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Localization of a multi-dimensional

quantum walk with one defect

Toru Fuda ∗, Daiju Funakawa †and Akito Suzuki ‡

Abstract

In this paper, we introduce a multidimensional generalization of Kitagawa’s split-
step discrete-time quantum walk, study the spectrum of its evolution operator for
the case of one defect coins, and prove localization of the walk. Using a spectral
mapping theorem, we can reduce the spectral analysis of the evolution operator to
that of a discrete Schrödinger operator with variable coefficients, which is analyzed
using the Feshbach map.
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1 Introduction

Quantum walks (QWs) have been introduced and studied in various contexts such as
quantum probability [13], quantum optics [1], quantum cellular automata, [15, 28], and
quantum information [2, 8] (see [4, 21, 24, 37] for more details). Among them, motivated
by Grover’s quantum search algorithms[14, 35, 10], researchers have proposed several types
of discrete time QWs on graphs [38, 3, 22, 20, 25, 36]. Szegedy [32] introduced a bipartite
walk, which is defined on a bipartite graph, to construct a quantum search algorithm.
Magniez et al [29, 30] updated the notion of bipartite walks and Segawa [33] redefined
an evolution operator UG on the Hilbert space ℓ2(D) of square summable functions on
the set D of arcs for a digraphs G = (V,D). The QW defined by UG is now referred to
as the Szgedy walk on G, which includes the Grover walk on G as a special case. The
Szegedy walks have a spectral mapping property from the transition probability matrix
PG of a random walk on G to the evolution UG, which gives a useful tool for analyzing the
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spectrum of UG (see [33, 27, 17] for more details). An extended version of the Szegedy
walk, the twisted Szegedy walk, was introduced by Higuchi et al [16] to study the spectral
and asymptotic properties of the Grover walks on crystal lattices. Higuchi, Segawa, and
one of the authors of this paper [18] proved the spectral mapping theorem (SMT) for
more general evolution U = SC, where S and C are unitary and self-adjoint on a Hilbert
space H and where C is assumed to be of the form

C = 2d∗d− 1

with a coisometry d fromH to a Hilbert space K, i.e., dd∗ is the identity IK on K. Observe
that the Hilbert space H here can be taken to be arbitrary and is no longer needed to
be ℓ2(D). Let T = dSd∗. T is a self-adjoint operator on K and called the discriminant
operator of U . Let D± = ker d ∩ ker(S ± 1). The subspace DB = D+ ⊕ D− ⊂ H is
called the birth eigenspace of U and its orthogonal complement DI the inherited subspace
of U (see [17, 26]). As shown elsewhere [34], the restriction UI := U |DI

to the inherited
subspace is unitarily equivalent to

exp(+i arccosT )⊕ exp(−i arccosT )

and the restriction UB := U |DB
to the birth eigenspace is ID+

⊕(−ID
−

). Thus, the spectral
analysis of U is reduced to two parts: (1) the spectral analysis of T and (2) the calculation
of dimDB. This reduction leads the SMT from T to U (Theorem 2.1), which allows us to
use it for QWs other than the Szegedy walk. As evident below, such an abstract theorem
is applicable for a class of d-dimensional QWs, which is not the Szegedy walk on Zd. In
forthcoming papers [11, 12], we will consider a unified model that includes a split-step
QW introduced by Kitagawa et al [23] and traditional one-dimensional QWs [2, 13, 28]
as special cases. The evolution of the walk is a unitary operator on ℓ2(Z;C2) defined as
U = S1C, where

(S1ψ)(x) =

(

pψ1(x) + qψ2(x+ 1)
q∗ψ1(x− 1)− pψ2(x)

)

, x ∈ Z, ψ ∈ ℓ2(Z;C2).

Taking (p, q) ∈ R × C as p2 + |q|2 = 1 ensures S1 is unitary and self-adjoint. C is a
multiplication operator by unitary matrices C(x) ∈ U(2). If C(x) is in addition hermitian
and dimker(C(x)− 1) = 1 for all x ∈ Z, then C is written as 2d∗d− 1 with a coisometry
d : ℓ2(Z;C2) → ℓ2(Z) (see Example 2.2). Thus the SMT is applicable.

Models In this paper, we consider a multi-dimensional generalization of the aforemen-
tioned model, which is a 2d-state QW on Zd with a position dependent coin C(x) ∈ U(2d)
and d ≥ 2. However, for conceptual and notational simplicity, we first concentrate on
the case of d = 2. The case of d ≥ 3 is dealt with in the subsequent sections. Let
H = ℓ2(Z2;C4) be the Hilbert space of states. As usual, the evolution operator U = SC
is defined as the product of a shift S and a coin C. To define the shift operator, we
introduce a set

D = {(p, q) = (p1, p2, q1, q2) ∈ R2 × C2 : p2j + |qj |2 = 1 (j = 1, 2)}
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and use {ej}2j=1 to denote the standard basis of Z2. We define operators Sj (j = 1, 2) on
ℓ2(Z2;C2) as

(SjΨ)(x) =

(

pjψ1(x) + qjψ2(x+ ej)
q∗jψ1(x− ej)− pjψ2(x)

)

, x ∈ Z2,

for all Ψ = t(ψ1, ψ2) ∈ ℓ2(Z2;C2). The shift S on H is defined as a diagonal operator
S = S1 ⊕ S2 on H ≃ ⊕2ℓ2(Z2;C2). The condition (p, q) ∈ D ensures that Sj is self-
adjoint and unitary on ℓ2(Z2;C2) and so is S on H. The coin operator is a multiplication
by unitary and self-adjoint square matrices C(x) ∈ U(4). In general, a unitary and self-
adjoint operator is an involution; hence, it can only have eigenvalues ±1 as its spectrum.
We impose the following on the coin operator C.

• (Simplicity) dim ker(C(x)− 1) = 1, x ∈ Z2.

• (One defect) C(x) =

{

C1, x ∈ Z2 \ {0}
C0, x = 0

with some C0, C1 ∈ U(4).

We here comment on the aforementioned conditions. The simplicity condition means
that C(x) is a Grover-type coin. Indeed, by dim ker(C(x)− 1) = 1, we can take a unique
normalized eigenvector χ(x) ∈ ker(C(x)− 1) up to a constant factor. As seen in Lemma
3.1, we can write C = 2d∗d− 1 with a coisometry d : H → K := ℓ2(Z2) defined as

(dΨ)(x) = 〈χ(x),Ψ(x)〉C2, x ∈ Z2 for all Ψ ∈ H.

The one defect condition means that χ(x) can be written as

χ(x) =

{

Φ = t(Φ1,Φ2) with Φj∈ C2 (j = 1, 2), x ∈ Z2 \ {0},
Ω = t(Ω1,Ω2) with Ωj∈ C2 (j = 1, 2), x = 0,

where Φ ∈ ker(C1 − 1) and Ω ∈ ker(C0 − 1) are normalized vectors. In Grover’s search
algorithm on a graph G = (V,E), the coin operator C(x) differs only at a vertex x =
x0, which is a unique solution to the search problem . This is a one-defect condition.
Moreover, finding the marked vertex x0 with non-zero probability is closely related to
localization of the corresponding QW. Motivated by Grover’s search algorithm, we study
localization of the one defect model on Zd.

Results Let Ψ0 ∈ H be the initial state of a quantum walker, and let Ψt = U tΨ0

(t = 1, 2, . . .) be the state of the walker at time t. The position Xt of the walker at time
t follows P (Xt = x) = ‖Ψt(x)‖2C2 (x ∈ Z2). As shown in [34], if the initial state Ψ0 has a
overlap with an eigenvector of U , then localization occurs, i.e.,

lim sup
t→∞

P (Xt = x) > 0 with some x ∈ Z2.

Thus the problem is reduced to proving the existence of eigenvalues for U .
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We are now in a position to state our result. Let σ1 =

(

0 1
1 0

)

, σ+ =

(

0 1
0 0

)

,

and σ3 =

(

1 0
0 −1

)

. We set aΩ(p) =

2
∑

j=1

pj〈Ωj , σ3Ωj〉C2, aΦ(p) =

2
∑

j=1

pj〈Φj, σ3Φj〉C2,

λ(q) = 2
2
∑

j=1

|qj〈Φj , σ+Φj〉C2 |, and Dj = {(p, q) ∈ D : pjqj 6= 0} (j = 1, 2). Let T− =

[−1,−λ(q)+aΦ(p)), T+ = (λ(q)+aΦ(p), 1], and g±(λ) = e±i arccos λ. We use · to denote
the scalar product.

Theorem 1.1. Let U = SC as above. Suppose that the following conditions hold.

(1) Φj · (σ1Ωj) = 0 for all j ∈ {1, 2} and 〈Φl, σ+Ωl〉C2 6= 0 with some l ∈ {1, 2};

(2) aΩ(p0) 6= aΦ(p0) with some p0 ∈ {−1, 1} × {−1, 1}.

If (p, q) ∈ Dl and ‖(p, q)− (p0, 0)‖R2×C2 is sufficiently small , U has two eigenvalues in
{g−(λ), g+(λ) | λ ∈ T−} or {g−(λ), g+(λ) | λ ∈ T+}.

1−1

σ(UI)

aΦ(p)

−λ(q) + aΦ(p) λ(q) + aΦ(p)

Eigenvalue of UI

Eigenvalue of UI

σ(T )

g+

g−

Figure 1: Location of the spectrum σ(UI)
for aΩ(p0) < aΦ(p0). g±(λ) = e±i arccosλ

map σ(T ) = [−λ(q)+aΦ(p), λ(q)+aΦ(p)]
onto σ(UI) ⊂ S1. The difference σ(U) \
σ(UI) is at most σ(UB) ⊂ {−1,+1}. See
Theorem 3.7 for more details.

This is a special case of Theorem 3.7. See
Figure 1 for the location of the eigenvalues
and the continuous spectrum. The criteria
for UI to have eigenvalues in {g−(λ), g+(λ) |
λ ∈ T−} and {g−(λ), g+(λ) | λ ∈ T+} are
obtained in Theorem 3.5.

Methods and related work Localization
of the one defect model of traditional one-
dimensional QWs was solved by Cantero et
al [7], who used the CGMV method, which
is not applicable for multidimensional cases.
In the present work, we use the SMT. Sev-
eral studies on the birth eigenspace DB have
been reported. As shown by Higuchi et al
[16], multi-dimensional models are likely to
have eigenvalues ±1 due to the existence of
cycles, which makes DB non trivial. For
the one-dimensional split-step QW, the birth
eigenspace is characterized elsewhere [12].
However, the eigenspace contained in the in-
herited subspace DI is study only for the
Grover walk case, in which the discriminant T is unitarily equivalent to the transition
probability matrix PG of the symmetric random walk on G. In our case, T becomes a
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discrete Schrödinger operator with variable coefficients:

T = a(p, ·) +
2
∑

j=1

{qj〈χj, Ljσ+χj〉+ (qj〈χj, Ljσ+χj〉)∗} ,

where χ(x) = t(χ1(x), χ2(x)), a(p,x) =
∑2

j=1 pj〈χj(x), σ3χj(x)〉, and Lj is the shift by
ej on K. To analyze the above operator T , we employ the Feshbach map [9]:

F (λ) = Π⊥(T − λ)Π⊥ −Π⊥TΠ(Π(T − λ)Π)−1
ranΠΠTΠ

⊥, λ ∈ C \ {aΩ(p)},

where Π is the projection onto {ψ ∈ K | ψ(x) = 0 except for x = 0} and λ is a spectral
parameter. The isospectral property of this map implies that λ is an eigenvalue of T
if kerF (λ) is non-trivial (Proposition 4.2). The Feshbach map was used in a study of
nuclear reactions [9] and was used for constructing a renormalization map [6]. To our
best knowledge, this is the first application of the Feshbach map to analyze the spectrum
of an evolution operator for a QW. The one defect condition yields the following formula:

F (λ) = Π⊥

(

T0 − λ− 1

aΩ(p)− λ
|ϕq〉〈ϕq|

)

Π⊥, (1.1)

where ϕq ∈ K. This is a one rank perturbation of a constant coefficient discrete Laplacian

T0. The spectral analysis of an operator (1/
√
d)
∑d

j=1(Lj + L∗
j) + v|δ0〉〈δ0| (with v a

coupling constant and δ0 the delta function at the origin) similar to the right-hand side
in (1.1) is treated elsewhere [19]. Because the nonlinearity of the spectral parameter λ,
the analysis of the kernel of F (λ) becomes more involved. This task is reduced to finding
zeros of a function

f(λ) = λ− aΩ(p) + 〈ϕq, (T0 − λ)−1ϕq〉K, λ ∈ [−1, 1] \ σ(T0) 6= ∅.

The rest of this paper is constructed as follows. In Sec. 2, we review the SMT, which
plays an important role in this work. The precise definitions of our evolution U and the
discriminant T are given in Sec. 3. We thereafter give the essential spectrum of T , which
is mapped onto the essential spectrum of UI by the SMT. We also give a criterion for T to
have an eigenvalue in terms of the Feshbach map F (λ) (Theorem 3.4). We then present
the main results. Theorem 3.5 gives criteria for U to have eigenvalues and Theorem 3.7
shows the existence of eigenvalues for U . We prove Theorem 3.7 using Theorem 3.5. Sec.
4 is devoted to the precise definition of the Feshbach map F (λ) and its properties. Sec.
5 is devoted to the analysis of f(λ) and the proof of Theorem 3.5.

2 Preliminaries

In this section, we briefly review the spectral mapping theorem (SMT). Readers can
consult [18, 34] for more details. We use σ(A), σp(A), σac(A), σsc(A) to denote the
spectrum, the set of all eigenvalues, the absolutely continuous spectrum, and the singular
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continuous spectrum of an operator A, respectively. Let H and K be Hilbert spaces and
d : H → K be a coisometry, i.e.,

dd∗ = IK,

where d∗ : K → H is the adjoint of d and IK is the identity on K. Then, d is an isometry
and d∗d is a othogonal projection on H, because d∗d is idempotent and self-adjoint, i.e.,
(d∗d)2 = d∗d and (d∗d)∗ = d∗d. The operator

C := 2d∗d− 1

is a self-adjoint unitary operator, because C2 = 1. Let S be a self-adjoint unitary operator
on H and set U = SC. The discriminant operator T of U is defined as

T = dSd∗,

which is a bounded self-adjoint operator on K and ‖T‖ ≤ 1. Hence, σ(T ) is a closed set
contained in the interval [−1, 1]. Let D± = ker d ∩ ker(S ± 1) ⊂ H. The subspaces

DB := D+ ⊕D− and DI := D
⊥
B

are called the birth eigenspace of U and inherited subspace of U , respectively. The restric-
tion UI := U |DI

to the inherited subspace is unitarily equivalent to

exp(+i arccosT )⊕ exp(−i arccos T ) on ran(d∗d).

See [34] for the precise meaning of the above decomposition. On the other hand, the
restriction UB := U |DB

to the birth eigenspace coincides with ID+
⊕ (−ID

−

). The SMT
from T to U is given as follows.

Theorem 2.1 (Spectral mapping theorem [18, 34]). Let U = SC be as above. Then, U
is decomposed into U = UI ⊕ UB on H = DI ⊕DB and the following hold:

(1) σ♯(U) = σ♯(UI) for ♯ = ac, sc and σp(U) = σp(UI) ∪ σp(UB);

(2) σ♯(UI) = exp(+i arccosσ♯(T )) ∪ exp(−i arccos σ♯(T )) for ♯ = p, ac, sc;

(3) σ♯(UB) = ∅ for ♯ = ac, sc and σp(UB) =











{1,−1} if D+ 6= ∅ and D− 6= ∅,
{±1} if D± 6= ∅ and D∓ = ∅,
∅ otherwise.

Theorem 2.1 is widely applicable for the evolutions of quantum walks. Here we give
two examples. The first one is the Szegedy walk. See [16] for the twisted Szegedy walk.

Example 2.1 ([16, 18]). Let D be the set of arcs of a symmetric digraph G = (V,D)
(possibly not bipartite) and H = ℓ2(D) be the Hilbert space of square summable functions
ψ : D → C. Define a unitary operator UG on ℓ2(D) as the product

UG = SfCχ
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of a shift Sf and coin Cχ. The shift Sf is defined as (Sfψ)(e) = ψ(ē) for e ∈ D, where ē
stands for the inverse arc of e. The coin Cχ is defined as

Cχ =
⊕

x∈V

(2|χ(x)〉〈χ(x)| − 1) ,

where we have used an identification ℓ2(D) ≃ ⊕

x∈V Hx with Hx = Span{ψ : ψ(e) =
0, o(e) 6= x} and χ(x) =

∑

e∈D;o(e)=x

√
pt(e),xδe ∈ ℓ2(D) is a normalized vector. Here pu,v is

the transition probability of a (classical) random walk from v to u (u, v ∈ V ). The QW
with this evolution UG is now referred to as the Szegedy walk on G, which is called the
Grover walk on G in particular if pu,v = 1/degx. In the case of the Szegedy evolution
operator UG, Theorem 2.1 is applicable for any symmetric digraph G = (V,D), because
Sf is self-adjoint and unitary and Cχ = 2d∗χdχ − 1 with a coisometry dχ : ℓ2(D) → ℓ2(V )
defined as

(dχψ)(x) := 〈χ(x), ψ〉, x ∈ V.

Moreover, the discriminant operator TG of UG is unitary equivalent to the transition prob-
ability matrix PG = (pu,v) and the birth eigenspace can be characterized by the structure
of G.

The next example is a one-dimensional QW but not the Szegedy walk on Z. This is a
unified model including a split-step QW introduced by Kitagawa et al [23] and traditional
one-dimensional QWs [2, 13, 28] as special cases. In the subsequent sections, we consider
a multidimensional extension of this model.

Example 2.2 (Split-step QWs). The evolution of a split-step QW is a unitary operator
on ℓ2(Z;C2) defined as U = S1C, where

(S1ψ)(x) =

(

pψ1(x) + qψ2(x+ 1)
q∗ψ1(x− 1)− p2ψ(x)

)

, x ∈ Z.

We suppose that (p, q) ∈ R × C satisfy p2 + |q|2 = 1, which ensure S1 is unitary and
self-adjoint. C is a multiplication operator by unitary matrices C(x) ∈ U(2). When p = 0
and q = 1, it becomes a QW on Z with a flip-flop shift [5], which is unitarily equivalent
to traditional QWs (see [31] for more information). The evolutions with p = 0 and p 6= 0
are not unitarily equivalent and these walks have weak limit measures different from usual
one [11]. If C(x) is self-adjoint unitary and dimker(C(x)− 1) = 1 for all x ∈ Z, then C
is written as 2d∗χdχ − 1 with a coisometry dχ : ℓ2(Z;C2) → ℓ2(Z) defined as

(dχΨ)(x) = 〈χ(x),Ψ(x)〉C2 , x ∈ Z,

where χ(x) ∈ ker(C(x)− 1). Thus the SMT is applicable for this model. In [12], the birth
eigenspace of this model is characterized.
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3 Multi-dimensional models and main results

3.1 Definition of models

From now on, we consider a QW on Zd, which is a generalization of the split-step QW
defined in Example 2.2. Let n ∈ N and use ℓ2(Zd;Cn) to denote the Hilbert space of
the square-summable functions Ψ : Zd → Cn. If n = 1, we simply denote ℓ2(Zd;C) by
ℓ2(Zd). Hereafter, we set H = ℓ2(Zd;C2d) and K = ℓ2(Zd). We fist define an evolution
operator U on H as a product U = SC of a shift operator S and coin operator C, then
introduce a coisometry d : H → K, and give an explicit formula of the discriminant
operator T = dSd∗ on K.

Shift operators Let

D = {(p, q) = (p1, . . . , pd, q1, . . . , qd) ∈ Rd × Cd : p2j + |qj|2 = 1 (j = 1, . . . , d)}

and use {ej}dj=1 to denote the standard basis of Zd. Henceforth (p, q) ∈ D is assumed
unless otherwise specified. To define a shift operator S on H, we introduce an operator
Sj on ℓ

2(Zd;C2) (j = 1, . . . , d) as follows.

(Sjψ)(x) =

(

pjψ1(x) + qjψ2(x+ ej)
q∗jψ1(x− ej)− pjψ2(x)

)

for all x ∈ Zd and ψ =

(

ψ1

ψ2

)

∈ ℓ2(Zd;C2).

Using the identification H ≃ ⊕d
j=1ℓ

2(Zd;C2), we define the shift S on H as S = S1⊕ . . .⊕
Sd, i.e.,

(SΨ)(x) =







(S1Ψ1)(x)
...

(SdΨd)(x)






for all x ∈ Zd and Ψ =







Ψ1
...
Ψd






∈ H (Ψj ∈ ℓ2(Zd;C2)).

The condition (p, q) ∈ D ensures Sj is self-adjoint and unitary on ℓ2(Zd;C2), and so is S
on H. Let {C(x)}x∈Zd ⊂ U(2d) be a family of unitary and self-adjoint square matrices of
order 2d.

Coin operators We define a coin operator C on H as a multiplication operator by
C(x), i.e.,

(CΨ)(x) = C(x)Ψ(x) for all x ∈ Zd and Ψ ∈ H.

By definition, C is unitary on H. Throughout this paper, the following two conditions
are imposed on C unless otherwise specified.

• (Simplicity) Each C(x) has 1 as a simple eigenvalue, i.e.,

dim ker(C(x)− 1) = 1, x ∈ Zd.
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• (One defect) There exist matrices C0 and C1 ∈ U(2d) such that

C(x) =

{

C1, x ∈ Zd \ {0},
C0, x = 0.

Because dim ker(C(x)−1) = 1, we can take a unique normalized vector (up to a constant
factor):

χ(x) =







χ1(x)
...

χd(x)






∈ ker(C(x)− 1), χj(x) =

(

χj,1(x)
χj,2(x)

)

∈ C2 (j = 1, · · · , d).

The spectral decomposition of C(x) implies C(x) = 2|χ(x)〉〈χ(x)|−1. By the one defect
condition of C, χ(x) is written as follows.

χ(x) =











































Φ =







Φ1

...

Φd






with Φj =

(

φj,1

φj,2

)

∈ C2 (j = 1, · · · , d), x ∈ Zd \ {0},

Ω =







Ω1

...

Ωd






with Ωj =

(

ωj,1

ωj,2

)

∈ C2 (j = 1, · · · , d), x = 0.

(3.1)

Evolutions and their discriminants Let S and C be as above and define an evolution
operator U on H as

U = SC.

S and C are unitary, and so is U . We define a coisometry d : H → K as

(dΨ)(x) = 〈χ(x),Ψ(x)〉C2d for all x ∈ Zd and Ψ ∈ H.

Lemma 3.1. (1) The adjoint d∗ : K → H of d is a multiplication operator by χ(x),
i.e.,

(d∗f)(x) = χ(x)f(x) for all x ∈ Zd and f ∈ K.

(2) d∗d =
⊕

x∈Zd

|χ(x)〉〈χ(x)| and dd∗ = IK.

(3) C = 2d∗d− 1.

Proof. (1) For all f ∈ K, since
∑

x∈Zd ‖χ(x)f(x)‖2C2d =
∑

x∈Zd |f(x)|2 = ‖f‖2
K
<∞, then

the multiplication operator χ : K ∋ f 7→ χf ∈ H is bounded. For all Ψ ∈ H and f ∈ K,
〈f, dΨ〉K =

∑

x∈Zd f(x)∗〈χ(x),Ψ(x)〉C2d = 〈χf,Ψ〉H. Thus we have d∗f = χf .
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(2) For all Ψ ∈ H and x ∈ Zd, (d∗dΨ)(x) = χ(x)(dΨ)(x) = 〈χ(x),Ψ(x)〉χ(x) holds.
Then we have d∗d =

⊕

x∈Zd |χ(x)〉〈χ(x)|. On the other hand, for all f ∈ K and x ∈ Zd,
(dd∗f)(x) = 〈χ(x), (d∗f)(x)〉C2d = 〈χ(x), f(x)χ(x)〉C2d = f(x). Then dd∗ = IK holds.
(3) Obviously, the result follows from d∗d =

⊕

x∈Zd |χ(x)〉〈χ(x)|.
Lemma 3.1 implies that Theorem 2.1 is applicable for the above evolution U . In what

follows, we give an explicit form of the discriminant operator T of U , defined as

T = dSd∗.

Let Lj be a shift on K by ej (j ∈ {1, · · · , d}), i.e.,

(Ljf)(x) = f(x+ ej), for all x ∈ Zd and f ∈ K,

by which Sj can be expressed as a matrix form

Sj =

(

pjIK qjLj

q∗jL
∗
j −pjIK

)

.

We use the following notations:

aΩ(p) =

d
∑

j=1

pj〈Ωj , σ3Ωj〉C2 , aΦ(p) =

d
∑

j=1

pj〈Φj , σ3Φj〉C2 ,

and a(p,x) =

d
∑

j=1

pj〈χj(x), σ3χj(x)〉C2,

where σ3 =

(

1 0
0 −1

)

. Observe that

a(p,x) = aΩ(p)1{0}(x) + aΦ(p)1Zd\{0}(x), (3.2)

where 1A is the characteristic function of a set A. As seen in Section 2, the discriminant
operator T = dSd∗ of U is a bounded self-adjoint on K and ‖T‖ ≤ 1.

Lemma 3.2. T is expressed as

T = a(p, ·) +
d
∑

j=1

{

qjχ
∗
j,1Ljχj,2 + (qjχ

∗
j,1Ljχj,2)

∗
}

, (3.3)

where χj,1, χj,2 and a(p, ·) denote multiplication operators.

Remark 3.1. In Section 1, we abbreviate the expression (3.3) as

T = a(p, ·) +
2
∑

j=1

{qj〈χj , Ljσ+χj〉+ (qj〈χj, Ljσ+χj〉)∗} with σ+ =

(

0 1
0 0

)

.
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Proof. For all f ∈ K, j ∈ {1, · · · , d}, we set (d∗f)j = χjf ∈ ℓ2(Zd;C2). Since d∗f =






(d∗f)1
...

(d∗f)d






, we have Sd∗f =







S1(d
∗f)1
...

Sd(d
∗f)d






. By definition of T , the following holds for all

f ∈ K and x ∈ Zd:

(Tf)(x) = 〈χ(x), (Sd∗f)(x)〉C2d =

d
∑

j=1

〈χj(x), (Sj(d
∗f)j)(x)〉C2

=

d
∑

j=1

〈(

χj,1

χj,2

)

(x),

((

pj qjLj

q∗jL
∗
j −pj

)(

fχj,1

fχj,2

))

(x)

〉

C2

=

((

a(p, ·) +
d
∑

j=1

{

qjχ
∗
j,1Ljχj,2 + (qjχ

∗
j,1Ljχj,2)

∗
}

)

f

)

(x).

We close this subsection by characterizing the essential spectrum of the discriminant
T . To this ends, we introduce a self-adjoint operator T0 and constant λ(q) by

T0 = aΦ(p) +

d
∑

j=1

(αjLj + α∗
jL

∗
j ) and λ(q) = 2

d
∑

j=1

|αj|,

where αj = qjφ
∗
j,1φj,2 (j = 1, · · · , d). In Sec. 1, we set λ(q) = 2

2
∑

j=1

|qj〈Φj , σ+Φj〉C2 |,

because αj = qj〈Φj , σ+Φj〉C2 .

Lemma 3.3. It follows that

σess(T ) = σess(T0) = σ(T0) = [−λ(q) + aΦ(p), aΦ(p) + λ(q)]. (3.4)

Moreover, the following conditions are equivalent:

(1) σ(T0) = [−1, 1];

(2) λ(q) = 1;

(3) pj = 0 and |φj,1| = |φj,2| for all j ∈ {1, · · · , d}.

Remark 3.2. Let g±(λ) = e±i arccos λ. The spectral mapping theorem (Theorem 2.1) con-
cludes that

σess(U) = {g−(λ) | λ ∈ σ(T0)} ∪ {g+(λ) | λ ∈ σ(T0)}.
See Figure 1.
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Proof. Let W = T − T0. Then T = T0 +W and

W = a(p, x)− aΦ(p) +
d
∑

j=1

qj(χj,1(x)
∗χj,2(x+ ej)− φ∗

j,1φj,2)Lj

+
d
∑

j=1

q∗j (χj,2(x)
∗χj,1(x− ej)− φ∗

j,2φj,1)L
∗
j .

Because, by (3.1) and (3.2), (Wf)(x) = 0 for all x 6= ±ej , 0 and f ∈ K,

W = β01{0} +
d
∑

j=1

{

β+
j 1{ej} + β−

j 1{−ej}

}

with some constants β0 and β
±
j (j = 1, . . . , d). Because W is compact, σess(T ) = σess(T0).

Let F : K → L2([0, 2π]d, dk/(2π)d) be the Fourier transformation defined as the
unitary extension of

(Ff)(k) = f̂(k) =
∑

x∈Zd

e−ik·xf(x) for all f ∈ K with finite support.

Because FLjF
∗ and FL∗

jF
∗ are multiplication operators by eikj and e−ikj , the Fourier

transform FT0F
∗ of T0 is also a multiplication operator by

T̂0(k) = aΦ(p) + 2

d
∑

j=1

|αj| cos(kj + θj), (3.5)

where each θj ∈ [0, 2π) is an argument of αj, i.e., αj = |αj|eiθj (if αj = 0, we define

θj = 0). Because T̂0([0, 2π]
d) = [−λq + aΦ(p), aΦ(p) + λq], we have (3.4).

(3.4) implies that aΦ(p) = 0 if λ(q) = 1 and hence that σ(T0) = [−1, 1] if and only
if λ(q) = 1. On the other hand, |qj| ≤ 1 and the inequality of arithmetic and geometric
means yield the inequality

λ(q) ≤ 2

d
∑

j=1

|φj,1φj,2| ≤
d
∑

j=1

(|φj,1|2 + |φj,2|2) = 1

with equality if and only if |qj | = 1 and |φj,1| = |φj,2| for all j ∈ {1, · · · , d}. This completes
the proof.

3.2 Main results

In what follows, we prove the existence of discrete eigenvalues of UI. To this end, we
impose the following on the coin operator, which corresponds to (1) in Theorem 1.1 for

the case of d = 2. Let σ1 =

(

0 1
1 0

)

. We use · to denote the scalar product, i.e.,

Ψ · Φ = ψ1φ1 + ψ2φ2 for Ψ = t(ψ1, ψ2), Φ = t(φ1, φ2) ∈ C2.
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Assumption 1. (a) Φj · (σ1Ωj) = 0 for all j ∈ {1, · · · , d};

(b) 〈Φl, σ+Ωl〉C2 6= 0 with some l ∈ {1, · · · , d}.

Let l be as in Assumption 1 and set

Dl = {(p, q) ∈ D : plql 6= 0}.

Lemma 3.3 shows that if (p, q) ∈ Dl, then σess(T ) = σ(T0) ( [−1, 1]. Hence, there
can exist discrete eigenvalues of T in [−1, 1] \ σ(T0) 6= ∅. In order to find the discrete
eigenvalue, we introduce a function f : [−1, 1] \ σ(T0) → R as follows. Let

ϕq =

d
∑

j=1

(

qjωj,2φ
∗
j,11{−ej} + q∗jωj,1φ

∗
j,21{ej}

)

∈ K.

For λ ∈ [−1, 1] \ σ(T0) 6= ∅, we define

f(λ) = λ− aΩ(p) + 〈ϕq, ψλ〉K,

where
ψλ = (T0 − λ)−1ϕq ∈ K. (3.6)

Let σ− = σ∗
+. Because ϕq is written as

ϕq =

d
∑

j=1

(

qj〈Φj , σ+Ωj〉1{−ej} + q∗j 〈Φj, σ−Ωj〉1{ej}

)

, (3.7)

(p, q) ∈ Dl ensures that ϕq 6≡ 0 and ψλ 6≡ 0.
The next theorem plays an important role to show the eigenvalue of T .

Theorem 3.4. Suppose that Assumption 1 holds and (p, q) ∈ Dl. If f has a zero λ⋆ ∈
[−1, 1] \ (σ(T0) ∪ {aΩ(p)}), then λ⋆ is a discrete eigenvalue of T .

Remark 3.3. By Lemma 5.2 (3), aΩ(p) can not be a zero of f even if aΩ(p) ∈ [−1, 1] \
σ(T0). Hence, f has a zero λ⋆ ∈ [−1, 1] \ (σ(T0) ∪ {aΩ(p)}) (if it exists) and Theorem 3.4
concludes that λ⋆ ∈ σp(U). The SMT and Theorem 3.4 imply that g±(λ⋆) ∈ σp(U) are
discrete eigenvalues of U . See Figure 1.

The proof of Theorem 3.4 is based on the Feshbach projection method [9, 6]. This
reduces the spectral analysis of T to that of the Feshbach map F (T, P, λ), which is an
operator defined by T , a projection P suitably chosen, and a spectral parameter λ. Let
Π = |1{0}〉〈1{0}| be the projection onto the subspace {α1{0} | α ∈ C} ⊂ K and Π⊥ =
IK − Π. Here we chose P = Π⊥ as the projection defining the Feshbach map and set
F (λ) = F (T,Π⊥, λ). See Sec. 4 for the precise definition of F (λ) and propositions used
in the following proof.
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Proof of Theorem 3.4. By Proposition 4.3, F (λ) is written as

F (λ) = Π⊥

(

T0 − λ− 1

aΩ(p)− λ
|ϕq〉〈ϕq|

)

Π⊥, λ ∈ C \ {aΩ(p)}.

Let λ⋆ ∈ [−1, 1] \ (σ(T0) ∪ {aΩ(p)}) be a zero of f, i.e., f(λ⋆) = 0, and let ψλ⋆
be defined

in (3.6) with λ = λ⋆. Because by Proposition 4.4, ψλ⋆
∈ ranΠ⊥ \ {0},

F (λ⋆)ψλ⋆
= Π⊥

(

T0 − λ⋆ −
1

aΩ(p)− λ⋆
|ϕq〉〈ϕq|

)

ψλ⋆

=

(

1− 〈ϕq, ψλ⋆
〉

aΩ(p)− λ

)

ϕq = − f(λ⋆)

aΩ(p)− λ⋆
ϕq = 0.

This completes the proof, because by Proposition 4.2, λ⋆ ∈ σp(T ) is equivalent that
kerF (λ⋆) is non trivial, which is confirmed by Proposition 4.4 again.

The following is a criterion for f to have a zero.

Theorem 3.5. Suppose that Assumption 1 holds and (p, q) ∈ Dl.

(1) f has a zero λ⋆ ∈ T− := [−1,−λ(q) + aΦ(p)) if

λ(q)(λ(q) + aΩ(p)− aΦ(p)) < ‖ϕq‖2 ≤ (1 + aΩ(p))
(1 + aΦ(p))

2 − λ(q)2

1 + aΦ(p)
; (3.8)

(2) f has a zero λ⋆ ∈ T+ = (λ(q) + aΦ(p), 1] if

λ(q)(λ(q)− aΩ(p) + aΦ(p)) < ‖ϕq‖2 ≤ (1− aΩ(p))
(1− aΦ(p))

2 − λ(q)2

1− aΦ(p)
. (3.9)

Thanks to Lemma 3.6 below, the right-hand sides of (3.8) and (3.9) make sense. The
proof of Theorem 3.5 will be stated in the last section.

Lemma 3.6. Suppose that Assumption 1 holds and (p, q) ∈ Dl. Then,

aΦ(p) 6= ±1 and aΩ(p) 6= ±1.

Proof. Suppose aΦ(p) = −1. By the definition of aΦ(p) and ‖Φ‖2 = 1,

−1 =
∑

j /∈A

pj(|φj,1|2 − |φj,2|2) and 1 =
∑

j /∈A

(|φj,1|2 + |φj,2|2),

where A = {j ∈ {1, · · · , d} | φj,1 = φj,2 = 0}. Summing the above two equations, we
get 0 =

∑

j /∈A {(1 + pj)|φj,1|2 + (1− pj)|φj,2|2} , which, combined with 1± pj ≥ 0, implies
that for j 6∈ A,

(1− pj)|φj,2|2 = 0. (3.10)

By Assumption 1 and (p, q) ∈ Dl, φl,2 6= 0, pl 6= 1, and hence l 6∈ A. This contradicts
(3.10). Therefore aΦ(p) 6= −1. The remainder can be shown similarly.
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To state our main result, we introduce the following assumption.

Assumption 2. aΩ(p0) 6= aΦ(p0) holds with some p0 ∈ {−1, 1}d.
Remark 3.4. If d = 1, then Assumptions 1-2 are not compatible. See [12] for d = 1.

Theorem 3.7 (Existence of eigenvalues). Let d ≥ 2 and suppose that Assumptions 1-2
holds. Then, there exists δ > 0 such that if (p, q) ∈ Dl satisfies ‖(p, q)−(p0, 0)‖Rd×Cd < δ,
then there exist eigenvalues of U . Moreover, the following hold.

(1) If, in addition, aΩ(p0) < aΦ(p0), then g−(λ⋆) and g+(λ⋆) are eigenvalues of UI with
some λ⋆ ∈ T−;

(2) If, in addition, aΩ(p0) > aΦ(p0), then g−(λ⋆) and g+(λ⋆) are eigenvalues of UI with
some λ⋆ ∈ T+.

Proof. Observe that ϕq 6= 0 and λ(q) > 0 whenever (p, q) ∈ Dl. By continuity, we have

lim
q→0

‖ϕ(q)‖ = lim
q→0

λ(q) = 0, lim
p→p0

aΩ(p) = aΩ(p0), and lim
p→p0

aΦ(p) = aΦ(p0). (3.11)

Suppose that aΩ(p0) < aΦ(p0). Then, there exists δ0 > 0 such that if (p, q) ∈ Dl and
‖(p, q) − (p0, 0)‖Rd×Cd < δ0, then λ(q)(λ(q) + aΩ(p) − aΦ(p)) < 0. By Lemma 3.6 and
(3.11),

lim
(p,q)→(p0,0)

(1 + aΩ(p))
(1 + aΦ(p))

2 − λ(q)2

1 + aΦ(p)
= (1 + aΩ(p0))(1 + aΦ(p0)) > 0.

Hence (3.8) holds if (p, q) ∈ Dl satisfies ‖(p, q) − (p0, 0)‖Rd×Cd < δ with some δ > 0.
Similarly, aΩ(p0) > aΦ(p0) concludes that (3.9) holds. Applying Theorems 2.1 and 3.5
completes the proof.

Remark 3.5. Theorem 3.7 has demonstrated the existence of eigenvalues of UI for suffi-
ciently small q. It would be interesting to study the existence of eigenvalues of UI without
such a condition.

Example 3.1. Let d = 2 and set

Φ :=
1√
2









1
1
0
0









, Ω :=
1

2









1
−1√
2
0









, p0 = (1, 1).

Then, 1
2
= aΩ(p0) > aΦ(p0) = 0 and all assumptions in Theorem 3.7 are satisfied with

l = 1. Hence U has two eigenvalues if (p, q) ∈ D1 and ‖(p, q) − (p0, 0)‖ is sufficiently
small. More precisely, g±(λ⋆) ∈ σp(UI) with some λ⋆ ∈ T+ if p satisfies

p2 <
5

2
− 1

2p21
, 1 < p21 +

4

9
p22. (3.12)

This is because, in this case, (3.12) is equivalent to (3.9) in Theorem 3.5.
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4 Feshbach map

4.1 Definition of the Feshbach map

In this subsection, we define the Feshbach map of the discriminant operator T . Recall
that Π = |1{0}〉〈1{0}| and Π⊥ = IK − Π. Let λ ∈ C and (Π(T − λ)Π)ranΠ be a following
operator on ranΠ:

(Π(T − λ)Π)ranΠ : ranΠ ∋ f 7→ (Π(T − λ)Π)f ∈ ranΠ.

Lemma 4.1. The following conditions are equivalent:

(1) λ 6= aΩ(p);

(2) There exists an inverse operator of (Π(T − λ)Π)ranΠ.

In this case,

(Π(T − λ)Π)−1
ranΠ =

1

aΩ(p)− λ
IranΠ, (4.1)

where IranΠ is an identity map on ranΠ.

Proof. Simple calculation show that 〈1{0}, χ
∗
j,1Ljχj,21{0}〉 = 0 for all j ∈ {1, · · · , d} and

Π(T − λ)Π = (aΩ(p)− λ)Π for all λ ∈ C. Hence,

(Π(T − λ)Π)ranΠ = (aΩ(p)− λ)IranΠ for all λ ∈ C.

Therefore, (1) and (2) are equivalent and (4.1) holds for λ 6= aΩ(p).

Lemma 4.1 guarantees that the operator

F (λ) = Π⊥(T − λ)Π⊥ − Π⊥TΠ(Π(T − λ)Π)−1
ranΠΠTΠ

⊥

is well-defined whenever λ ∈ C \ {aΩ(p)}. F (λ) is called the Feshbach map of T . The
following proposition reveals an isospectral property of the Feshbach map.

Proposition 4.2. Let λ ∈ C \ {aΩ(p)}. Then, the following are equivalent:

(1) λ ∈ σp(T );

(2) kerF (λ) is non trivial.

In this case, dimker(T − λ) = dimkerF (λ).

Proof. See [6].

Proposition 4.3. Let λ ∈ C \ {aΩ(p)}. Then, F (λ) is written as

F (λ) = Π⊥

(

T0 − λ− 1

aΩ(p)− λ
|ϕq〉〈ϕq|

)

Π⊥.
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Proof. A simple calculation yields ΠTΠ⊥ = |1{0}〉〈ϕq|. By definition,

F (λ) = Π⊥

{

T − λ− 1

aΩ(p)− λ
(ΠTΠ⊥)∗(ΠTΠ⊥)

}

Π⊥

= Π⊥

(

T − λ− 1

aΩ(p)− λ
|ϕq〉〈ϕq|

)

Π⊥.

It suffices to show Π⊥TΠ⊥ = Π⊥T0Π
⊥. By Lemma 3.2,

Π⊥TΠ⊥ = Π⊥a(p, ·)Π⊥ +
d
∑

j=1

{

qjΠ
⊥χ∗

j,1Ljχj,2Π
⊥ + (qjΠ

⊥χ∗
j,1Ljχj,2Π

⊥)∗
}

. (4.2)

The first term of the right-hand side of (4.2) is calculated as

Π⊥a(p, ·)Π⊥ =

d
∑

j=1

pjΠ
⊥(|χj,1|2 − |χj,2|2)Π⊥

=

d
∑

j=1

pj
∑

x6=0

∑

y 6=0

|1{x}〉〈1{x}, (|χj,1(x)|2 − |χj,2(x)|2)1{y}〉〈1{y}|

=

d
∑

j=1

pj
∑

x6=0

∑

y 6=0

|1{x}〉〈1{x}, (|φj,1|2 − |φj,2|2)1{y}〉〈1{y}|

= Π⊥aΦ(p)Π
⊥.

On the other hand,

Π⊥χ∗
j,1Ljχj,2Π

⊥ =
∑

x6=0

∑

y 6=0

|1{x}〉〈1{x}, χ
∗
j,1Ljχj,21{y}〉〈1{y}|

=
∑

x6=0

∑

y 6=0

(χ∗
j,1Ljχj,21{y})(x)|1{x}〉〈1{y}|

=
∑

x6=0

∑

y 6=0

χ∗
j,1(x)χj,2(x+ ej)1{y}(x+ ej)|1{x}〉〈1{y}|

=
∑

x6=0

φ∗
j,1φj,2|1{x}〉〈1{x+ej}|

= Π⊥φ∗
j,1φj,2LjΠ

⊥.

Hence, Π⊥TΠ⊥ = Π⊥T0Π
⊥. This completes the proof.

Remark 4.1. In the proof of Proposition 4.3, one defect condition plays an essential
role. If the coin has two or more defect, then we can not conclude Π⊥χ∗

j,1Ljχj,2Π
⊥ =

Π⊥φ∗
j,1φj,2LjΠ

⊥.
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4.2 Non-triviality of the kernel of F (λ)

The following proposition ensures the non-triviality of kerF (λ) in the proof of Theorem
3.4. Recall that ψλ = (T0 − λ)−1ϕq ∈ K.

Proposition 4.4. Suppose that Assumption 1 holds and (p, q) ∈ Dl. Then, ψλ ∈ ranΠ⊥\
{0} for all λ ∈ [−1, 1] \ σ(T0).

To prove Proposition 4.4, we need the following lemma.

Lemma 4.5. The following are equivalent:

(1) ψλ ∈ ranΠ⊥;

(2)

∫

[0,2π]d
ψ̂λ(k)

dk

(2π)d
= 0.

Proof. Since Π⊥ψλ = ψλ is equivalent that FΠ⊥F∗ψ̂λ = ψ̂λ, then (1) is equivalent the
following:

ψ̂λ ∈ ranFΠ⊥
F

∗. (4.3)

Because by direct calculation, F1{0} = 1[0,2π]d, the following holds:

FΠ⊥
F

∗ψ̂λ = F(IK −Π)F∗ψ̂λ

= (IFK − |1[0,2π]d〉〈1[0,2π]d|)ψ̂λ

= ψ̂λ −
(
∫

[0,2π]d
ψ̂λ(k)

dk

(2π)d

)

1[0,2π]d. (4.4)

By (4.3) and (4.4), (1) holds if and only if

(
∫

[0,2π]d
ψ̂λ(k)

dk

(2π)d

)

1[0,2π]d = 0. This proves

the lemma.

Proof of Proposition 4.4. Fix λ ∈ [−1, 1] \ σ(T0). Because λ 6∈ σ(T0) and ϕq 6= 0, we
observe that ψλ 6= 0. By using (3.5) and changing variables, we have

∫

[0,2π]d
ψ̂λ(k)

dk

(2π)d
=

∫

[0,2π]d

ϕ̂q(k)

T̂0(k)− λ

dk

(2π)d

=

∫

[0,2π]d

∑d
j=1

(

ϕq(ej)e
−ikj + ϕq(−ej)e

ikj
)

aΦ(p) + 2
∑d

j=1 |αj| cos(kj + θj)− λ

dk

(2π)d

=

∫

∏d
j=1

[θj ,2π+θj ]

∑d
j=1

(

ϕq(ej)e
−i(tj−θj) + ϕq(−ej)e

i(tj−θj)
)

aΦ(p) + 2
∑d

j=1 |αj| cos tj − λ

dt

(2π)d

=

∫

[0,2π]d

∑d
j=1

(

ϕq(ej)e
iθj + ϕq(−ej)e

−iθj
)

cos tj

aΦ(p) + 2
∑d

j=1 |αj | cos tj − λ

dt

(2π)d
. (4.5)
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By (3.7), we observe that

ϕq(ej)e
iθj + ϕq(−ej)e

−iθj = q∗j e
iθj〈Φj, σ−Ωj〉,+qje−iθj〈Φj , σ+Ωj〉. (4.6)

Let B = {j | qj 6= 0, 〈Φj , σ+Ωj〉 6= 0}. Assumption 1 (b) and (p, q) ∈ Dl imply B 6= ∅.
If j 6∈ B, then the right-hand side (RHS) of (4.6) is zero, because by σ1 = σ+ + σ−,
Assumption 1 (a) implies that

|〈Φj, σ+Ωj〉| = |Φj · (σ+Ωj)| = |Φj · (σ−Ωj)| = |〈Φj, σ−Ωj〉|. (4.7)

Let j ∈ B. By (4.7), we have φj,1 6= 0, φj,2 6= 0, and hence αj = qjφ
∗
j,1φj,2 6= 0. Using

eiθj = qjφ
∗
j,1φj,2/|αj|, we observe that

RHS of (4.6) =

〈

Φj ,

(

0 qje
−iθj

q∗j e
iθj 0

)

Ωj

〉

=
|qj |2
|αj |

〈(

0 φj,1φ
∗
j,2

φ∗
j,1φj,2 0

)

Φj ,Ωj

〉

=
|qj |2φ∗

j,1φ
∗
j,2

|αj|
Φj · (σ1Ωj) = 0.

Therefore,
ϕq(ej)e

iθj + ϕq(−ej)e
−iθj = 0, j = 1, . . . , d,

which, in conjunction with (4.5), gives

∫

[0,2π]d
ψ̂λ(k)

dk

(2π)d
= 0. Lemma 4.5 concludes the

proof.

5 Zeros of f

In this section we prove Theorem 3.5. We henceforth suppose that Assumption 1 holds
and fix (p, q) ∈ Dl. Recall that f : [−1, 1] \ σ(T0) → R is defined as

f(λ) = λ− aΩ(p) + 〈ϕq, ψλ〉K

and that we set T− = [−1,−λ(q) + aΦ(p)) and T+ = (λ(q) + aΦ(p), 1]. We need the
following lemmas.

Lemma 5.1. The function f is continuously differentiable and monotonically increasing.

Proof. The lemma is evident from

f′(λ) = 1 +

∫

[0,2π]d

|ϕ̂q(k)|2
(T̂0(k)− λ)2

dk

(2π)d
> 0.

Lemma 5.2. The following hold:
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(1) If λ ∈ T−, then

λ− aΩ(p) +
‖ϕq‖2

aΦ(p)− λ
< f(λ) < λ− aΩ(p) +

aΦ(p)− λ

(aΦ(p)− λ)2 − λ(q)2
‖ϕq‖2. (5.1)

(2) If λ ∈ T+, then

λ− aΩ(p) +
‖ϕq‖2

aΦ(p)− λ
> f(λ) > λ− aΩ(p) +

aΦ(p)− λ

(aΦ(p)− λ)2 − λ(q)2
‖ϕq‖2. (5.2)

(3) If aΩ(p) ∈ [−1, 1] \ σ(T0), then f(aΩ(p)) 6= 0.

Proof. Let λ ∈ T−. Since ϕq 6= 0, f(λ) can be written as

f(λ) = λ− aΩ(p) + ‖ϕq‖2
∫

σ(T0)

gλ(x)d〈ϕq, ET0
(x)ϕq〉/‖ϕq‖2,

where ET0
(·) is the spectral measure of T0 and gλ(x) =

1
x−λ

. Note that 〈ϕq, ET0
(·)ϕq〉/‖ϕq‖2

is a probability measure on σ(T0) = [aΦ(p)− λq, aΦ(p) + λq]. By Jensen’s inequality, we
have

∫

σ(T0)

gλ(x)d〈ϕq, ET0
(x)ϕq〉/‖ϕq‖2 > gλ

(
∫

σ(T0)

xd〈ϕq, ET0
(x)ϕq〉/‖ϕq‖2

)

= gλ
(

〈ϕq, T0ϕq〉/‖ϕq‖2
)

.

Because 〈ϕq, T0ϕq〉/‖ϕq‖2 = aΦ(p), we have,

f(λ) > λ− aΩ(p) + ‖ϕq‖2gλ(aΦ(p)) = λ− aΩ(p) +
‖ϕq‖2

aΦ(p)− λ
. (5.3)

Let u : [aΦ(p)−λ(q), aΦ(p)+λ(q)] → R be a linear function such that u(aΦ(p)−λ(q)) =
gλ(aΦ(p)− λ(q)) and u(aΦ(p) + λ(q)) = gλ(aΦ(p) + λ(q)), i.e.,

u(x) =
−x+ 2aΦ(p)− λ

(aΦ(p)− λ)2 − λ(q)2
.

By the convexity of gλ, we have

∫

σ(T0)

gλ(x)d〈ϕq, ET0
(x)ϕq〉/‖ϕq‖2 <

∫

σ(T0)

u(x)d〈ϕq, ET0
(x)ϕq〉/‖ϕq‖2

=
−〈ϕq, T0ϕq〉/‖ϕq‖2 + 2aΦ(p)− λ

(aΦ(p)− λ)2 − λ(q)2

=
aΦ(p)− λ

(aΦ(p)− λ)2 − λ(q)2
.
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Hence,

f(λ) < λ− aΩ(p) +
aΦ(p)− λ

(aΦ(p)− λ)2 − λ2q
‖ϕq‖2. (5.4)

(5.3) and (5.4) imply (5.1). Hence (1) is proved. The same proof works for (2).
We prove (3). If aΩ(p) ∈ T−, then, aΩ(p) < aΦ(p). By (5.3), we have f(aΩ(p)) > 0.

Similarly, if aΩ(p) ∈ T+, then f(aΩ(p)) < 0.

Because by Lemma 5.1 f is monotonically increasing , f(λ) has a zero in T− if and only
if

f(−1) ≤ 0 and lim
λ ↑ aΦ(p)−λ(q)

f(λ) > 0. (L)

Similarly, f(λ) has a zero in T+ if and only if

f(1) ≥ 0 and lim
λ ↓ aΦ(p)+λ(q)

f(λ) < 0. (R)

Proof of Theorem 3.5. Let λ ∈ T−. By Lemma 5.2, (L) holds if














−1− aΩ(p) +
aΦ(p) + 1

(aΦ(p) + 1)2 − λ(q)2
‖ϕq‖2 ≤ 0,

0 < aΦ(p)− λ(q)− aΩ(p) +
‖ϕq‖2
λ(q)

,
(5.5)

which is equivalent to (3.8). Thus, (3.8) concludes (L). This proves (1) of Theorem 3.5.
The same proof works for (2).
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