

1) Preparation: The purpose of the preparation step is to ob-

tain the line segments and do some preprocessing necessary for

the steps that follow. The image of the building is processed to

obtain the 2-D line segments. A Canny edge detector is applied

to locate edges, and then an incremental line-fitting technique is

used to connect them in straight line segments.

To reduce the computational burden in the following steps,

collinear lines are merged and ones shorter than a given

threshold are discarded. Details about this process are pre-

sented in the Appendix.

2) Sampling and Pose Candidate Computation: The idea

behind RANSAC is to solve the pose estimation problem a

number of times using randomly chosen matches between a

minimum number of 2-D and 3-D line segments. The minimum

number of matching pairs in this case is three: the problem has

six unknowns (three for position and three for orientation of

the camera) and each matching pair of segments provides a

2-DOF constraint. The equations are nonlinear and more than

one solution is possible, however, the initial pose estimate from

the other sensors is usually sufficient to converge to the correct

one. Thus, in the sampling step, we randomly select three pairs

of lines and, based on this selection, compute an estimate for

the camera pose.
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Fig. 8. Error metric used for pose estimation.

The camera pose candidate is found by using the pose estima-

tion method proposed by Kumar and Hanson [33]. A perspec-

tive camera model is used and the calibration parameters of the

camera are assumed to be known. An error function is composed

and minimized that quantifies the misalignment of the 3-D line

and its matching 2-D line from the sample. For each 2-D line

, consider the plane that is formed by that line and the camera

center of projection (Fig. 8). Let the normal to that plane be .

Suppose is matched with the 3-D line segment whose end-

points and have world coordinates and . If

and are the rotation and translation that align the world coor-

dinate system with that of the camera, then

(18)

is the sum of squared distances of the endpoints of to the plane

formed by (Fig. 8). The error function that is minimized is the

sum of for the three matching pairs

(19)

This function is minimized with respect to the 6 DOF for the

camera pose: three for the rotation and three for the transla-

tion vector . The computation follows the method proposed by

Horn [34].

3) Pose Candidate Refinement: The pose candidate refine-

ment step uses the consensus set to fine tune the estimate. The

consensus set is the set of all matching pairs of 2-D edge seg-

ments from the image and 3-D line segments from the model

that agree with the initially computed pose candidate.

For each 3-D line segment in the model, a neighborhood of

its projection on the image is searched for 2-D edges and their

distance from the 3-D line segment is computed according to

(18). The 2-D edge with the smallest distance is taken to be the

match, if that distance is less than a threshold and if the 2-D line

is not closer to another 3-D line. If no such 2-D edge is found,

then the 3-D line segment is assumed to have no match.

The consensus set is used together with (19) to compute a

better pose estimate. This is done iteratively a number of times

(between 1 and 4) starting with a large value for the consensus

threshold and gradually decreasing it. The large initial value for

the threshold makes sure that a roughly correct consensus set

will be generated initially which will be later refined to elimi-

nate the false positives and increase the accuracy. The result of

the last iteration is the pose candidate that is evaluated in the

next step.

4) Pose Candidate Evaluation: The quality of each pose

candidate is judged by a metric which quantifies

the amount of support for the pose by the matches between

the model and the edge. The idea is to check what portion

of the model is covered by matching edge lines. The larger

the coverage, the better the pose candidate. Ideally, the entire

visible portion of the model should be covered by matching

2-D edge lines.

After the last refinement iteration, the consensus set contains

pairs of matching 3-D lines from the model and 2-D lines from

the edges. Consider one 3-D line in the consensus set and its

matching 2-D counterpart . Let the perspective projection of

onto the image be and the orthogonal projection of onto

be . We set the contribution of the match between

and to the length of the overlap between and . Thus, the

total portion of the model covered by matching line edges in the

image is

(20)

The dependence on and is implicit as the consensus set and

the projections depend on the pose.

Note that the coverage is a quantity which is computed in 2-D

space. As such, it depends on the scale of the model as well. If

the camera moves away from the building, the visible size of

the model will diminish and will decrease even if the

match is perfect. Hence, normalization needs to take place.

There are two ways to normalize the coverage: divide by the

total projected length of the model or divide only by the visible

projected length. The former approach will tend to underrate the

correct pose in cases when the model is slightly outside of the

field of view. The latter approach will do fine in such cases but

will overrate poses for which very little of the model is visible

and the visible portion can easily match arbitrary edge lines.

We have chosen to use the latter method and compute the pose

evaluation metric as

(21)

where is the total length of the visible projection of the

model on the image.

To avoid the pitfalls of choosing an overrated pose, we use

three criteria by which eliminate a given pose candidate from

consideration.

1) If the pose candidate is outside of a validation gate, it

is immediately rejected as unlikely. The validation gate

is determined by the total state estimate of the extended

Kalman filter.

2) If the visible portion of the model on the image is less

than a threshold, the pose is also rejected as there is not

sufficient basis to evaluate it, even if it is the correct one.

If this is the case, the entire localization step is likely to

fail, because the camera was pointed way off target.
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3) If the value for the current pose candidate is less

than a threshold, the pose is also rejected as there is in-

sufficient support for it.

Of all the pose candidates that pass the three tests, the one

with the highest score after the loop is the best one and is ac-

cepted to be the correct pose. It is used along with an empiri-

cally obtained covariance matrix for each model to update the

Kalman filter estimate. If no good pose is found, the visual local-

ization step fails. This is not fatal, however, as the robot simply

moves a little further along its route and attempts another visual

localization step. This is repeated until either the visual local-

ization succeeds or the GPS picks up a good signal and corrects

its pose to reduce the uncertainty.

The decision on how many iterations to perform depends on

the number of matching lines which is impossible to know in

advance. We terminate the loop after a constant number of iter-

ations. Our justification for the number of iterations is given in

the Appendix.

V. EXPERIMENTS

To demonstrate the functionality of the mobile robot, we per-

formed a series of tests with the robot in an actual outdoor

environment. Three kinds of tests were performed—one that

aimed to evaluate the performance of the open-space localiza-

tion method, another that focused only on the vision component,

and a final test that used both methods. The open-space localiza-

tion experiments were run on a relatively flat area and estimated

the robot position and orientation in 2-D. The rest of the exper-

iments were performed in 3-D estimating the full 6 DOF of the

robot pose because the entire test area was not entirely flat.

A. Localization in Open Space

The purpose of these tests were to investigate the accuracy of

the open space localization method described in Section III.

Arbitrary trajectories were generated and executed. The tra-

jectories were piecewise linear, with the robot turning to its next

target in place as soon as it reached the current one. The max-

imum translational and rotational velocities were 0.5 m/s and

0.4 rad/s, respectively.

To test the accuracy of the system, two comprehensive test

runs were set up to obtain ground truth data. A piece of chalk

was attached at the center of odometry on the bottom of the ve-

hicle so that when the robot moved it plotted its actual trajectory

on the ground. After it completed the task, sample points from

the actual trajectory were marked at intervals of approximately

1 m, and measurements of each sample point were obtained.

First, a complex desired trajectory of 14 targets and total

length of 210 m was used. Fig. 9 shows the planned and actual

trajectories, overlaid on the map of the test area. The average de-

viation of the robot from the planned trajectory over all sampled

points in this run was 0.46 m with a maximum value of 0.94 m.

The second trajectory consisted of nine targets arranged in

the shape of the digit eight around the two planters in the center

of Fig. 9. The trajectory was 132 m long and asked the robot to

return to the same place where it started (Fig. 10). The average

error for this run was 0.251 m.

Fig. 9. First test run in open space.

Fig. 10. Second open-space test run: returning to the starting point.

The next experiment also involved the trajectory in Fig. 10,

but this time of interest was the displacement between the

starting and arrival locations. Ideally, the robot had to arrive

at its starting location since this was a closed-loop trajectory.

Three such runs were performed. The resulting errors were

0.08, 0.334, and 0.279 m.

It should be noted that the performance of the open-space

localization system strongly depends on the accuracy of the GPS

data. During the experiment above, the number of satellites used

were six or seven most of the time, occasionally dropping to five

or increasing to eight. The GPS receiver was working in RTK

float mode in which its accuracy is worse compared to when it

works in RTK fixed mode. The latter mode provides accuracy

to within a few centimeters, however, it is typically available

when seven or more satellites provide good signal-to-noise ratio

(SNR) over a long period of time.

These results demonstrate that this localization method is suf-

ficient for navigation in open areas with typical GPS perfor-

mance and no additional sensors are needed in such cases. The

location estimate errors in all of the above test runs were within

the acceptable range for our urban site-modeling task.
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Fig. 11. Three-dimensional models used for localization shown on a 2-D map
of the test area.

B. Localization With Vision

To examine the accuracy of the visual localization method, we

performed two kinds of tests: one that compares the result for

each test location with ground truth data and one that compares

the two results the algorithm produced on two different images

taken from the same location.

In both kinds of tests, we wanted to measure the quality of the

location estimation alone and minimize the interference from

inaccuracies in the model. Thus, we took care to create accu-

rate models of the buildings used by scanning their prominent

features with a high-quality electronic theodolite with a nominal

accuracy of 2 mm. The features modeled were windows, ledges,

and decorations—all commonly found and abundant in urban

structures and easy to find using 2-D image operators (Fig. 11).

The model database consisted of 16 facades with the number of

line segments ranging from 15 to 51, averaging at 24.

In the first test, the robot was driven along a long trajectory

around a large building. At 16 relatively regularly spaced loca-

tions, the robot was instructed to stop and perform the visual

localization routine. The robot used the accumulated error from

odometry as an initial guess to determine the nearby buildings

and choose a model of one for localization. A sketch of the test

area with the test locations and directions in which the images

were taken is shown in Fig. 12.

Fig. 13 shows the results of the 16 runs. The left image in each

pair shows the model used projected onto the image using the

initial inaccurate estimate of the camera pose. The image to the

right shows the model projected on the image after the correct

camera pose was computed. The number of matched features

ranged between 12 and 25, with an average of 18. In all cases,

the alignment of the model and the image is very accurate.

Since it is extremely difficult to determine the location of the

robot with a near centimeter-level accuracy, ground truth for the

visual localization experiments at each location was obtained in

the following manner: an electronic theodolite was placed near

the robot and the building facade it was looking at. While the

robot was stationary, a scan of the camera lens was taken with

the theodolite. Then, a few key points of the building facade

were also surveyed so that the location of the camera lens could

be determined with respect to the building. Finally, the expected

Fig. 12. Map of the area where the experiments were conducted, showing
approximate camera locations and orientations.

location of the camera with respect to the building was com-

puted based on the robot estimate of its pose, and it was com-

pared with the one obtained by the theodolite.

Because of the size of the camera lens, the error introduced

by scanning its surface, rather than the focal center, was less

than 2 cm, which is small in comparison with the errors of

the algorithm. The resulting errors in translation were 0.081

m (min), 0.442 (max), and 0.268 (average). These errors

are small and clearly demonstrate that the method generates

accurate estimates that can be used for robot navigation in

urban environments.

The alignment of model and image in the resulting poses sug-

gests that the orientation is also estimated accurately. While this

can be seen from Fig. 13, we wanted to obtain a quantitative

confirmation. We did this by running Tsai’s method for external

camera parameters estimation [35] and comparing its orienta-

tion estimates with the ones from our localization algorithm.

The resulting errors were within a fraction of a degree: 0.131

(min), 0.977 (max), and 0.570 (average).

The purpose of the second test was to confirm that the al-

gorithm generates consistent results when used on different fa-

cades from the same location. We took two pairs of images from

the same spot—one pair at location 4 and one pair at location

5—by simply panning and tilting the camera. Both pairs of im-

ages were processed with their corresponding models (Figs. 14

and 15) and were intentionally given initial pose estimates with

large errors. The two results for each pair were compared with

each other and revealed only small discrepancies: 0.064 m (lo-

cation 4) and 0.290 m (location 5).

C. Localization Using All Sensors

Finally, a test was performed to confirm that the entire lo-

calization system works well together, that is, it uses the vi-

sual localization as needed and that it actually improves the per-

formance. A more than 330-m-long trajectory was composed
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Fig. 13. Visual localization tests. Each image shows the matching model overlaid as it would be seen from the estimated camera pose. The left image in each pair
shows the rough estimate of the pose that was used to initiate the visual localization. The right image shows the resulting pose of the algorithm.

(Fig. 16), and the robot was directed to follow that trajectory

using all sensors, including vision, as needed.

During the test run, the robot passed through both areas of

good GPS visibility and poor GPS visibility. It was set up to

seek visual localization whenever the standard deviation of the

uncertainty of the current position exceeded 1 m. The robot was

consistently able to detect the areas of poor GPS performance

(marked on Fig. 16) and supplement it with vision. Notice that

no GPS data were available at all at location 3, as the robot was

directly beneath an extension of the nearby building.

The robot stopped at each marked location, correctly de-

termined a nearby building to use, and performed the visual
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Fig. 14. Consistency test 1: Initial and final alignments in the pose estimation
tests with a pair of images taken from the same location.

Fig. 15. Consistency test 2: Initial and final alignments in the pose estimation
tests with a pair of images taken from the same location.

localization procedure described in Section IV. While at rest,

we scanned its camera with an electronic theodolite to obtain

ground truth.

Table I compares the estimates of the robot position at each

location. The top line of each table row shows the estimate of

the open-space localization method prior to triggering the vi-

sual procedure and its error. The bottom line of the same row

shows the estimate and the error of the visual localization. The

table clearly demonstrates the improvement the visual algorithm

makes to the overall system performance. The corresponding

images overlaid with the model are shown in Fig. 17.

VI. DISCUSSION AND FUTURE WORK

This paper presented a practical approach to mobile robot lo-

calization in urban environments. The work was done as part

of our AVENUE project for urban site modeling, however, the

methods and ideas presented here are independent of the project

and are generally applicable to mobile robots operating in urban

environments.

Fig. 16. Map of the area showing the robot trajectory (dotted line) and the
locations where the robot used visual localization. Notice location 3, which is
directly underneath a building extension.

TABLE I
ROBOT POSITION AND ERROR ESTIMATED BY GPS, COMPASS, AND ODOMETRY

ALONG WITH THE CORRESPONDING IMPROVED POSITION ESTIMATE AND ERROR

AFTER PERFORMING VISUAL LOCALIZATION. MEASUREMENTS ARE IN METERS

The localization system employs the robot odometry, a dig-

ital compass with an integrated tilt sensor, a global positioning

unit, and a camera mounted on a pan–tilt head in two comple-

mentary ways. The open-space localization method uses odom-

etry, the digital compass, and GPS. The sensor integration is

done by an extended Kalman filter. The method can be per-

formed in real time. The visual localization method is heavier

computationally but is only used upon demand. The pose esti-

mation is done by matching an image of a nearby building with

a simple and compact model. A database of the models is stored

on the on-board computer. No environmental modifications are

required. We have demonstrated the functionality of the robot

and the localization methods with numerous experiments.

Our visual localization method raises an interesting question

about the amount of time it takes on a given mission. This time

is determined by the number of localization efforts as well as the

time spent on each of them (currently, 25–45 s). The number of

visual localization runs depends on a number of factors, such

as the quality of the GPS fixes, the number of satellites seen,

the number, shape, and look of the nearby buildings, and the

accuracy and completeness of the model. Except for the model,

these are factors which are beyond our control and therefore the
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(a) (b)

Fig. 17. Integration tests. (a) Initial estimates from open-space method and
(b) resulting estimate of the visual localization method for the four locations in
Fig. 16.

number of visual localization steps is expected to vary greatly

depending on the particularities of the mission.

The time spent on a visual localization step is mainly de-

termined by the number of features detected in the image and

the number of features in the model. At least three matches are

needed for the visual localization to produce a result. Increasing

the number of features usually leads to better accuracy and sta-

bility up to a certain point at the price of more time spent on

computation. A further increase of the number of features does

not result in any appreciable improvement but adds to the com-

putational burden. We have presented an analysis of the running

time based on the number of features in the Appendix. However,

we do not think there is a simple answer to the question of what

the optimum number of features is because not all features are

of equal importance. For example, the removal of some of the

shorter lines on the model shown on Fig. 14 does not cause se-

rious problems, while removing any of the longer lines causes

the pose estimation to fail. Some facades contain a high degree

of repetitiveness which may lead to a confusion in the matching

process (Fig. 18). This suggests a heuristic which prefers longer

over shorter lines and includes some unique (i.e., nonrepetitive)

features. The existence of such features is not always guaran-

teed, however, and this is one limitation of our method.

Fig. 18. Example of an incorrect match between image and model. The match
would have been correct if the model were not shifted one flight up.

Another limitation of our current implementation is that it

uses only one of the visible building facades even if more may

be present. It is possible to extend the method to use all visible

facades, however, this may not scale well given the considera-

tions above of the running time, unless an additional constraint

is imposed to speed up the matching process.

One last thing that we need to discuss is the way we obtain the

environmental model used for the visual localization method. It

is tightly coupled to the intended use of the method. Recall that

the work presented here is part of a project whose goal is the cre-

ation of a detailed geometric and photometric 3-D model of an

urban site. We refer to this detailed model as the detailed model,

as opposed to the localization model used for localization.

The detailed 3-D models obtained from the range scans and

images of the buildings are too large and complex since they

capture a lot of detail [Fig. 19(b)]. The modeling process is

incremental. At each stage, there is a partial model of the site

available. When new range scans and images are acquired to

be integrated with the existing partial detailed model, a data

simplification step is done which creates a reduced complexity

model for the purpose of the registration of the coordinate

systems of the range scanner and the camera. This simplified

model [Fig. 19(c)] consists of 3-D line segments obtained by

segmenting the range scans into planar regions and intersecting

planes to obtain lines (for details, see [36]). The result of this

operation is a set of line segments—the kind that we need for

visual localization.

Thus, to create a localization model, only some postpro-

cessing is needed of the available 3-D line features. The set of

lines need to be broken into near-planar regions and a represen-

tative coordinate system needs to be established for each such

region. This is the focus of our current efforts to complete the

integration between the modeling and the localization aspects

of our project.

Note that there is no controversy here about which model

comes first (the bootstrapping problem). The robot will start

from a certain location, scan the buildings in view, create their

partial detailed models, and register them with its original pose.

As a result, localization models of some of the scanned facades

will become available which the robot may use for navigation
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(a) (b) (c)

Fig. 19. Model acquisition and simplification. (a) An image of a building. (b) The 3-D model created from the image and a range scan. (c) A reduced version of
the same model consisting only of line features.

to its next scanning destination. As more new scans and images

are obtained and the detailed model gets updated, more localiza-

tion models will become for use by the robot on its way farther

along its modeling path.

APPENDIX

NUMBER OF ITERATIONS AND SPEEDUPS

IN THE VISUAL METHOD

The decision on how many iterations to perform is based on

the expected number of trials required to obtain a correct

match. If the number of line segments obtained from the image

is , the number of line segments in the model is , and of

them appear in both the model and the image, then the proba-

bility of a single sample being correct is

(22)

The expected value of the number of trials is then

(23)

We see that depends on the number of matching line

segments which is impossible to know in advance. Our approach

is to use a fixed number of iterations which is determined on the

basis of the number of lines in the model and the average number

of edge lines used in the pose computation step. This number

can be controlled to a large degree by choosing an appropriate

threshold in the reduction steps described below.

Typically, is a computationally prohibitive number and

we take a number of steps to make it tractable. The first step is

to merge all collinear line segments in both the 3-D line set and

the 2-D line set. This ensures a one-to-one match between the

two sets and eliminates a great number of practically equivalent

combinations.

Next, we notice that short lines are not as informative as long

ones, as a slight perturbation of the endpoints of a short line (for

example, due to misdetected edgels) could lead to large change

in its orientation. Therefore, we discard line segments that are

shorter than a threshold, thus further reducing the value of .

Additional decrease of the number of expected iterations is

achieved by splitting the line segments into two disjoint groups:

mostly horizontal and mostly vertical ones. This is easy to do

for the lines from the model, since the information is directly

available. It is also possible to do it for the edge lines, because

the tilt of the robot is accurately measured by the digital compass

module and the building facade is assumed to be a vertical, near

planar surface. Misclassifications of edge lines are possible but

extremely rare and normally do not affect the accuracy of the

algorithm.

The benefit of splitting the segments into two groups is to

eliminate samples that are certain to be incorrect matches such

as ones that associate a horizontal line on the model with a ver-

tical one in the image. The sampling step is modified to always

produce samples having one pair of mostly horizontal lines and

one pair of mostly vertical lines. The third pair could be from

either class.

For typical values, such as , and

after the elimination steps described above, with an approxi-

mately equal number of horizontal lines and vertical lines, the

expected number of iterations becomes less than 7553. This al-

ready is a practical number. For comparison, all visual localiza-

tion tests in this paper used a maximum of 8000 iterations, which

typically took between 25 and 45 s on a 2-GHz Pentium IV pro-

cessor equipped with 1 GB of RAM.
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