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Abstract—This paper addresses localization of autonomous
underwater vehicles (AUVs) from acoustic time-of-flight measure-
ments received by a field of surface floating buoys. It is assumed
that measurements are corrupted by unknown-but-bounded
errors, with known bounds. The localization problem is tackled
in a set-membership framework and an algorithm is presented,
which produces as output the set of admissible AUV positions
in a three-dimensional (3-D) space. The algorithm is tailored for
a shallow water situation (water depth less than 500 m), and
accounts for realistic variations of the sound speed profile in
sea water. The approach is validated by simulations in which
uncertainty models have been obtained from field data at sea.
Localization performance of the algorithm are shown comparable
with those previously reported in the literature by other ap-
proaches who assume knowledge of the statistics of measurement
uncertainties. Moreover, guaranteed uncertainty regions associ-
ated to nominal position estimates are provided. The proposed
algorithms can be used as a viable alternative to more traditional
approaches in realistic at-sea conditions.

Index Terms—Autonomous robots, localization, set-member-
ship, underwater vehicles.

I. INTRODUCTION

R
ECENT years have witnessed an impressive growth in

the technology of robotics for undersea exploration. Re-

motely operated vehicles (ROVs) linked with a tether cable to

the mother ship are today a well-established technology rou-

tinely used in the off-shore industry. Autonomous underwater

vehicles (AUVs) are still more research topics than commer-

cial products; however, they held the promise of being the next

significative step in ocean exploration and exploitation, cutting

costs and allowing operations that are presently prohibitive from

surface ships or by ROVs. One of the problems that prevents

commercial applications of AUVs, or at least mitigate their ef-

ficiency, is that of vehicle localization: on-board systems, as in-

ertial navigation systems (INS), cannot maintain the requested
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accuracy over the desired interval of operation of the system,

and are highly expensive.

The general problem of localization of autonomous vehicles

has received much attention in the robotic literature, see, e.g.,

[3], [9], [13]–[15], [18], [24]; however, the peculiarities and con-

straints of the underwater environment and of usual AUV mis-

sions prevent the simple transposition of available techniques

for land or aerial vehicles, and require careful study of the impli-

cations of each chosen methodology for the underwater system

performance [4], [22], [25].

There are several navigation systems currently employed by

AUVs researchers. The main nonacoustic approach consists in

installing on the AUV a GPS receiver and an INS; the vehicle

navigates with the INS, but periodically comes to surface to

receive the GPS signal and to recalibrate the INS [26]. The

acoustic approaches can be subdivided in the so-called long

base-line (LBL) and short or ultra short base-line (SBL) sys-

tems. In both cases, the vehicle position is determined on the

basis of the acoustic returns detected by a set of receivers.

In the LBL case, a set of acoustic transponders is deployed

on the seafloor around the perimeter of the area of operation.

The transponders are then able to track the vehicle (or the

vehicle is able to locate itself with respect to the transponders,

depending on where the acoustic emitters are located) with

the required accuracy [8]. In SBL systems, a ship follows the

AUV at short range with a high-frequency directional emitter

able to accurately determine the AUV position with respect

to the mother ship; the same system allows for bidirectional

communication among the AUV and the ship, so that the AUV

navigation system is aware of its current absolute position [23].

All these methods have their merits and drawbacks. Augmented

INS requires in any case the setup of sophisticated inertial sen-

sors, and are vehicle-specific (i.e., the same system cannot be

employed on more than one vehicle). LBL systems require long

time (with associated costs) for deployment and calibration.

SBL systems need a ship to follow the vehicle, greatly reducing

the cost-effectiveness of an AUV system; in fact, in this case,

the vehicle is not really autonomous, but just untethered.

A simpler alternative to LBL systems has been recently in-

vestigated, consisting in installing acoustic receivers/emitters on

surface freely floating buoys [2]; on the buoys GPS receivers

with radio interconnection are also installed. The vehicle is lo-

cated through simple time-of-flight measurements of acoustic

pings from each buoy, with one of the buoys (or an additional

remote station) acting as “master,” i.e., collecting information
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Fig. 1. Framework for AUV localization.

from the other buoys and determining the absolute position of

the vehicle. Alternatively, each buoy emits at regular time inter-

vals a ping with the coded information of its GPS position. The

vehicle listens for the pings, and again it determines its absolute

position from time-of-flight measurements. In this second alter-

native, the floating buoys system has the ambition of becoming a

true underwater GPS system, affordable, easy to deploy and re-

cover, autonomous during its time of operation. The localization

and tracking performance of such a system has been recently

investigated by several authors [2], [8], [10], [20], [21]; in all

these cases, the algorithms have considered measurements af-

fected by Gaussian-distributed noise, and have determined the

resulting localization uncertainties through Monte Carlo anal-

ysis or nonlinear transformation techniques [12].

In this paper, a different approach is proposed and investi-

gated, based on the assumption that measurement errors are un-

known but bounded, with known bounds. Tools from set-mem-

bership estimation theory [16], [17] are employed to determine

the admissible region in space in which the vehicle is located.

Though this approach can be easily generalized to the deep

water case, our discussion and implementation refers only to

the shallow water case (water depth less than 500 m), which

is the most interesting from the point of view of AUV appli-

cations, and the most challenging due to the presence of multi-

path effects. The performance of the algorithm has been tested in

simulation, considering buoys dislocation similar to those em-

ployed in [8] and [21], to allow comparison of results. The error

measurement characteristics have been taken from field exper-

iments at sea [19]–[21], in order to obtain a realistic charac-

terization of the proposed approach. The results obtained show

that the set-membership approach has at least similar perfor-

mance to that obtained by standard triangulation methods. It is

remarked, however, that the main advantage of the set-member-

ship approach is the determination of regions where the vehicle

is guaranteed to belong, with the sole prior knowledge of the

worst-case bound on the measurement error. Partial results on

this localization approach have been presented in [6]. In this

paper, the localization algorithm is described in detail also in

the varying sound speed case, and comparison is made with

results obtained by a standard triangulation approach. The use

of set-membership information in AUV tracking and filtering

problems has been proposed and outlined in [5] and [7].

The paper is organized as follows: in Section II, the problem

is formally stated, some relevant properties of acoustic prop-

agation in the ocean are briefly recalled and the methodolog-

ical set-membership approach is presented; in Section III the

proposed set-membership localization algorithm is described in

detail; in Section IV a pseudoMonte Carlo analysis of perfor-

mance of the algorithm is presented for the cases of winter and

summer sound speed profile conditions; finally some conclu-

sions are given in Section V.

II. PROBLEM STATEMENT AND GENERAL

METHODOLOGICAL APPROACH

Let us consider the case in which buoys are placed in ar-

bitrary positions on the sea surface over an area of interest. An

absolute earth reference system is assumed, with

on the water surface, and the -axis pointing upward from the

sea surface (see Fig. 1). Each buoy position is as-

sumed to be known. In practice any buoy position will be known

at (differential) GPS accuracy; the uncertainty in the buoy po-

sition can be treated as an additional uncertainty in the buoy

measurement. The buoys are allowed to move freely; however,

since their movement will be due to waves and current, with a

dynamic much slower with respect to the time scale of the travel-

ling acoustic signals, it is assumed that the buoys nominal posi-

tion is fixed, and the buoys possible movement is treated again

as additional uncertainty in the measurement. Without loss of

generality, it is assumed that the vehicle transmits, at known

synchronized times, an acoustic ping, which is received at the

buoys. The symmetric situations, in which the buoys transmit

pings received by the AUV, or the case of monostatic trans-

mission/reception (i.e., when each buoy transmits a ping and

receives the echo of the ping from a transponder installed on

the AUV), can be treated in a similar way. The (non trivial)

low-level signal processing needed for each buoy to detect the

signal transmitted by the AUV is beyond the scope of the present

paper. Note, however, that fake measurements due to false detec-

tions can be viewed as outliers and treated accordingly (a pos-

sible method for detecting outliers in the set-membership set-
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ting is given in [1]). So, it is assumed that the received signals

are suitably processed so that, after reception of each echo, the

measurement of the one-way travel time of the emitted ping

from the AUV is available to the th buoy. Each measurement is

affected by an unknown-but-bounded error , which accounts

for all the uncertainties (due to synchronization errors, noisy sig-

nals, D-GPS accuracy, buoy/vehicle motion between transmis-

sion and reception of the same ping, etc.), i.e.

(1)

being the measurement when no uncertainties are present,

and a known bound on the measurement uncertainty. Note

that the known bound may be allowed to change with time, for

instance in presence of time-base drifts. The proposed method-

ology can handle this situation without any modification, except

for adapting in time the bound . In this paper the static case is

treated to simplify the presentation, and it is assumed that all the

possible uncertainties have been appropriately bounded at each

time.

The sound speed in the area of interest is assumed

known. Though the proposed approach can deal with the gen-

eral case, in the following the most common situation in which

the sound speed varies only with depth in the area of interest is

considered, i.e., . Acoustic propagation is mod-

eled with ray path theory [11], including multipath effects, and

considering lossless reflection at the water surface and seafloor

boundaries. Note that, for the purpose of the localization algo-

rithm, only the acoustic ray paths, and not the intensities of the

acoustic signals, need to be computed, so the assumptions made

are not restrictive. The sources/receivers are considered omnidi-

rectional, i.e., they emit/receive acoustic rays in every direction

below the plane (the sea surface). Propagation along the

sea surface boundary has not been considered, since in practice

these rays are very much attenuated and scattered by wave mo-

tion and bubbles. Each ray arriving at the th buoy with angle

with respect to the plane has travelled along a

path respecting Snell’s law at every point , i.e.

(2)

where is the angle between the ray and the -

plane, at the generic point . The measurement of the th

buoy, once converted from time to distance taking into account

the sound speed profile , and considering the bounded un-

certainty (1), defines a region of the admissible space in

which the vehicle is located. The space is bounded by the

sea surface and sea bottom, and by the defined extension of the

area of interest; in the description of the algorithm it will be as-

sumed that the bottom is flat, however variable bathymetry can

be easily considered. The buoys are located inside . Merging

the information from all the available buoys, the region in

space in which the vehicle is positioned is given by

(3)

This is usually addressed as feasible position set in the set-

membership literature. The region may have a complicated

geometrical shape, making its exact computation infeasible.

The objective of the set-membership localization algorithm

described in the next section is to determine a guaranteed

approximation of , i.e., a set such that . If

is the true position of the AUV to be estimated,

this guarantees that .

In order to obtain tractable algorithms, it is customary to se-

lect a class of regions of simple structure. In this paper, boxes

will be considered as approximating regions. A box is defined

as

(4)

Boxes are convenient geometrical objects to use, since effi-

cient set approximation procedures can be employed for their

computation. Clearly, one is interested in obtaining the box of

smallest volume containing the set . Again, this can be a very

difficult task, due to the involved structure of the regions gen-

erated by the intersection of the sets . Hence, suboptimal so-

lutions are usually sought. The one chosen in this paper is dis-

cussed in the next section.

III. THE LOCALIZATION ALGORITHM

A. Constant Sound Speed Profile

In order to give a clear understanding of the set-membership

localization algorithm, it will be firstly described for the case of

sound speed constant with depth, i.e., . Note that this

simplified condition does frequently occur in the shallow ocean,

particularly in winter periods when storms and the lack of pro-

longed solar radiation make the sea temperature homogeneous

over the water column. Thus, this situation is often referred to as

“winter conditions” [11]. In the presence of winter conditions,

the acoustic rays propagate along straight paths, so that the dis-

tance of the vehicle from the th buoy can be simply computed

from the time-of-flight measurement (1) as

(5)

The set of vehicle positions compatible with the measurement

is a spherical cap of center (the buoy

position) and of internal and external radii and

, respectively, i.e.

The set of vehicle positions compatible with the measure-

ments from all the buoys is obtained by substituting the terms

with in (3).

To find a box containing the set , the following procedure

is employed. At first, the intersections of and for all the

possible couples , , are considered (see Fig. 2). For each

intersection, the aim is to compute the minimum volume box

containing , in a new reference system.

Let be a point in the earth absolute reference system. Con-

sider the new reference frame , defined by the change
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Fig. 2. Intersection between two spherical caps L , L (planar view); the
admissible regions for the vehicles are the shaded regions. The rectangle
represents the box of minimal volume containing the admissible region. The
new coordinate system has the ~x-axis oriented along the line through the buoys
i,j (the centers of the spherical caps).

of coordinates , where is the generic vector in

the new coordinates. The first column of the matrix is given

by the unitary vector and the other

two columns can be taken as any vectors orthonormal to ; in

particular, one can choose the axis equal to that of the abso-

lute reference system (an admissible choice, since lies on

the sea surface plane). The new coordinate system has the

axis aligned with the vector joining the centers of the two

spherical caps, and origin in one of the two centers. Since the

intersection problem has cylindrical symmetry with respect to

the -oriented axis, the two caps can be projected on the plane

generated by and by one of the other two axis. The projec-

tion on this plane gives origin to two circular anuli and .

The rectangle with minimal area containing the intersection of

and is identified by determining the following quantities

(6)

This can be done by simple enumeration of the intersection

points among the two anuli, and of each anulus with the axis.

The rectangle thus obtained (see Fig. 2) can then be rotated

around the vector to generate a cylinder which includes the

admissible region, of radius and of height .

This cylinder can in turn be bounded by a box defined as in

(4), with

(7)

At this stage, the coordinate transformation can be

inverted, and the box described by (4) and (7) can be written in

the earth absolute reference frame as a set of six linear inequal-

ities in the form

(8)

Let , , be the set of all boxes de-

termined by considering all the possible pairs , , .

Hence, each box defines a set of constraints as in (8) in the earth

reference system, that are now written as

Recall that is the whole region of space where the AUV

can be positioned. Therefore, a box containing the feasible set

is given by the box of minimal volume including the intersec-

tion of the boxes , . In the earth refer-

ence frame, the box containing such intersection is simply found

by solving the following six linear programming problems

(9)

It is worth observing that the box provided by (9) is not nec-

essarily the minimum volume box containing , since it is not

true that a box of minimal volume in a given coordinate system

has minimal volume for any coordinate system. The size of

the approximating box can be reduced by considering different

reference systems and repeating iteratively the above approxi-

mation algorithm. The following recursive procedure has been

implemented.

a) solve (9) in the absolute coordinate system obtaining a

box ; set ;

b) for every buoy , , do:

— compute a coordinate transformation setting the

axis along the direction joining the center of

with the buoy position;

— solve (9) in the new coordinate system obtaining a

box ; if set

c) if has not changed during the last step, exit

with the result ; otherwise, go to step b).

Clearly this iterated procedure is suboptimal, since it does

not check the condition of minimal volume along all possible

coordinate transformations. However, it does check the mini-

mality conditions over a set of privileged directions, that are

those joining the buoy positions with the best estimate currently

available of the AUV position. Note that the whole procedure

is computationally feasible as long as the number of buoys is

not too large. In practical systems, the number of buoys is

often limited to 3 or 4; as long as the number of linear con-

straints is of the order of 500 (i.e., the number of buoys is kept

below 15) standard available programs can efficiently perform

the computation.

B. Variable Sound Speed Profile

The more general case of sound speed profile varying

with depth is treated with the same geometrical machinery; the
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Fig. 3. Sound speed profile with depth in summer conditions, water depth
150 m.

Fig. 4. Ray paths from the emission point at the sea surface, corresponding to
the sound speed profile of Fig. 3; both axis are in meters, water depth is 150 m.

main difference is due to the determination of the spherical cap

of admissible AUV positions, obtained from the th buoy on

the basis of the time measurement (2). In fact, the admissible

region corresponding to each measurement will be determined

as the intersection of a set of spherical caps. In order to illustrate

the process, let us consider a typical “summer profile” of sound

speed (Fig. 3), in which a warm layer (higher sound speed) is

present, due to the effect of solar radiation. In Fig. 4 the acoustic

propagation ray paths corresponding to the summer profile are

shown (since the propagation has cylindrical symmetry around

the axis, only a planar figure is presented). The upper ray in the

figure (thicker line) is the limiting ray, i.e., the ray characterized

by the smallest angle with the sea surface at the receiver loca-

tion (0.01 rad in this case). It can be seen that, due to Snell’s law,

the rays are bending toward the regions of minima in the sound

speed profile, and the propagation occurs through bounces on

the seafloor and on the sea surface. The points compatible with

the measurement are those reached after a time along some

ray, and such that there does not exist any other ray path that can

reach the same point in a shorter time. These sets of points form

isotemporal curves that can be divided in five classes (which do

Fig. 5. An isotemporal curve, i.e., a set of points that are reached by the
acoustic rays coming from the buoy in position (0,0) at the same time, and
before any other acoustic ray has reached them. The figure illustrates class 1,
in which all the points in the isotemporal curve are reached by rays that do not
reflect on the sea surface or the sea bottom. The curve has been obtained for
the summer sound speed profile of Fig. 3.

Fig. 6. Class 2 isotemporal curve. The curve is limited by the bottom and by
the limiting ray (dashed).

not depend on the specific sound speed profile). These classes

are illustrated in Figs. 5–9 (the dashed curve always represents

the limiting ray).

For each of the five classes of curves, when the worst-case

uncertainty is taken into account, specific admissible regions

are generated. Note that these regions are not anymore spherical

caps; moreover, in some cases the regions are discontinuous. In

order to apply the algorithm described in the constant velocity

case, the admissible regions are bounded by spherical caps,

all having centers on the axis at the coordinates of

the th buoy. An example of the construction of such spherical

caps is illustrated in Figs. 10, 11, for class 3 depicted in Fig. 7.

Fig. 10 shows how the region (shaded) is contained in the in-

tersection of three spherical caps (the thicker lines). The leftmost

sphere (the one passing through A) is the one with maximum
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Fig. 7. Class 3 isotemporal curve. The part of the curve above the limiting ray
is due to rays that are surface reflected.

Fig. 8. Class 4 isotemporal curve: the curve is limited by the reflection of the
limiting ray on the sea bottom.

Fig. 9. Class 5 isotemporal curve: the part of curve below the limiting ray is
due to bottom reflected rays.

Fig. 10. Admissible region for the class of Fig. 7. The shaded area is
the admissible region S compatible with the ith measurement. The three
circumferences passing, respectively, through the points A, B and C, C and D,
bound the admissible region. The figure has cylindrical symmetry around the z

axis, so the circumferences are spheres in the 3-D case.

Fig. 11. A broader view of Fig. 10: the dots on the z axis are the centers of
the three circumferences bounding S , acting as virtual buoys. The true buoy is
located in the origin of the reference system.

radius and such that lies all outside the sphere. The other

two spheres are generated by rotation around the axis of the

circumferences passing through points B and C, and C and

D, respectively. For each buoy a set of spherical caps ,

, is generated, each with center in a point

, and such that the intersection of these spherical

caps contains the admissible region . This means that the

points can be treated as the positions of virtual

buoys, whose measurements generate as admissible region a

spherical cap. Notice that the virtual buoys may be located

below the sea bottom or above the sea surface (see Fig. 11).
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As a consequence of the above reasoning, one has that the

feasible position set is contained in the intersection of all the

feasible caps generated to approximate the sets , i.e.

This is a situation similar to the one treated in the “winter

conditions” case discussed above, so the same algorithm can

be applied to the set of all virtual buoys in order to generate

the bounding box containing the region compatible with the

measurements of the real buoys. Note that one has to process

at most measurements from virtual buoys, thus leading

once again to computationally tractable linear programming

problems.

It is important to remark that in the general arbitrary sound

speed profile case the algorithm proposed has an additional sub-

optimal step with respect to the constant sound speed profile

case: the procedure for building spherical caps limiting the fea-

sible set of vehicle positions; this procedure is due to the vari-

able geometrical shape of the feasible set, that, as illustrated,

may even be discontinuous. This additional step (not needed

in the constant profile case, where the feasible regions are

already spherical caps) introduces a further degree of conser-

vativeness in the localization bounds obtained with a variable

sound speed profile, with respect to those obtained with a con-

stant sound speed profile.

IV. LOCALIZATION ALGORITHM: PERFORMANCE ANALYSIS

Performance analysis of the set-membership localization al-

gorithm through a pseudoMonte Carlo simulation approach is

now reported. This simulative exercise has several objectives.

The first is to analyze if the set-membership approach leads to

localization uncertainties that exhibit qualitatively the same spa-

tial distribution patterns of standard triangulation algorithms,

and quantitatively the same order of magnitude (or if there are

significant changes with respect to the standard approach, for

the better or for the worse); to this aim, the same geometrical

configuration and system and uncertainty parameters reported

in [21] have been used; note that other systems may have dif-

ferent characteristics: in particular, the system described in [2],

operating at higher frequencies and at smaller ranges, has uncer-

tainty of approximately one order of magnitude less than that

of [21]. The second objective is to analyze the change in the

algorithm performance when different probability distributions

are used in the synthetic data generation: it is generally claimed

that the set-membership approach is better suited to the cases in

which the measurement uncertainties have uniform probability

distribution, and since the true error probability distribution is

not known, it is important to check through simulation if there is

any significant degradation of performance when different prob-

ability distributions are considered. The Gaussian distribution,

as the most widely used in the modeling of uncertainties, has

been taken as term of comparison. The third objective of the

simulations is the quantitative analysis of the differences in al-

gorithm performance between the “winter” and the “summer”

condition case, since in the latter case the algorithm provides

more conservative bounds on the feasible regions. The imple-

mented algorithm has the potential of analyzing the localization

error as a function of the number of buoys and of the buoys

geometry; however, optimization with respect to these system

and geometrical parameters (in dependence of different envi-

ronmental conditions and localization precision requirements)

is a complex and challenging problem which deserves deeper in-

vestigations, and it is not treated here. The chosen geometrical

configuration has been selected uniquely to allow comparison

with the results in [21].

The rules of the game in the simulations have been set as fol-

lows. An admissible region of 30 30 Km in the plane is

considered, with water depth of 150 m. Three buoys are consid-

ered, placed as vertex of an equilateral triangle of 16 Km side.

The admissible region has been gridded in the plane at

1 Km spacing. The depth of the vehicle has been kept at 75 m

at any point of the grid. For each point of the grid, 10 different

measurement realizations have been generated, and the localiza-

tion algorithm applied. The nominal localization error and the

worst-case localization error, averaged over the 10 realizations,

are reported for each point. The nominal error is computed as

the distance between the center of the bounding box and the

true vehicle position. The worst-case localization error is com-

puted as the semidiagonal of the bounding box . Note that, due

to symmetry of the buoy configuration, one of the buoy is taken

at the origin of the coordinate system, and another one on the x

axis. The uncertainty regions for , or (or both) can

be obtained in this case by trivial symmetry operations.

In the winter condition case, the sound speed has been taken

as 1500 m/s everywhere. The measurement realizations have

been obtained first assuming a uniformly distributed measure-

ment noise [see (5)] within the interval [ 100 100] m, with

independent identical distribution (i.i.d.) for each buoy; in a

second case, a Gaussian distributed measurement noise has been

assumed (again, i.i.d. for each buoy), with zero mean and stan-

dard deviation . In both cases, the algorithm assumes

the knowledge of the noise bound (roughly equal

to in the Gaussian case). Note that a 33 m standard deviation,

with a constant sound speed of 1500 m/s, corresponds to a stan-

dard deviation of 22 ms in the time of arrival measurement error.

Mozzone et al. [21] have reported experimental data with a sim-

ilar geometrical configuration and transmission in the 1.9–3.5

kHz range. They estimated a two-way time of flight variance

between 30 and 60 ms (depending on the buoys). The noise

bound used in our simulations has been chosen by picking an

average value of , according to Mozzone et al. [21],

and then taking approximately half of that value to account for

the one-way time of flight configuration in our setting.

Fig. 12 and 13 show the nominal and worst-case localization

errors, respectively, obtained assuming uniformly distributed

measurement noise. Fig. 14 and 15 report the corresponding

results obtained with Gaussian distributed measurement noise.

The results of the two cases are first compared one against the

other. The nominal error in the case of uniformly distributed

uncertainties is larger than the one obtained with Gaussian

distributed uncertainties; however the worst-case errors are

smaller in the uniform distribution case. There is an intuitive
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Fig. 12. Color-coded average nominal error over the admissible region as a function of (x; y) position in the case of uniformly distributed measurement error,
winter conditions. The error chromatic scale is in Km. Buoy locations are the red circles. Scales on the x and y axis are in Km.

Fig. 13. Color-coded average worst-case error over the admissible region as a function of (x; y) position in the case of uniformly distributed measurement error,
winter conditions. The error chromatic scale is in Km. Buoy locations are the red circles. Scales on the x and y axis are in Km.

explanation for this result. When the error is Gaussian dis-

tributed, the dispersion of the samples from the mean value is

less than in the case of uniform distribution. This implies that

the samples in the Gaussian case will be more concentrated

around the true value, and the associated uncertainty regions

will greatly overlap; so the center of the bounding box

computed by the set-membership algorithm will be relatively

close to the true value, but the worst-case uncertainty will not

be significantly reduced by the intersection operation, because

of the overlap of the uncertainty regions. In the uniform distri-

bution case, the samples are more scattered, causing the center

of the bounding box to be more distant from the true position,

but allowing a greater reduction of the worst case uncertainty

through the intersection operation. Note also that, for the same

reason underlined above, the nominal error pattern is in both

cases much more irregular than the worst-case error pattern.

It is likely that a consistently larger number of realizations is

needed to smooth out also the nominal error pattern.

The qualitative aspect of the (worst-case) error pattern dis-

tribution is equivalent in both cases, showing that accuracy de-
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Fig. 14. Color-coded average nominal error over the admissible region as a function of (x; y) position in the case of Gaussian distributed measurement error,
winter conditions. The error chromatic scale is in Km. Buoy locations are the red circles. Scales on the x and y axis are in Km.

Fig. 15. Color-coded average worst-case error over the admissible region as a function of (x; y) position in the case of Gaussian distributed measurement error,
winter conditions. The error chromatic scale is in Km. Buoy locations are the red circles. Scales on the x and y axis are in Km.

creases with range outside the buoys triangle area, and it is best

along privileged directions, corresponding to the perpendicular

axes to the triangle sides. For this configuration this result is also

similar to that obtained by standard triangulation. The nominal

error pattern distribution exhibits the same behavior, but it is

more irregular, as already observed.

The Gaussian uncertainty case can be compared with the re-

sults reported by [21], where classical triangulation algorithms

have been employed together with Gaussian distributed mea-

surement errors (see Table I, where two specific vehicle loca-

tions are considered). Even if one accounts for the two-way

travel time configuration in [21], it can be observed that the

nominal errors provided by the set-membership approach are

slightly smaller than those of the standard triangulation algo-

rithm. Moreover, the set-membership procedure, by construc-

tion, does not have the pitfalls of triangulation algorithms, in

which for a non negligible set of spatial regions, failure of the

algorithm has been reported [21]. From this comparison it can
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TABLE I
COMPARISONS OF LOCALIZATION ALGORITHMS AT TWO SPECIFIC VEHICLE LOCATIONS (WINTER CONDITIONS)

Fig. 16. Color-coded average nominal error over the admissible region as a function of (x; y) position in the case of uniformly distributed measurement error,
summer conditions. The error chromatic scale is in Km. Buoy locations are the red circles. Scales on the x and y axis are in Km.

Fig. 17. Color-coded average worst-case error over the admissible region as a function of (x; y) position in the case of uniformly distributed measurement error,
summer conditions. The error chromatic scale is in Km. Buoy locations are the red circles. Scales on the x and y axis are in Km.
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Fig. 18. Color-coded average nominal error over the admissible region as a function of (x; y) position in the case of Gaussian distributed measurement error,
summer conditions. The error chromatic scale is in Km. Buoy locations are the red circles. Scales on the x and y axis are in Km.

Fig. 19. Color-coded average worst-case error over the admissible region as a function of (x; y) position in the case of Gaussian distributed measurement error,
summer conditions. The error chromatic scale is in Km. Buoy locations are the red circles. Scales on the x and y axis are in Km.

be concluded that the set-membership approach offers a more

robust localization procedure without degradation in the local-

ization performance. The price to pay in this case is the compu-

tational burden of the set-membership procedure, which is def-

initely more time consuming of the standard approach.

A “summer condition” case is now considered, with a sound

speed profile assumed as in Fig. 3. The measurement noise

has been taken in a first case as uniformly distributed over the

interval [ 66,66] ms, and i.i.d. for every buoy; in a second case

the error has been taken as Gaussian i.i.d. for every buoy, with

standard deviation . In both cases, the localization

algorithm is given information on the worst-case measurement

error . Gridding and pseudoMonte Carlo anal-

ysis have been performed as in the winter conditions case. Re-

sults are reported in Figs. 16–19. They show that the nominal

errors have not significantly changed with respect to the winter

condition case, while the worst-case errors are larger. This is in

agreement with expectation, since the procedure for computing
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TABLE II
COMPARISON OF LOCALIZATION ALGORITHMS AT TWO SPECIFIC VEHICLE LOCATIONS (SUMMER CONDITIONS)

the bounding box in the variable sound speed profile case is gen-

erally more conservative than in the constant sound speed profile

case. Moreover, the procedure will not affect the center of the

box, but the volume of the box itself. Table II reports the results

obtained in the summer condition case, at the same vehicle lo-

cations considered in Table I. The same differences between the

uniform and the Gaussian case observed in the winter condition

case are repeated in this case. The qualitative spatial distribu-

tion of the localization error is analogous to that of the winter

condition case.

V. CONCLUSION

A localization algorithm for AUVs with measurements from

a sparse field of acoustic buoys has been presented. The algo-

rithm is based on set-membership estimation theory: no statis-

tical assumptions on the disturbances are made, but only the

worst-case bounds on the measurement errors must be available.

Performance comparison with other methods relying on statis-

tical hypotheses is not easily accomplished, due to the diver-

sity of the approaches. However, when comparison is possible,

the localization error distribution computed with the set-mem-

bership approach is similar to that obtained by standard tech-

niques, and computationally more robust, at the price of a more

demanding computational burden. As a bonus, the set-member-

ship algorithm produces also the region in which the vehicle is

guaranteed to be located.

It is believed that the algorithm proposed may represent a

significative in-the-field alternative to the ones based on sta-

tistical error characterization for those situations in which the

disturbances cannot be well characterized or anticipated, and it

is imperative to exactly bound the region to which the vehicle

belongs.
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