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Introduction

In the algebraic topology, in particular in the homotopy theory, abelian
groups are often treated by being devided into their “p-primary component’”
for various primes p.

In the homotopy category of l-connected CW-complexes, an isomorphism
means a homotopy equivalence, which is of course an equivalence relation.
As is well known, a homotopy equivalence is such a map that it induces an
isomorphism on the integral homology group.

There might be three ways to generalize it in the mod p» sense.

First one is to define a p-equivalence so that it induces an isomorphism
on the homology group with Z,-coefficient. A p-equivalence, however, is not
in general an equivalence relation even in the category of l-connected finite
CW-complexes. In fact, in is shown an example, for which symmetricity
does not hold. To make it an equivalence relation, we have to work in the
category of p-universal spaces [12]. -

Next one is to define that X and Y are of same p-type, if there exist a
space Z and p-equivalences f: X—Z and g: Y—Z. Then it is easy to see
that a relation being of same p-type is an equivalence relation.

The last one is to consider a homotopy equivalence for “localized spaces
X' of X at p. It is a functor of 1-connected CW-complexes into itself such
that if f: X—Y is a p-equivalence then the localization at p fi,: X, — Y oy
is a homotopy equivalence. The localization is studied by Adams 23],
Anderson [3], Bousfield-Kan and others. Our construction is a generalization
of Adamg’ telescope [2], and has the following advantage:

THEOREM 2.5. If X is a l-connected CW-complex of finite type, then
Hy( X)) 2 Ho(X)RQp and m(Xyy) = n(X) R Qp, where Q, denotes the ring of
those fractions, whose denominators, in the lowest form, are prime to p.

Also we show

COROLLARY 4.3. X is homotopy equivalent to JI Xy the pull back of X,

X
over X

So we can study the topological properties of X for each prime p»
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separately.

In this paper, 8, denotes the category of l-connected CW-complexes of
finite type, i.e., the {-dim integral homology group is of finite type for each
i. Also we denote by %€, the category of l-connected finite CW-complexes.

Let P be a subset of the set of all primes. The notation (0) will be
used as the vacant set ¢. We denote by @, the ring of those fractions, the
denominators of which are, in the lowest form, prime to p for all p= P. If
P is the set of all primes, then Q= 2%, and if P=(0), then Q= the set
of rational numbers. Z, stands for Z/pZ and Z, for Q. 6, is a class of finite
abelian groups without P-torsion. Hx(X) means H.(X; Z). X=1Y reads that
X is homotopy equivalent to Y.

DEFINITION 0.1. A space X is P-equivalent to Y, if there exists a map
f: X—Y such that f induces isomorphisms H.(X; Z,) = H(Y ; Z,) for all
p= P. Then the map f is called a P-equivalence.

DEFINITION 0.2. A space K= %€, is called P-universal if, for any given
P-equivalence k: X— Y in the category €;, and for an arbitrary map g: K
— Y, there is a map h: K— X and there is a P-equivalence f: K— K such
that the following diagram is homotopy commutative:

k
X > Y
A
& l4
Ko » K
f

or equivalently, for any given P-equivalence 2: X—Y in §€, and for an
arbitrary map g: X— K, there isa map h: Y— K and there is a P-equivalence
f: K— K such that the following diagram is homotopy commutative:

k
X———Y
gl f o
K- > K

Thus, for a given P-equivalence X— Y, if one of X and Y is P-universal,
there exists a converse P-equivalence Y — X, and hence a P-equivalence is
an equivalence relation in the category of P-universal spaces as was stated
earlier.

The present paper is organized as follows.

§1. A P-sequence of a CW-complex.

§ 2. Localization of CW-complexes.

§ 3. Further properties of localization.
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§4. The pull-back of localized spaces.

§5. Localizing P-universal spaces.

§6. Modp H-spaces and mod p co-H-spaces.

§7. Localization of finite H-complexes.

§ 8. New finite H-complexes.

§9. Modp decomposition of suspended spaces.

In the first three sections we define a localization at P and show the
uniqueness as well as the existence of it. We study its properties thoroughly.
In §4, we reconstruct the original space X from its localized spaces X,.
85 is used to see how P-universal spaces behaves nicely under localization.
For example, in the category of P-universal spaces, X and Y are P-equivalent
if and only if X, and Y, are homotopy equivalent. In §6 various equivalent
definitions of a mod p H-space (also of a mod p co-H-space) are given. Ex-
amples for them are given, too. §7 is used to discuss the localization of
finite H-complexes, e. g., it is shown that under a certain condition, a finite
CW-complex X is an H-space if and only if X,, is an H-space for all primes
p. In §8, many new finite /{-complexes are constructed by mixing homotopy
types. The last section, §9, is devoted to give a mod p decomposition of a
suspension of the symmetric product of the Moore space of type (G, n), G=2Z2
or Z,, and of a suspension of an H-space with certain conditions. They can
give also a mod p decomposition of SK(Z, n) and of SK(Z,, n).

§1. A P-sequence of a ClW/-complex.

Let X be a CW-complex of finite type and let P be a subset of the set
of all primes,

DErINITION 1.1. {X,, fi} is a homology P-sequence of X, if

1) fi: X;.,— X, is a P-equivalence with X,=X,

2) for any =, any 1, and any prime ¢ with (¢, p)=1 for all p = P, there

exists M(>1) such that (fyo---of)x=0: H (X, ,; Z)— H.(Xy; Z,).

DEFINITION 1.17. {X, f:} is a homotopy P-sequence of X, if

1Y fi:X,.i,— X, is a P-equivalence with X,=X,

2) for any n, any {, and any prime ¢ with (g, p) =1 for all p = P, there

exists N(>1) such that (fyo - of)x+®R1=0: 7,( X, )RZ,—7(Xn)RZ,.

THEOREM 1.2. Let X, X, =€,. Then {X, fi} is a homology P-sequence of
X if and only if it is a homotopy P-sequence of X.

To prove the theorem, we need to prepare the following. For a given
space X, the (n—1)-connective space (X, n) is a fibering over X with a fibre
map p: (X, n)— X inducing isomorphisms px : 7w, ((X, n))} = 7,(X) for all i = n and
7,((X, n))=0 for all t<n. There exists a fibering
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(L.1) Kr, (X), n—1) — (X, n4+1) — (X, n) .

Similarly, the space (n, X) is such a space that there is a fibering ¢: X—(n, X)
inducing isomorphisms ¢4: (X)) =7, {n, X)) for all i<#n and n;((n, X)) =0
for all i >n. Then there exists a fibering

(1.2) Kz (X), n+1) —> (n+1, X) —> (n, X).
Clearly a P-equivalence f: X— Y induces P-equivalences:
Syt K@a(X), 1) —> K(mo(Y), 1),
Jai (X, ) —> (Y, n),
oS Xy—>(n, Y).

By the abuse of the notation, we denote them by the same notation f.
We state easy lemmas without proof.
LEMMA 1.3. The condition 2) of Definition 1.1 implies
3) For any A, any i, and any prime g with (q, p)=1 for all p = P, there
exists N(>1) such that (fyo--ofds=0: H)( X, ,; Z)—H;(Xy; Z,) for
all 0 <5< A.

LEMMA 1.3. The condition 2) of Definition 1.1/ implies

3y Foy any A, any i, any prime g with (g, p) =1 for all p = P, there exists
N(>1) such that (fyo - 0fi)xRQR1=0: 7(X; VR Z,—>m,( XN Z, for
all 0<j< A

Then we show

LEMMA 14. The conditions 1) and 2) of Definition 1.1 imply the following
(T,) for all n=2.

(T,): For any A and any k, there exists N= N(n, k, A) such that fy,=
fyoofei Xeoy— Xy induces (fywx=0: H}(Xoy, n); Z)—HAA( Xy, n); Z,) for
all j with 0<j< A.

Proor. We prove the lemma by induction on n. For n =2, there is
nothing to prove, since (X,, 2) — X,. Suppose (T,) is true and let us prove
(T,+y), n=2. Consider the homology spectral sequence {E7, ,} with Z,-coeffi-
cient associated with a fibering

(LD K(mo (X)), n—1) — (X;, n+1) —> (X, n).

Then E3,  =H,(X,, n); H(x, (X)), n—1; Z)). We may assume that A=n-2.
Let N= N(n, [, A) and take fy,,: X,— Xy given in (7). Then (fx,+)«=0 on
H,(X,, n); Z) by the assumption, and hence (fy,1+0x=0 on H,_(w (X)), n—1; Z))
by the suspension isomorphism. So (fay..)*=0 on H" Yz, (Xy), n—1; Z),
whence (fy+.)*=0 on H'z,(Xy), n—1; Z,) for all i >0, since any element of
HYz (X)), n—1; Z,) is written as a sum of the cup-products of elements of
the form p'x, where x = H" (7 ,(Xy), n—1; Z,) and p’ is a cohomology operation.
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Therefore (fy,141)«=0 on H(x (X)), n—1; Z) for all i >0. On the other hand,
(fa,e0x=0 on H;((X,, n); Z,) for all j with 0<j << A by the assumption. Thus
(fa,+)x=0 on EZ; and hence it is trivial on Eg;= D, ;/D;_ ;. for any (i, )
with 7 >0 and for any (i, 0) with 0<i< N, where H,, (X, n+1); Z)=Dis;,
ODije11 D DD 4454 =0. So the triviality of (fy,+)« on EF; implies
(fN,l-t-l)*(Dz',j)CDi—l,j+1- We put Nz'+1 - N(n’ Ni: A) and fNi-:-bNi :fNi-HO OfNi :
Xn;-1— Xnyp, inductively starting with Ny,=+%k. Then fy,:e=Fn;00fe:
Xi-1— Xy, induces the trivial homomorphism on H,((X;_, n+1); Z,). Take
Nn+1, kb A)=N, and Ivge=Ing2ofk. Then (fy, =0 on H((Xy_,,
n+1); Z,) for all 0<i< A, so (T,.,) holds. Q.E.D.

LEMMA 1.4/, The conditions 1Y and 2) of Definition 1.1 tmply the follow-
ing (I,) for all n=2.

(I); For any B, and any k, there exists M = M(n, k, B) such that (fa )x=0:
H({(n, Xooo1); Z)— H((n, Xy); Zp) for all j with 0<j<B.

Proor. Clearly n=2 is true. For (2, X,) = K(@,(X,), 2), since X, is 1-
connected. Then (fae:1)* =0 on H*@y(Xx), 2; Z,) for some M and hence
(far,es)x=0 on H (z,(X,), 2; Z,) for all j >0 as before. The statement (/,) for
n>2 is then established similarly by induction using the homology spectral
sequence with Z, -coefficient associated with a fibering

(1.2) Ko (X)), n+1) — (n+1, X)) —> (n, X)). Q.E.D.

(PROOF OF THEOREM 1.2.)

Let (X,, f,) satisfy 1) and 2) of Definition 1.1. Then by for
any n, any i, and any prime ¢ with (p, ¢)=1 for all p € P, there exists N
such that fuy,. =0: H,{( X1, n); Zp)— H(( Xy, n); Z,), where H,(X; n); Z)
=7, (X;)R Z, for any j. So it follows that fy,;, &1: 7,( X 1) R Z;— 7 (X )R Z,
is trivial.

Conversely, for any n, take sufficiently large m, then H,((m, X,); Z)
= H.(X;; Z,). So the condition 2) in Definition 1.1 follows from 1)’ and 2)
of Definition 1.1’ by Lemma 1.4. Q.E.D.

REMARK 1.1”. In the Definitions 1.1 and 1.1/, the condition that ¢ is a
prime with (g, p) =1 for all p < P can be replaced by that ¢ is an integer
with (g, p)=1 for all p = P.

From now on we call the homology P-sequence (equivalently the homo-
topy P-sequence) merely the P-sequence by virtue of

DEFINITION 1.5. Let {X,, ¢;} and (Y, h;} be P-sequences of X and V
respectively, and let f: X—Y be a map. A morphism {f;} between two
sequences: {X;, g} —{Y: h;} covering f is defined as follows: For any i,
there exist p(i) (= p(:—1)) and maps f;: X;— ¥V, such that f,=7: X— Y and
the following diagram is homotopy commutative.
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£

Xy —— X,
= |7
Yp(i*]) T Yp(t‘)

o, i-1)

where A, 1= R0+ O Mo pyaa-

DEFINITION 1.6. Let {f,} and {f}} be two morphisms between P-sequences :
{X;, g.}—{Y,, h;}. Then {f;} and {f;} are homotopic, if there exists a mor-
phism {H;}: {X; X1, g; X1} = {Y,u howy} covering the homotopy f~f with
¢(1) = Max (p(i—1), p’(i), p(i)) such that

D H(,0=f; and H(,D=/f{in Y,u,

2) Hy,o(ge X D= hypoH; rel. X; X 01,

ProposiTION 1.7. Let {X;, g;} and {Y, h;} be P-sequences of X and Y
rvespectively, Let X, €§C,.. Let f. X—Y be arbitrary. Then there exists a
morphism {fi} 1 {X;} = {Y o} covering f. Further, it is unique up to homotopy.

Proor, We prove it by induction starting with f,=f. Assume that
Jx: Xi— Y,u is constructed ;

i
Xy ————» Xy
Vs 5
k v
Yp(k) > Yp(k-H)
hp(k—l-l,k)

We may consider that g, is an inclusion of a subcomplex by taking a map-
ping cylinder, if necessary. The obstruction to extending f, over X,., lies
in H""' (X4, Xo; 7Y ,ow). Remark that H*(X,.,, X)) = 6p, since g, is a P-
equivalence. We assume that f, is already extended over (X, X)) in Yy,
for some N, = p(£). Then the obstruction to extending over (Xy., X7+
lies in H""'(Xi41, Xx; 7. (Y,)). Then by the condition 2)’ in Definition 1.1/,
the obstruction is zero in Yy,,, for some N, ;= N,. Since X,,, is finite
dimensional, we obtain a map fi.,: Xgw;— X 40y extending f,. The unique-
ness up to homotopy can be proved quite similarly. Q.E.D.

DerINITION 1.8, {X,, g} is homotopy equivalent to {Y; h;}, if there exist
morphisms f;: {X,, g;} = {Y,, &;} and f]: {Y,, h;} — {X,, g;} such that morphisms
{fowofit and {f,uofi} cover 1y and 1, respectively.

THEOREM 1.9. (1) For any subset P of the set of all primes and for any

X, there exists a P-sequence {X,;} of X, where X, =36, if X=F6C,.

(2) It is unique up to homotopy type, if X, < F6,.

Before proving, let us recall the notion of the fibred sum (or the push-
out) of CW-complexes. Given a diagram of CW-complexes
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f

Y
g

Z
construct a CW-complex YV Z=YU(XxI)UZ by identifying (x, 0)~ f(x)
X I &g
and (x, D~g(x). Letj,: Y—>YV Zand j,: Z— Y \/ Z be the natural inclusions.
X X

Clearly j,of=j,0g. Let W be another CW-complex, and let a: Y —-W
and b: Z—-W be maps such that acf=bog. Then there exists a map
w: Y\ Z— W such that the following is homotopy commutative:

X

LEMMA 1.10. f is a P-equivalence if and only if j, is a P-equivalence.
Similarly for g and j,.

PrOOF. Clearly the cofibre of g and j, are naturally homotopy equivalent.
So it follows from the five lemma. Q. E.D.

(PROOF OF THEOREM 1.9)

1) It suffices to construct a homotopy P-sequence. Let i1=2 and ¢ be a
given prime with (g, p) =1 for all p = P. Consider a P-equivalence f: X— X',
which induces fa®1: 7 (X)X Z, > 7a(X)VR Z,. Let g;: S'— X', j =], be repre-
sentatives of a basis for the image of /& 1. Let \J/ S* be a bouquet of spheres

and put g— \J/gj: \J/Si—>X”. Let g: \VS*— \V/S* be a map such that it is of
J J
degree ¢ on each S*. Take X, =V Si\>/_X’ the fibred sum of g and ¢. Then
5t

the map f=jyof: X— X, is a P-equivalence by Lemma 1.10 and it induces
f+®1=0: T(X)R Z,— m(X,,) R Z,. Now consider the set [ of triples (4, g, ")
for all 1 =2, all =1 and all primes ¢ with (g, p)=1 for any p= P. We then
give [ a linear order. Starting with the identity map 1y: X— X, we iterate
the above construction for every pair (1, g) of I in that order. Then we can
obtain a P-sequence of X. Remark that X, = §€,, if X = FE..

2) Let {X;} be a P-sequence of X with X, =%€,. By the construction
of the “telescope” of Adams [2], we may assume that X; is a subcomplex of
Xii- Then let ‘U X, be the union of X; and let jy: X=X,— X, be the
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natural inclusion. ILet Y be another space and {Y;} a P-sequence of V. Let
f: X—Y be a given map. Then by [Proposition 1.7, there exists a morphism
{fi} : {X:s} = {Y,w}. So it induces a map f:\JX,—\U Y, compatible with f.
Furthermore such f is unique up to homotopy. In particular, taking X=1Y
and f=1,4, (so Y, $E), we obtain a homotopy equivalence 1: U X, =Y,
Namely the complex U X, is unique up to homotopy type. Q.E.D.

§ 2. Localization of CIW-complexes.

Let P be a given subset of the set of all primes. Let X < %€, and let
{X;} be a P-sequence of X. We may assume that X, is a subcomplex of
X;., and X, = $E,.

DEFINITION 2.1. The localization of X at P, denoted by X,, is defined to
be Xp=\UX,. For a map f: X— Y, where X $C,, the induced map is de-
noted by [p(f): Xp— Yp, or sometimes by fp, if there is no misunderstanding.

By Theorem 1.9, X, is determined up to homotopy type. Also by Pro-
position 1.7 l(f): Xp— Y, is unique up to homotopy.

Let X =€,. Denote the n-skeleton of X by X, which is a finite complex
for all n. Then X is uniquely determined up to homotopy type. There is
a natural map X — X@" induced from the inclusion X™ — X @+D,

DEFINITION 2.2.

Xp=Ilim X2¥.
—
n

Let f: X—Y be a given map. Then we may assume that f is cellular, i.e.
F®: X® Y™ Hence it induces [(f™): X# — Y ®, which is unique up to
homotopy by Proposition 1.7. Thus we obtain a map [p(f): Xp— Yp.

NOTATION. When P consists of one prime p, we denote X=X,

When P = ¢, the vacant set, we denote Xp,= X,.

ProrosiTION 2.3. Let X, Y €G,.

(1) Xp is determined uniquely up to homotopy type.

(2) f:X—Y induces a map l(f): Xp— Yp, which is unique up to homo-
topy.

The proof is obvious.

THEOREM 2.4. The localization at P has the following properties:

() The correspondence X--»Xp is a functor from the homotopy category
of 1-connected CW-complexes of finite type to the homotopy category of
1-connected countable CW-complexes.

(2) There exists a natural inclusion jy: X— Xp.

B If f: X—Y is a P-equivalence, then fo: Xp— Y, is a homotopy equi-
valence.
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Proor. (1) is Proposition 2.3. (2) is clear from the construction. (3) It
suffices to prove it for X and Y of §€,. Let f: X-—Y be a P-equivalence
and {Y,;} a P-sequence of Y. Then X—Y=VY,~-Y,—Y,— -+ is also a P-
sequence of X. Then by the uniqueness of localization of X, we have that
Xe=Yp, 1e., p(f): Xp— Y, is a homotopy equivalence. Q.E.D.
THEOREM 25. X6, Let jy: X— Xp be the inclusion.
1) HulXp)= Hl( X)X Qp. Moreover jx.: Hi(X)— He(Xp) is equivalent to
1R : Hi(X)RZ— Hi(X) R Qp, where j: Z— Qp is the canonical inclu-
Sion.

2) 7 Xp) =2 (X)X Qp. Moreover jyo: msx(X)— mx(Xp) ts equivalent to
1R (X)) R Z— mu(X) R Q.

PROOF. It suffices to prove (1), since the argument is quite same for the
homotopy functor.

Consider the homomorphism

Jr@1: H(X)R@Qp —> Hu(Xp) R Op .
We note that Hy(Xp) =2 lim H«(X;) and that jx.: He(X)— Hy(Xp) is equivalent
———

i
to the canonical inclusion: Hi(X,)— lim Hy(X;). Since lim and ¢, commute,
i A

Hy(Xp) KR U= _(_IEI: H*(Xa))@) Qr

we have that

= lim (Hx(X)® Qs

Obviously fix: He(X, ) — Hy(X,) is @p-isomorphic, since fi: Hu(X; \; Z,)—
H«(X,; Z,) is isomorphic, and since Hx(X,) is of finite type for all J.
Therefore fix®1: Ho(X,. )R Qp — Hu(X)® Qp is isomorphic, and hence
El(H*(Xi)(@Q,,)%H*(X)@Q,,. Now we will prove that 1RJj: Ho(Xp)R Z

—>ZH*(XP)®QP is isomorphic. Take an arbitrary element « from Hi(Xp)&Q @p
2= lim (H«(X,)® Qp) and let x®-—£»e H (X)®Qp be a representative of a,
—

where m is an integer with (m, p) =1 for all p= P. By the condition 2) of
Definition 1.1, there exists an integer N such that (fy,i1)xx=my for some

y & Hy(Xy), where (fu,uds: Ho(X)—Hu(Xx). Then QQH@m=x® .
Thus 1®j is epimorphic. Suppose that (1XRNERXD =0 in H(Xp) & Qp.
Clearly x is of order d, where (d, p) =1 for any prime p of P. Let x,=H/(X,)
be a representative of x. Then there exists an element x,, & H. ,(X.; Zp
such that 0x,, = x,, where 0: H;. (X, ; Z)— H,(X,), since x,, is of order d. By
the definition of the P-sequence, there exist N and a P-equivalence frpin,ms::
Xpn— Xpaw such that (frrw,meoe =01 Hip(Xn; Zy)— Hy (Xman 3 Z2). By natu-
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rality we obtain that (fisnyme0x(xn) =0, and hence x= {x,} = {(frsy,me (X}
=40. Thus 1{&; is monomorphic. Then we have the following commutative
diagram :
1®J
Ho(X) = H( XD® Z — > Hx (X)X Qp
l]'x.(g)l 1 = l]ﬁr.@ 1
Ho(Xp) = Ho(Xp) R Z o Hy(Xp) & Qp

Thus jy, : Hx(X)— He(Xp) is equivalent to 1R j: Hi(X)R Z— Hx( X)X Qp.
Q.E.D.
REMARK 2.6. For X =&, we can construct a P-sequence {X;, f;} of X in
such a way that X, =€, for all ¢ (cf.[Theorem 1.9). This fact is used in the
above proof.
THEOREM 2.7. Let PC Q be given subsets of the set of all primes. Then
there exists a map jp.q: Xe— Xp satisfying the following properties:
(1) Jjpg is a P-equivalence.
2) If Q is the set of all primes {and hence Xo=X), then jpo: Xq— Xp
coincides with the canonical inclusion.
(3) For PCQCR, jre“le.r =Jp.r-
4y Let X=RC,. Then an arbitrary map f: Xq—Yq induces fp: Xp—Yp
such that the following diagram commutes up to homotopy:

J
KXo~ s Y,
Jpr.q l, f l Ir.a
Xp — . —*»Yp

The proof is quite easy and left to the reader.
DErFINITION 28. Let X, Y =@,. We define that X and Y have the same
P-type, if there exist Z= €, and two P-equivalences f: X—Z and g Y — Z.

PropPOSITION 2.9. If X and Y have the same P-type, then Xp is homotopy
equivalent to Yp.

Further if either X or Y = §8€,, then the converse is true.

If we denote by gz' the homotopy inverse of the homotopy equivalence gp,
then a homotopy equivalence from Xp to Yp is given by gp'o fp.

§ 3. Further properties of localization.

Let X, ¥V and Z@,.

S g
THEOREM 3.1. (1) If X-5>Y5 Zis a cofibering, then X, 5 Yoot Z, is homo-
topy equivalent to a cofibering.
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@ If X—f-; Y—g+Z is a fibering, then X,,if ng—i Zp 1s homotopy equivalent

to a fibering.
PrOOF. (1) Let C(f») be the cofiber of f» and let j: Yp— C(fp) be the
projection. Then there exists a map h: C(fp)— Zp such that g, is homotopic

to hoj:. Yp—C(fp)— Zp. Let Z7. SX be the canonical boundary map. Then
r induces 7wp: Zp— S(X,), since clearly (SX)p= S(Xp) holds. (More general
formula will be proved below.) Consider the homology exact sequence:

0
o —> H(X) —> H(Y) —> H(Z) —> H; ((X) —> -+,
and hence we have an exact sequence by Theorem 2.5

- —> H(Xp) —> H{(Yp) —> Hi(Zp) —> H,;_(Xp) —> -+

since tensoring @p is an exact functor. So by the five lemma we obtain that
hs: H(C(fp))— H{(Zp) is an isomorphism for all i. Thus C(fp) is homotopy
equivalent to Zp. (2) can be proved quite similarly. Q. E.D.

COROLLARY 3.2

1) (XXY)p=XpXYp.

@ (XAY)p=XpAY,.

B XVY)p=XpV Y

PRrROPOSITION 3.3.

1) XpAY=(XAY)

(@) (R2X)p=202(Xp), if X is 2-connected.

Proor. (1) will be obtained by making use of the Kiinneth formula.
(2) Let {X,, fi} be a P-sequence of X. Then {£2X,, 2f;} can be a P-sequence
of OX. Q.E.D.

Let K, X=€,. We denote by [K, X] the set of homotopy classes of
maps: K-—X. Recall that [K, X] is an abelian group, if K is a double
suspended space. The canonical map j,: X— X, induces then a homomor-
phism j,.: [K, X]—[K, X,,]. Then we have

THEOREM 3.4. Let K, X<={6,. Assume that K is a double suspended
space. Then an element a of [K, X] is irivial if and only if j(a)=0 in
LK, X»] for every prime p.

The proof is an application of the theory of finitely generated abelian
groups. (cf. [Theorem 4.7])

§4. The pull-back of localized spaces

The purpose of this section is to reconstruct the original space X from
its localized spaces X,.
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Let P;, i = I, be subsets of the set of all primes. Put P= Opi and IszliPi.

Then by Theorem 2.6 there are canonical maps &;: Xz— Xp,, ¢! Xp,— Xp

and ¢: X3— X, according to the inclusions P-— P;— P. In particular, for any

set @, there is a canonical map ¢o: Xq— X, where X, is the localization

at ¢, the vacant set ( D¢). Let us denote by }(_‘[Xh. the pull-back (or the
P

fibred product) of ¢; over Xp. In the helow, let X =€,
THEOREM 4.1. [II X, is homotopy equivalent to Xp.
Xp

PRrROOF. It suffices to prove the theorem for I = {1, 2}. We use the above
notations. By the property of the fibred product, there exists a map
f: X;—»}:[Xm such that the following diagram is homotopy commutative:

P

¥
XF - XP1
s
q:
?2 H Xpi pr
Xp
dq
Xpy 7 Xp

where ¢;: E[XpiaXpi is the projection to the ingredient. We will show that
P
the map f induces an isomorphism fx: xj(X?)Hyrj(g[ Xp;) for all j. Let ae
P

7 (Xp)= 7 ,(X)®Qr be an element such that fiu(a) =0. Then &, (a)=q,f+(a) =0,
so « is a torsion element of order prime to P,. Similarly it is shown that «
is of order prime to P,. Hence a is of order prime to P. Namely, a=20 in
m{X)RQF = n;(Xp). Next we show that fy is epimorphic. To that end, we
decompose 7,;(X) in the following way:

(X)) = F+Tp4+Tppt+-Tp,p+T7,

where F is a free subgroup, Tp, Tp,_p, Tp,_p are P-torsion, (P,—P)-torsion,

(P,—P)-torsion subgroups respectively, and 7’ is the other torsion subgroup.

Let a be an arbitrary element of 7;,(I[X5;). Then ¢1,q.(a)=¢..q..(a), since ¢,0¢;
Xp

=¢,0¢,. S0 we can write down as

fh.(a)=7% a;t+a,+x, x€Tp_p,
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go ) = :’z oyt ay+y, YETpsrp,
where - ;:; el a,=F, a,=Thp.

Put ,3:~—%wa1+a’2—{—x+yerrj(X)@Qﬁ:rrj(Xp). Then it is obvious that
f+(B)=«a. In fact, wi(XH Xp;) has only P-torsion. Q.E.D.
P

COROLLARY 4.2. Let P be a subset of the set of all primes. Let P be the
complement of P in the set. Then Xp % X is homoiopy equivalent to X.

X(0)
More generally,

COROLLARY 4.3. Let \JP, be a disjoint decomposition of the set of all
1
i
primes. Then II Xp, is homotopy equivalent to X. In particular, X is homotopy

X(0)

equivalent to Xﬁ Xepy the pull-back of ¢, Xepy— Xy over X, for all primes.
)

COROLLARY 4.4. X is homotopy equivalent to YV if and only if there exists
a map f:X—Y inducing a homotopy equivalence [p(f): Xp— Yipy for all
brimes p.

THEOREM 4.5. Let X, Y = FC,, and let P and @ be two subsels of the set of
all primes. Assume that we arve given a P\ Q-equivalence f: X— Y. Then
there exist a space Z and a Q-equivalence g: Xpyeq— Z and a P-equivalence h: Z
—Ypye such that fpyeq=hog Further, ZeFC, 1f P U Q is the set of all primes.

PrRoOF. It follows from Theorem 2.4 that feng: Xpne— Ypne is a homo-
topy equivalence. Let wp: Xp— Xpne and wg: Yo— Ypne be the canonical

maps obtained by Theorem 2.7. Denote by Z= X, X Y, the pull-back of
YPNQ

Ffrngowpe and wq over Ypne. Then the rest of the proof is clear from the
construction of Z. Q. E.D.

Similarly one can prove
THEOREM 4.6. (Mixing homotopy type.) (cf. [23].) Let \iJPZ-, i1, be a disjoint

decomposition of the set of all primes. Let X, =€, i< I, satisfy that (X)) 1S
of same homotopy type for all i< 1. Then there exists X =€, with a P-equi-
valence X— X; for all iel. Furthermore X =€, if X, =FC, for all i= I,

In the above theorem, the finiteness of X, when X, $E, for all ie ]
can be proved as follows. H.(X; @) is finite dimensional, since Hi(X;; Q) is
finite dimensional for all =1 Since Hi(X;; Z,) is finite dimensional, so is
H.(X; Z,). Besides, the finite dimension has a common maximum number for
¢} and all primes p simultaneously. Hence X = F6€,.

THEOREM 4.7. Let X, Y& %€,. Then an element o« of [SX, Y] is trivial
if and only if jpla) =0 in [SX, Y] for every prime p, where j,: Y — Y, is
the canonical map of localization at p.



606 M. Mimura, G. NisHIpA and H. Topa

PROOF. The necessity is clear. We prove the sufficiency. Let p and ¢
be primes with (p, ¢) =1. Consider the following diagram:

QY(p,q) QY(P) ’
$2(wyp)
-Q(wq)
2Y RYw
b b
i
1
F, F,
a’ a
! Wy
Y0 Yip
jp,q ’ -
Ip
Wy Y Wp
&
/ SX
Yo = Yo

where the two vertical sequences are fiberings associated with the fibred
product in the bottom square and j,, 74 j,,q @re canonical inclusions. Similarly
for wy,, wh, wy, wy. (Yp,q denotes the localization at { p, g}). First we assume
Jp{la) =J(a) =0. Then there exists a map f: SX— F, such that a’of=j,,ca,
since wpojpca=j,oa=0. Also there exists a map g: SX— £V, such that
bog=f, since aof=wioa’of=wyojpca=jca=0. It satisfles that j, o«
=a'of=a’obog. Next consider the commutative diagram of abelian groups:

(L2w)x
[SX, QY(p,q)] — 7 [SX, QY(p)]
Qu’, 2
i( W)k (Qw)x l( Wy)x
[SX, Y] ——[SX, 2Y,]
As is well known, it is equivalent to the following commutative one:
2 w;* 2
[S*X, Yp,pl ——— > [S*X, Y]
l w;,* Wos l wp*

[5%X, Y<q>] ER—— [SzX, Yw)] .
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Then a simple computation shows that the cokernel of wjs is isomorphic to
that of w,s. So the relation j,,ca=a’cbog implies that j,,ca=0. These
arguments show that, if j,oa =0 for every prime p of P, then jpoa=0 in
[SX, Yp]. However, when P is the set of all primes, Y=Y, and dgjpoa
=0, Q.E.D.

We end this section with the following

CONJECTURE 4.8, Let X, Y @ §€,. Then an element a« of [ X, Y] is trivial
if and only if j«(a)=0 in [X, Y, ] for all primes p.

§5. Lecalizing P-universal spaces.

Throughout this section we work in §C€,.

Let P be a subset of the set of all primes. Let us recall the following
theorem which is essentially proved in [127].

THEOREM 5.1. K< §6, is P-universal if and only if one of the following
conditions 1s satisfied : ;

(1) For any prime q, g« P, and for any 1 >0, there exists a P-equivalence

[ K— K such that the induced homomorphism fu: H(K; Z)— H(K; Z;)
is trivial.

(2) For any prime q, q< P, and for any 1> 0, there exists ¢ P-equivalence
f:K— K such that the induced homomorphism f®1l:7,(K)R Z,
- (K)R Z, is trivial.

DEFINITION 5.2. K< %6, is called P-convertible, if for any L {6, and

for any P-equivalence h: K— L, there exists a converse P-equivalence k: L—K,

THEOREM 5.3. Let X FE€,.

(A) Then the following four conditions are equivalent:

(1) X is P-universal.

(2) There exists a P-sequence {X;} of X such that X;,=X.

(3 p:[Y, X]1—=[Yp Xpl is quast-epic for any Y = FE,, that is, for any
element a = [ Yp, Xp], there exist a homotopy equivalence h: Xp— Xp
and a map g: Y — X such that [p(g)= hoa.

@) X is P-convertible.

(B) One of the above conditions implies the following

(B lp:[X, Y]—-[Xp Ypl is quasi-epic in the above sense.

Proor. (A). [(1) implies (2)). Let {X; f;} be an arbitrary P-sequence
of X. By induction we will show that X; can be replaced by X for all :1=0.
The case :=0 is trivial, since X,=X. We should note here that X;<FE,.
Suppose X,=X. Since X=X, is P-universal, there exists a converse P-
equivalence gi4,: Xipy— X=X, for a P-equivalence f;.,: X=X, X4,. Then
we can replace X,.; by X via g,
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[(2) vmplies (1)]. Suppose we are given a P-sequence {X;, f;} of X with
X;=X. Then by definition, for any n >0 and for any prime ¢, ¢ & P, there
exists >0 such that (fio--of)e=0: HJ(X,; Z)—H(X,; Z). So the P-
equivalence f;o ---of, satisfies (1) of [Theorem 5.1l

[(2) implies (3)]. Let a = [ Yp, Xp] be arbitrary and f: Y — X a representa-
tive of a. Let jy: Y— Y, be the canonical inclusion. Then there exists =0
such that the composite map fojy: Y — ¥Vp-— X, is factored through X;, since
Y is a finite complex. Namely, there exists a map g: Y — X, such that fojy
=7j.0g where j;: X;,— Xp is the obvious inclusion. Therefore /[p(g)=ho«x
with some homotopy equivalence 7 : Xp— Xp.

[(3) itmplies (4)]. Let Y =BE, be given. Let f: X—Y be an arbitrary
P-sequence. Then by p(f): Xp— Yp is a homotopy equivalence.
Let 2: Yp— Xp be its homotopy inverse. Then by (3) there exists a map g:
VYV—X such that [.(g) is a homotopy equivalence. Hence g is a P-equivalence.

[(4) implies (2)1. This is just the same as in [(1) implies (2)].

(B). [(1) implies (5)]. Let f: Xp— Yp be an arbitrary map. Let {Y;, i}
be a P-equivalence of Y. Since X is a finite complex, the composite fojy: X—¥Vp
is factored through Y, for some ¢, that is, there exists a map g: X— Y, such
that fojy=j,og, where j;: Y;,— Yp is the obvious inclusion. Now A;0 ---ch,:
Y=Y,~Y; is a P-equivalence. Since X is P-universal, there exist a P-
equivalence k: X— X and a map d: X— Y such that the following diagram
is homotopy commutative:

k Jx
x o.x— TNk,
dl gl lf
Y s ¥y ¥y

hyo---0ohy Ji

Thus there exists a homotopy equivalence a: Yp— Y, such that [p(d)—ac/.
Q. E.D.

COROLLARY 5.4. In the category of P-unwersal spaces, X and Y are P-
equivalent if and only if Xp and Yp are homotopy equivalent,

ReMARrRK 5.5, Let X be P-universal. Then Xp is a finite dimensional 1-
connected CW-complex. Actually, the dimension of the telescope \V X,=
dim X1, since X = X,.

THEOREM 5.6. Let X be P-universal. Then

[S;v XP]zﬂn(X)®QP fO?’ n;Z

Before proving we state an easy lemma without proof:
LEMMA 5.7. Let A be a Qp-module and let B be a finitely generated (as a
Z-module) abelian subgroup of A. Assume that, for each element x< A, there
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exists m such that mxe B and (n, p)=1 for any p=P. Then A= B Qp.

(PrROOF OF THEOREM 5.6)

Consider the morphism {p:[S* X1—[S;, Xpl. Since [Sp, Xp] is a Qp-
module, the kernel of [, contains a P-torsion subgroup of [S% X, where P
denotes the complement of P in the set of all primes. Let {X;, f;} be a P-
sequence of X. Take a<[S", X]=r,(X) such that [p(&}=0. Then there
exists 1 such that the composite foa: S*"— X— X; is null homotopic. (Note
that X, =X, since X is P-universal) Thus «a is a torsion element of order

prime to P. Therefore the kernel of I, is isomorphic to a P-torsion subgroup
of 7, (X), and hence we obtain a monomorphism /p: 7, (X:P)—[SE Xpl,
where 7,(X: P) denotes a P-primary component of 7#,(X). The image of /p

then satisfies the condition of since X is P-universal. Thus we
get the theorem. Q.E.D.

§6. Mod P H-spaces and mod P co-/H-spaces.

In this section we work in F€,.

DEFINITION 6.1. A pointed complex (X, ¢) is called an H-space, if there
exists a map p¢: X X X— X preserving a base point such that por, = poi, =1,,
where 7, : X— X x X is the obvious inclusion. The map ¢ is called a mulii-
plication or an H-structure on X. Let P be a subset of the set of all primes.
X is called a mod P H-space, if poi,= poi,=/[, which is a P-equivalence.
Similarly as above, g is called a mod P multiplicatton or ¢ mod P H-structure
on X,

Dually we define .

DEFINITION 6.17. A pointed complex (X, ) is called a co-FH-space, if there
exists a map ¢: X— XV X preserving a base point such that pop =p,op =1y,
where p;: XV X— X is the obvious projection. The map ¢ is called a co-H-
structure on X. X is called a mod P co-H-space, if p,op=p,co =1 which
is a P-equivalence. The map ¢ is called a mod P co-H-structure.

Suppose we are given spaces X and Y and maps £: X—Y and h: YV — X.

DEFINITION 6.2. X is dominated {or P-dominated) by Y, if the composite
hok: X—Y — X is a homotopy equivalence {(a mod P equivalence).

First we consider the localization at O of H-spaces. The following theo-
rem is essentially due to Arkowitz-Curjel [3].

THEOREM 6.3. The following statements are equivalent.

(1) X ts a mod @ H-space. '

2y X s an H-space.

(3) X(0>=EK(Q, ny), where I is a finite set and n; is an odd integer.

(4) All k-itnvariants are of finite ovder in the Postnikov decomposition of X.
Proor. The equivalence between (1) ‘and (4) is just Theorem of [5].
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Further according to Theorem of [5], X is a mod 0 H-space if and only if
there exists a O-equivalence H S™*— X with n; odd, that is equivalent to that

X =TI K(Q, n)) by [Theorem 2.4, since S =K(Q, n,). Now we show the

equivalence between (1) and (2).

[(1) implies (2)]. By the assumption there exists a map g: X X X—X
such that f,op=i,opu=1[ which is a 0-equivalence. So by localizing we get
that ;)0 Loy = 2o © e = I, Which is a homotopy equivalence of X, Since
X is @ CW-complex, X, is an H-space by the Dold’s theorem.

[(2) implies (1)]. Note that X, is rationally finite dimensional, since
Ho(X; Q)= H(X,) by [Theorem 2.5 Hence H*(X; Q)= A(x, ---, x,) with
deg x; odd. So by of [1T], X is O-universal. Now by the assump-
tion we have a multiplication pg: X, X Xy = (X X X),— Xo- Since [;: [X X
X, X]—=[(X X X)» Xn] is quasi-epic by there exists a map
Z: XxX— X such that foi, = fioi, is a 0-equivalence of X. Q.E.D.

Dually we have (4):

THEOREM 6.3’. The following statements are equivalent.
(1Y X is a mod 0 co-H-space.

(2 X is a co-H-space.

BY Xo=V S&, where I is a finite set.

ier
(4y All ¥'-invariants are of finite order in the homology decomposition.

Next we will discuss a mod P version of the above theorems.

THEOREM 6.4. Let X =§&,. Then the following conditions are equivalent.

(1) X is a mod P H-space.

(2) Xp is an H-space.

(3) X is P-dominated by a mod P H-space.

Proor. [(1) implies (2)]. We localize poi;, and poi, at P. Then they
give a homotopy equivalence: Xp— (XX X)p=XpxX Xp— Xp. So it is easy to
see that X, is an H-space.

[(2) implies (1)]. By the assumption we have a multiplication g’ : Xpx X,
— Xp. Now X is P-universal by [Theorem 2.5 of [11], since H*(X; Q)
=~ H*¥Xp; Q= Ax,, -, x) with deg x; odd. From follows the
existence of such a map p: XX X— X that poi,=poi,=h, which is a P-
equivalence. Hence X is a mod P H-space.

[(1) tmplies (3)]. The proof is clear.

[(3) implies (1)]. Let Y be a mod P H-space dominating X with maps
k: X—Y and h: Y— X such that hok is a P-equivalence. Let p: ¥YXV—>Y
be a mod P H-structure such that pgoi, = pci,=/ is a P-equivalence. By
Lemma 3.3 of [127, there exists a positive integer  such that /" is the identity
of Hx(Y ; Z,) for all p = P, where ["=1[o--- ol the r-fold iteration. Then the
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composite of maps

kX k rrtxrt 7 h
XXX > VXY ———YXY —> YV —X
gives X a mod P H-structure. Q. E.D.

Dually we have

THEOREM 6.4’. Let X FC,. Then the following conditions are equivalent.

(1Y X is a mod P co-H-space.

2Y Xp is a co-H-space.

(3Y X is P-dominated by a mod P co-H-space.

Let p£: XX X— X be a mod P H-structure on X such that poi, = pgoi, =4,
which is a P-equivalence.

DEFINITION 6.5. X is mod P homotopy associative, if po(uXxh)= po(hX ).
Dually we define @ mod P homotopy coassociativity on a mod P co-H-space.

THEOREM 6.6, Let X e FE,.

(A) The following statements are equivalent.

(1) X is @ mod P homotopy associative H-space.

(2y Xp is a homotopy associative H-space,

{B) Moreover if P22 and 3, or if P52 nor 3, then one of (1) and (2) is
equivalent to the following:

(8) X is P-dominated by a homotopy associative H-space.

Proor. (A) The equivalence between (1) and (2) can be proved as before.

(B) The proof for [(3) implies (1)] is quite analogous to that for [(3)
implies (1)] of Theorem 6.4. However, the proof for [(2) implies (3)] needs
further results on the localization of H-complexes. So it will be at the end
of the next section.

Elementary but non-trivial examples for a mod P H-space, P35 2, are odd
dimensional spheres. Let p» be a prime. Then, as is expected, the mod p
structure on S"*, n: odd, is unique for sufficiently large p. More precisely,

THEOREM 6.7. Let p be an odd prime. Then the number of modp H-
structures, up to homotopy, of S™ (n: odd) is equal to the orvder of m,(S"™: p).

PROOF. The number of modp H-structures on S"™ is equal to that of H-
structures on S%,. It is equal to the number of elements of [S7%,XS%,
StV St Sty ] by [15]. Then the theorem follows from the fact that
LSt X Sty Sty \V Sty 5 Styy, #1 = [ STy A STy, S2p] = [ST, Stp] = man(S™: 1) by
Theorem 5.6. Q.E.D.

Now let us recall the notion of A,-form (or A,-space) due to Stasheff
[20]. For example, an A,-space, an A,-space, an A.-space are an f-space, a
homotopy associative H-space and an H-space equivalent to a loop space,
respectively.

As is well known [207], S admits an A, ;-form.
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PROPOSITION 6.8. If S#! admits an Ap-form, then n|p—1.

ProOF. If S#, ! admits an A,-form, then there exists a “ projective p-
space” X over S#7%, [20], such that H¥X; Z,) = Z,[ x,,]/(x%"). To prove the
proposition it suffices to show that ' is non-trivial in H*(X; Z,). For, if
p'xi, # 0, by taking the degree, 2p—2+2nr =2nk, and hence n|p—1. Let » be
such a number that p”” is non-trivial but p** =0 for i <r in H*(X; Z,). Clearly
such r exists, since p*x,, = x% % 0. Then from the structure of H*(X; Z,)
and from the factorization of p?" by secondary operations ([18]), we get r=0.

This completes the proof. Q.E.D.
THEOREM 6.9 (Adams). (1) Let P®2. Then S* ' is a mod P H-space
for all n.

(2) Let P=2. Then S ' is a mod P H-space if and only if n=1, 2, 4.

(3) Let P32 nor 3. Then S* ! is a mod P homotopy associative H-space
for all n,

4 Let P32 and P=3. Then S*! is a mod P homotopy associative H-
space if and only 1if n=1, 2.

Proor. First recall the classical result that the obstruction to extend
the map ¢on- 1V ton-1: STV S S gyver S?7' xS* 7' is the Whitehead
product [¢sn.1, f2n-1]), Which is trivial for n =1, 2,4 and is of order 2 other-
wise.

(1) In any case there exists a map S* !X S* ' — 8! of type (2, 2) for
any n. So, if P32, S¥"! is a mod P H-space.

(2) Let P=2. If n=1, 2,4, then $*"! is an f-space, and hence it is a
mod P H-space. If n+1, 2, 4, then the obstruction [¢,,_, ton-,1p+ 0, and hence
S#~' is not an H-space.

(3) If P52, 3, then clearly S¥! is a homotopy associative H-space, and
hence S?*~' is a mod P homotopy associative H-space.

(4) Let P32 and P>3. If n=1,2, then S*'is an associative H-space,
and hence S*"-! is a mod P homotopy associative H-space. Conversely, sup-
pose that S¥~! is a homotopy associative H-space. Then S%™' is also a
homotopy associative H-space. Then by Proposition 6.8 we have that »nl|2,
and hence n=1, 2. Q.E.D.

§7. Localization of finite H-complexes.

[n this section we work in %€, again. First we show

THEOREM 7.1. (cf. [23].) Let 2<n =< cc,

() If X is an A,-space, then X, is an A,-space for every prime p and
for p=0.

2y If X 1s an A,-space and if the canonical map ¢, Xpy— X 18 an
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A -map for all primes p, then X is itself an A,-space.

Proor. (1) is clear. (2) follows from Corollary 4.3. Q.E.D.

When applying the above theorem, we have to check that the map ¢, : X
~ X, is an A,-map. For n=2, 3 and oo, the following proposition gives a
sufficient condition for that. In the below §,(X) and y,(X) denote the i-th
Betti number of X and the rank of =, (X) respectively.

PROPOSITION 7.2. Let n=2,3 or co. Suppose that B(X N X)y(X)=0 for
all i. Then X is an A,-space if and only if X, 18 an A,-space jor all primes
p and for p=0.

Proor. If B, (X A X)ri(X)=0 for all i, then it is clear that the multipli-
cation on X, =TI K(Q, 2n,—1) is unique up to homotopy. Then ¢,: X ,— X
is an A,-map. The rest is clear. Q.E.D.

More generally we will prove the following

THEOREM 7.3. Let C) P, be a disjoint decomposition of the set of all primes.
i=1

Let X, e$C,, 1<i<v, be a mod P; [H-space such that there exists a homotopy
equivalence h;: (X)w— (XDwy Which is an H-map, for all i. Then there exists
a finite H-complex X such that Xp, = (X)p,. Further, if each X; is a mod P;
homotopy associative H-space, X is a homotopy associative H-space.

ProOOF. By the assumption, (X,)p, is an H-space, and hence it induces an
H-structure on (X;)¢. Denote the canonical map by ¢;: (X)p— (X} Then
the composite map A;0¢;: (X)p—(X)wy— (X1, is an H-map. Put X =TI (X)p,,

(X1)¢0

the pull back of A;o¢; over (X)©. Then by Theorem 4.6 X is a finite com-
plex. Obviously X is an H-space. The rest of the theorem is clear. Q.E.D.

LEMMA 7.4. Let X be a space such that H¥X; Q)= A(xy, ---, x,) with
deg x;=mn,; odd. Further suppose that a given H-structure on X, induces an
associative Hopf algebra structuve on H*( Xy, ; Q). Then there exists a homotopy

equivalence XCOD—ﬁ]r[K(Q, n;), which is an H-map.
i=1
Proor. By the Hopf-Samelson theorem [16], we can choose primitive
generators y; (1=1=7) such that H*X; Q)= A(y, -, ») with degy,=n,
We may consider that y; is represented by a map f;: X— K(Q, n;). Then the
required map is obtained by

X— X ———» TLK@, ),
45T i e xf

where 4 is the diagonal map. Q.E.D.

COROLLARY 7.5. Lef \TJPi be a disjoint decomposition of the set of all
i=1

primes. Let X, eFC, 1=i=Zv, be a mod P; H-space such that H*(X,; Q)=
Alx(@),, -, x(@)) is an associative Hopf algebra for all 1=i=r, with deg x(1);
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=n, odd for 1 <i=<r. Then there exists a finite H-complex X such that Xp,
={Xp;.

Proor. It suffices to show that X, satisfies the condition of Theorem 7.3.
Actually, we have an H-equivalence: (Xl-)(o)—>_1f[K(Q, n;) forall 1=i1=r.

" Q.E.D.

REMARK 7.6, If each of X, is of the same rational type and if each of
X, is one of the following, then the conditions of the theorem are satisfied.

(1) X, is mod P; homotopy associative.

2y BA(Xi N Xpyr(X)=0.

(3) X, is P;-equivalent to a product of spaces satisfying (1) or (2).

(PROOF OF THECOREM 6.6: continued) [(2) implies (3)].

Let p#: Xpx Xp— Xp be a homotopy associative multiplication. Then g
induces a homotopy associative multiplication pe, : X X Xy — Xy by Theorem
2.7. Then by the Hopf-Samelson Theorem, we have that H*(X,; @) = A(y,,
-+, ¥,), where deg y,=n; is odd and y; is primitive for every i. By Lemma

7.4, there is an H-equivalence a: X, — f[ K(@Q, n;). Let @ be the complement
i=1

of P in the set of all primes.
(Case: P=2,3)

Put Y:]:IS'”'. Then by Theorem 6.9, Y, is a homotopy associative H-
£=1

space. Again by Lemma 7.4 there is an H-equivalence b: Y(O)—>It[K(Q, ny).
i==1
Denoting by jp: Xp— X, (Je: Ye— Y,) the canonical map, we consider the
pullback Z=X, x Y, of acjp and boj, over f[K(Q, n.). Then by Theo-
i=1

NE(Q,ng)
rem 7.3, Z is a homotopy associative finite [H{-complex. Further, there exists

a P-equivalence X— Z (and hence a P-equivalence Z— X, too). So X is P-
dominated by a homotopy associative H-space.

(Case: P32 nor 3)

Clearly, there exist sets of integers (m,, ---, m,) and (k,, ---, k) such that

XX f[Smi has the same 0O-type of fISU(ki). For simplicity put Y:ﬁ Smi,
=1 a==1

i=1
Then (X< Y)p= Xpx Y, is homotopy associative, since P® 2 nor 3. Similarly

as above, we denote by Z the pull back over TI K(Q, n,)xXTI K(Q, m;) of H-
maps (XX V), —TIK(Q, n) X IIK(Q, m;) and (TLISU(k))e — TTK(Q, n;) XTI K(Q, m.).
Then Z is a homotopy associative finite H-complex. Here the map Z— (XX Y ),
is factored as: ZJ—Z> Z,,l (X< Y)p, where jz is a natural inclusion and % is a

homotopy equivalence. Since X and Z are P-universal spaces, there exist
maps f: X— Z and g: Z— X such that the following is homotopy commutative:
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XpX Yp

; > .
h ht X
Xp P

._101: { TCOh

Zp
ix ) Jx
lz
i g

X VA X

where ¢ and = are the obvious inclusion and projection. Thus gof is a P-
equivalence, and hence X is P-dominated by Z. Q. E.D.

§ 8. New finite H-complexes.

For a simply connected finite H-complex X, the classical Hopf theorem
'3

states that H*(X; Q) = A(x,, ---, x) with deg x,=n; odd. Then X n,=dim X.
i=1

[ is called the rank of X and the sequence (n, ---, n,) is called the (rational)
type of X. Recently, Hilton-Roitberg [8] have discovered a finite H-complex
of type (3,7), which is a principal S*-bundle over S and not of the same
homotopy type of Sp(2). Similar examples are also discovered by Stasheff
[21]. In this section we will construct more finite H-complexes by making
use of the theorems in the previous sections.

Let G be a compact, connected, simply connected topological group and
let i be a closed subgroup such that G/H=S""!, (n=1). We consider a
principal H-bundle: H— G— S*™*! with a characteristic class a & m,(H) of
finite order d. Let k: 5% — S*+! he a map of degree k. We denote by E,
the bundle induced by k& from the above principal bundle. Then % induces
a bundle map £: E,— G. In the below, v,(k) denotes the exponent of p in the
factorization of an integer % into prime powers.

THEOREM 8.1. Suppose that v,(k)y=0 or v,(R)=v,(d) for any prime p.
Then E, is an H-space if and only if v,(k)=0 or n=1,3. Further, E; is a
homotopy associative H-space if v,(k) =y, (k)=0.

PrRoOOF. Let [/ be minimal positive integer such that d{/k. Consider the
following commutative diagram:
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Ly 1y
H » H » H
l I l 3 l
Ey———— E; — G
Voo b
Sen+l > S2ntl > Szl

Note that E,, = HxS™", since d|kl. Clearly we have: k£: E,— G is a p-equi-
valence, if v,(k)=0. [ HXS*™1 - E, is a p-equivalence, if v (k) = vp(d).
Assume that v,(k) = 0 (and hence v,(E)=v,(d)). Then [: HxS™" — E, is a 2-
equivalence, So, if FE, is an H-space, S**' is a mod 2 H-space, and hence
n=1 or 3 by

Now suppose that v,(k)=0 or n=1,3. Put P,={p a prime | v,(k)=0}.
Denote by P, the complement of P, in the set of all primes. Let ¢ be the
multiplication on G and ¢’ the restriction of ¢ on H. Denote by s the map
Sl S, S of type (2, 2). Let a: 8™+, — S*™' .. be a map dividing
by 2, if P,»2. Let p=aosp, if P, 2, and let ¢ be the ordinary multipli-
cation localized at P,, if P,=2. By introducing a multiplication ¢p, and pu
on Hp, and (S***Y),, separately, we obtain a multiplication ¢ : (HXS*"),,
XHX S p, — (H X S*),,. Since E; is P,- and P,-dominated by G and
Hx S** respectively, E, is a mod P; H-spaces. So we define a multiplication
#: on (Ep, as follows:

=) 0 0py 0 (kpy X kp)) : (B)py X (Ep,— Gy X Gpy— Gpy— (Eidpy »
1= 1,0 90 (Up) ™ X Up) ™)t (E)pa X (Eidpy — (HX S 1), X (H X S,
— (HXS*)p,— (Edps
where (Epl)”‘ and (‘l:,z)‘1 are homotopy inverses of EPZ and 2;2 respectively.

Then by the fact that kol/=~4o] and by we obtain a homotopy
commutative diagram
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(‘-k;ll)(o) >< (’k-i)(ﬂ)

(H K S X (H X S, Gy X Gy
by x E(o)
Doy (E)w % (Edm Loy
(H < S¥+ ) ¢ G
7 ~
@ Ry
(Eo

By (4) of ¢ and g, induce two multiplications (#£,), and ()
on (E.),, induced by ¢, and ¢, respectively. But by chasing the above
diagram one can see that (z,),, is homotopic to (#.).,. Hence by
7.1, E, is an H-space. The assertion for homotopy associativity of E;, when
v (k) = v, (k) =0, is easily checked. Q.E.D.

REMARK. This theorem is proved by Harrison by the following form:
Write a=a,+as+ -+ +a, where a, is of p-power orvder. Write ka =73 epa,.

Let €,=0 or =1 for any p. Then E, is an H-space if and only if

1) & #0 or,

2) n=1,3.

But the above expression of the theorem is easily checked to be equivalent
to ours.

ExaMpPLE 82 (Hilton-Roitberg-Stasheff [8], [211]). Let (G, H)=(Sp(2),
Sp(1)). Then E, is an H-space if k+2 (4).

ExaAMPLE 8.3 (Curtis-Mislin [7)). Let (G, H) =(SU4), SU(3)).

(1) Any E; is an H-space.

(2) There are exactly four homotopy types of such spaces.

Proor. Recall 7 (SU3) = Z,. (1) is clear. To prove (2) we need

LEMMA 84. E,—FE_;.

So, E\=FE; and E,=E, Of course E,=S"XSU3) and E,=SU({4) are
different. Then E,+# E,, E,# E,. For (Eyu # (EDw and (Ey)ea, # (Eo)g,. Simi-
larly E,# E; for i=0,1, 2, since (Egw #* (Ey)ey and since (Fy)u, #= (Ei)w for
i=1,2. Q.E. D,

Let p be a prime. Recall [17] that X is called p-regular, if there exists
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a p-equivalence fI S"i— X, and that X is called quast p-regular, if there exists
i=1

a p-equivalence TIS"XTIB.{(p)— X, where B,(p) is such a space that

H*(an(p); Zp) = A(x;, px;) with deg x; =2n;41.

Let G be a compact, connected, simply connected, simple Lie group. Then
by the Hopf theorem

H*G: Q)= Alx,, -+, x) with deg x;=2n,4+1,

where ! is the rank of G, and 3 (2n;+1)=dim G. Then

THEOREM 8.5 (Kumpel, Serre, Mimura-Toda). (1) G is p-regular if and
only if p>n,.

(2) G is quasi p-regular if and only if p> N(G), where

NG) | G
n Sp(n)
n
. SU(n)
ot ~ Spin(r)
3 GZ: F47 Ee
7 E’T! EB

For a proof see [107].
ReMARK 85. It follows from and Theorem 85 that B,,(p)
is a mod p H-space, if n, < p—1.
THEOREM 8.6. Let p be an odd prime.
(1) There exist infinitely many finite H-complexes which are p-regular for
a gwen b.
(2) There exist infinitely many finite H-complexes, which are quasi p-regular
for a given p.
Proor. (1) Put S(G):;IIIS“”‘. Apparently S(G) is a mod p FH-space.

Let @ be the complement of {p} in the set of all primes. Denote by S, (&)
the pull back of the maps (S(G))py— Gy, and Ge— G, over Gg,. Then by

Corollary 7.5 and Remark 7.6, S,(G) is a finite H-complex. Clearly S,(G) is
always p-regular.

(2) We put, for 1=k=a—1,

af.Il SZni-s-lX fI Szni—‘;l,

i=k+1 i=b+1

B(G)= 11 B ()%

where a and b are such numbers that n,—p and n,=n,--p respectively.
Similarly as above we mix the homotopy type of B(G) and G. We denote
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by B,(G) the pull back of the maps B(G)p— G, and Go— Gg; over Gy
Then B,(G) is a finite H-complex, which is always quasi p-regular. Q.E.D.

REMARK 8.7. S,(() is not p-equivalent to any product of Lie groups, if
n,=p. Similarly B,(G) is not p-equivalent to any product of Lie groups and
spheres, if NG) = p.

Next we give some examples of a finite H-complex which is of (rational)
type (3, 11).

THEOREM 8.8. There exist at least four different finite H-complexes of type
(3, 1. :
PrRoOF. We choose a map f:S'—V,, such that f*: H¥V,,; Z)=
H*(SY; Z). We consider the bundle B{(3) induced by f from the bundle
G,/S*=V,,. Then as is easily seen, B{(3) is a S*®*bundle over S'" with the
characteristic class a,(3), which is a generator of =,(S®:3)=Z,. It is also
clear that Bi(3) is a mod 3 H-space. Let @ be the complement of {3, 5} in the
set of all primes. Now we mix the homotopy types using the ingredients
given in the following table.

{3} {5} Q
X, ; SPx St Sty S1 G,
X, | B3 SIx S G,
X, | SPxsSH B,(5) G,
X, | B® B,(®) G,

The pull backs X; are all finite H-complexes and all have different homotopy
types. Note that X,=G,. Q. E.D.

REMARK 89. According to Hubbuck, if a finite H-complex X of rank 2
has 2-torsion, then

HXX; Z) = H¥Gy; Z,) .

So X./s are such H-complexes.
THEOREM 8.10. (1) There exist several finite H-complexes which have only
3-torsion.
(2) There exists a homotopy associative finite H-complex which has only
5-torsion. '
PROOF. Denote by p the complement of p in the set of all primes.
(1) The pull back given by the following diagram gives an example for
(1), since F, has just 2 and 3 torsions. :
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/

X

(FyXSTXSE¥),

(SP6) >

(SrON®

Similar examples can be obtained by using E,;, E, and FE,.
(2) An example for (2) is obtained by

(EB x S-p X Su X S]s X S:u X 543 X 551 X 555)(5)

Y (SH(15))coy

\

(Sp(15)
Q.E.D.

§9. Mod p decomposition of suspended spaces.

Throughout this section let p denote an odd prime.
DEFINITION 9.1. A co-H-space X is mod p decomposable into r spaces, if
there exist r spaces X; with A*(X;; Z,)#0, 1<i=r7r, and there exists a p-

equivalence f: X— {/ X;, where V is the wedge sum.
i=1

For simplicity we denote szi\’/ X;. If XeBE, then the direction of
=1

a p-equivalence between X and Vv X, is not important, since there is always
a converse p-equivalence.
ConNpITION 9.2. For a connected finite CW-complex X,
D,: (1) There exist homogeneous elements xieff*(X; Zy), 1=i=<s, such
that H*(X; Z,) has a basis consisting of monomials in x;’s.
(2) There exists a map ¢*: X— X such that (¢")*x;=kx; for 1=1<s5,
where £ is a primitive root modulo 5.

Now suppose that X satisfies the condition D,. Then each element of a
basis of ﬁ*(X; Zp) has not only the cohomological degree but also the rank,
which is defined to be the degree of monomial. Then according to the rank,
we obtain a direct sum decomposition: ,

H*(X; Zy,) =3, A¥, where A} consists of elements of rank =.

Then we also have
ﬁ*(SX;Zp)EESA,":, where SA* denotes the module spanned by the
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suspension of the elements of A*.
A~ —1
Put B,= X SA¥;ie, H¥SX,; Z,)= % B,. Let r be the number
m=1

n=m-+k(p—1)
such that B, +0; i.e, B,, =0, -+, B,,,#0.
THEOREM 9.3. Let X be a connected finite CW-complex satisfying the con-
dition D,. Then SX is modp decomposable into r spaces. Namely there

exist v spaces X, i=1,---,v, and a p-equivalence f: SX— \7 X, Such that
H*Xp,: Z,) = By, -

PROOF. Let k be a primitive root modulo p. Let ¢*: X— X be the map
given by (2) of D,. Let —%’: S'*—S* be a map of degree —k’”. The map
(—k)A1ly: SX—SX will also be denoted by —#%’. We consider the map

© Sk (— k) T
g;=(S¢F—k?): SX —> SXV SX ——— 5 SXV SX —> SX,

where ¢ is the canonical inap shrinking the equator of SX and = is the
obvious projection. Then for any x of SA¥, g¥(x)=(k"—k’)x. Recall that
k'—k'=0 (p) if and only if n—j=0 (p—1), since k is a primitive root modulo
b. Note that ¢*, and hence S¢¥, is a p-equivalence, and hence it is a 0-equi-
valence. Then there exists a sufficiently large number N such that for every
J=N, g; is a 0-equivalence, since SX is a finite CW-complex. SX is p-uni-
versal for any p by Theorem 4.2 of [12], since it is a co-H-space. So, by
“Theorem 5.3, there is a p-sequence {A4,, f;} of SX such that A;=SX for all
i=0. We put §,=gpns;: SX—SX for 1=<j=<p—1. Letm be an integer with
l=m=p—1. Let S, ={A, f;} be a sequence obtained by inserting 0-equi-
valence g;, j= m, infinitely many times in the p-sequence {A4;, f;}. Although
S, is not a p-sequence any longer, it is a ‘“‘subsequence” of a 0-sequence of
SX. By constructing a telescope, we obtain a space, which is denoted by
{SX)p,m» and also inclusions

Ji Ja
(SX>(1J) —> (SX)(p,m) —> (5X)w»

such that the composite of them is the canonical map Jj,,: (SX)p— (SX)w.

Let @ denote the complement of {p} in the set of all primes. Put X,

———(SX)(p,m,(S;g (§X)q the pull back of j, and the map j,,q: (SX)e— (SX ), over
()]

{SX). Then X, has the homotopy type of a finite CW-complex, since Jj, is
a O-equivalence. Also we have that (X,)p =(SX)p,m (cf. the following dia-
gram). '
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X)) — SX

P

(SX)cp,m) (5X)q

(SX )

Ji

Furthermore, by the property of the pull back, we obtain a map f,,: SX— X,
such that the following diagram is homotopy commutative:
J1
(SX)(m - (SX)(p,m) = (Xm)(p)

(2 1
sxp I %me

wh.ere Jp is the canonical inclusion. So the induced homomorphism (7))«
Hi((SX)epy; Zp)— He((SX)p,m>; Zp) is an epimorphism, the kernel of which is
isomorphic to 3] SA¥, where X is over all 7 with i m (p—1). The required

»—1
p-equivalence f: SX— \/ X, is obtained as the composite of the maps
m=1

{5 p-1 A4 fm p-1
SX > \/ SX » \/ Xm 3
. m=1
where ¢ is the (p—2)-iterations of ¢. Q. E.D.

PROPOSITION 9.4. FEach of the following satisfies the condition D,.
(1) A connected finite H-complex X such that H¥(X; Z,) is primitively
generated. ,
(2) The m-th symmetric product SP™(M(G, n)) of the Moore space M(G, n)y
of type (G, n), where G=2Z or Z,.
PrOOF. (1) The map ¢*: X— X is obtained as the composite of the
maps: X4 XX -+ XX 24 X, where 4 is the diagonal map and g is the (k-—-1)

——
k
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_iterations of - the ‘p-roduc‘t. If H*(X;Z,) is primitively generated, by the
Borel’s theorem [6], we obtain an additive basis of H*(X; Z,) consisting of
© monomials of ‘prlmltwe elements. (2)is also’ easily checked. (For the struc-
ture of H¥SP™M(G, n)); Z,) see [13], [14])" . "~ "Q.E.D.

. COROLLARY 95. 1) If X is a connected Jfinite Hcomplex such that

H*(X,; Z,) is primitively generated, then SX 1s modp.-decomposable

wnto (p—1) spaces.

(2 S(SP”(M(G n))) zs rnodp decamposable into (p—1) spaces for G=2 or

AP £ partzcular S(CP") =, \/ Xi

r
_For there is a homeomorphism SP’"(M(Z 2))——CP"‘
We denote by L2"+1 the lens space. Then
. +PROPOSITION- 9.6. - S(L¥'*!) is mod p decomposable. -
Proor. It suffices to show that L% satisfies the condition D,. We con-
sider S**! as the unit sphere in C™'. We define a map §*: S*"*1— S$***! 35

Pz, ey Zpas) =(2F /p, -+, 254,/ p) With p= /\/2|Zk|2 Then ¢* induces a map

(/; Ly+t— LI+ gince L% is the orbit space of Z,-action on S271+1 Then it
is not difficult to see that L% with ¢* satisfies D,. Q.E.D.

We denote by. QP™ the quaternionic projective space Then
p -1 "

PROPOSITION 9.7. S(QP™") =, V Xy
PRroOF. : By Corollary 9.5 there is a p- equlvalence f: S(CPZ")—> _\/ X Since

S(CPZ“) is punlversal there is a .converse pequlvalence g: \/ X;— S(CP*™),
, ot ,

Let ;: V X21—> \/ X be the obvnous 1nc1u31on Let h CP“—» Cpm+t QP"

be the comp031te of the 1nc1us,10n i and the natural map 7. Then Sh, OJ gives
the required p-equivalence. G C Q.E.D.
REMARK 9.8. Since the infinite symmetric product SP*(M(G, n)) is the
Eilenberg MacLane space K(G, n), Corollary 9.5 glves a mod p decomposition
of S(K(G, n)) for G=Z or Z,.
Kyoto University
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