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Abstract

We perform a hybrid experimental and numerical study of the localization of defor-

mation in thin spherical elastic shells under indentation. Past a critical indentation,
the deformation of the shell ceases to be axisymmetric and sharp points of local-

ized curvature form. In plates, these sharp points are known as d-cones. By way of

analogy, regions of localization in shells are referred to as s-cones, for 'shell-cones'.

We quantify how the formation and evolution of s-cones is affected by the indenter's

curvature. Juxtaposing results from precision model experiments and Finite Ele-

ment simulations enables the exploration of the frictional nature of the shell-indenter

contact. The numerics also allow for a characterization of the relative properties of

strain energy focusing, at the different loci of localization. The predictive power of

the numerics is taken advantage of to further explore parameter space and perform

numerical experiments that are not easily conducted physically. This combined ex-

perimental and computational approach allows us to gain invaluable physical insight

towards rationalizing this geometrically nonlinear process.

Thesis Supervisor: Pedro M. Reis

Title: Esther and Harold H. Edgerton Assistant Professor of Mechanical Engineering

and Civl and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation

A thin shell is one whose thickness is small in comparison to other dimensions, such

as the radius. Localization in thin shells is observed over a large range of lengthscales.

At the microscale, colloidal capsules [1] can buckle under osmotic pressure (an image

of these buckled capsules is shown in Fig. 1-1b). Other examples include bacteria [2],

virus capsids [3, 4], and microcapsules [5] whose mechanical response can be mea-

sured, for instance, via Atomic Force Microscopy (AFM), where a probe with a sharp

tip is used to scan an object at a resolution down to the nanoscale [6]. An example

of an AFM image of an indented virus capsid at the nanoscale is shown in Fig. 1-la.

The curvature of the AFM tip relative to the curvature of the object that it indents

is often non-negligible, especially as AFM is progressing towards measuring smaller

objects, such as proteins and virus capsids at the nanoscale [6, 7, 8]. As such, the

relationship between the mechanical response and the nature of the indenter-object

contact is critical for understanding how the shape of the probe affects the measure-

ment and characterization of small objects. [9].

At the macroscale, the study of thin shells is relevant to vehicles and aircraft,

whose outer bodies are often made from curved thin sheets of metal. The appear-

ance of localized deformation can occur during collisions that cause car and aircraft

bodies to dent or crumple [10, 11, 12]. Examples of a car and a plane damaged by

9
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Figure 1-1: Examples of localization across lengthscales. a) AFM image of
an HSV1 virus particle after nanoindentation (from Roos et al. [3]). b) Colloidal
capsules at the microscale buckling under osmotic pressure (from Datta et al. [1]).
c) Dented car bumper (photo courtesy of Pedro Reis). d) Airplane nose dented from
a collision with a bird (from the NY Post).

collisions are shown in Figs. 1-1c,d. These initially smoothly curved surfaces now

have dents with straight edges and sharp vertices along which the deformation is lo-

calized. In airplane and vehicle construction, engineers aim to design structures that

are lightweight and thin, but also resistant to deformation and localization, which

can cause permanent and costly damage. In these scenarios, understanding of the

role of geometry and friction in shell-indenter contact and the mechanical response

can inform how to design stronger structures and prevent localization.

10



1.2 Historical Perspective on Mechanics of Shells

Some of the earliest interest in the mechanics of shells in history is in the context

of architectural domes. Poleni (1748) considered the structural stability of masonry

domes for the construction of St. Peter's Basilica. He treated the dome as wedge

shape arches and did not consider hoop forces, although they are crucial in many

dome geometries [13].

In 1877, Lord Rayleigh [14] studied the vibrations of shells and wrote about how

the deformation of thin elastic shells of thickness h involves both bending and stretch-

ing, with the elastic energy taking the form S = Ah(extension)2 + BhO(bending)2 .

Further understanding of shell mechanics has since been developed in the twentieth

century.

In the twentieth century, the elastic stability of thin shells has been of prime im-

portance in airplane construction [15]. The axial compression of cylindrical shells

and curved sheet panels has been treated extensively by Timoshenko in the early

twentieth century [16]. For the application of modeling submarine hulls, von Mises

studied cylindrical shells under axial and lateral pressure [17]. Buckling of spherical

shells under uniform pressure was investigated by Zoelly [18], van der Neut [19], and

Biezeno [20] in the early twentieth century. Biezeno posed the first solution based

on non-linear equations for shells. Experiments on the buckling of thin shells re-

vealed that the critical loads had been overestimated by classical theory [21, 22, 23].

This discrepancy between classical theory and experiments was explained by von

Kirmin and Tsien [24], who showed that by applying theory of large deflections,

a stable equilibrium requiring smaller loads can be obtained. In the 1960's, exper-

iments on the stability of clamped and simply-supported caps were carried out by

Evan-Iwanowski [25] and Berke [26]. Reissner [27] derived the shallow shell equa-

tions for spherical shells, which is applicable to deformations near the apex of the

shell. Ashwell [28] observed a region of inverted curvature (i.e. a dimple) whose size

increases with load and proposed a solution based on approximate solutions for the

inverted and outer regions. Singular perturbation methods, which provide a more

11



accurate description of the dimple, were later proposed by Koiter [29].

More specifically, we will now discuss past work on the loading of hemispherical

caps through indentation at the pole, which is of particular relevance to the work we

present here. The problem of a thin spherical shell deformed by a point load was con-

sidered by Landau and Lifshitz [30], and later solved by Pogorelov [31] in the 1980's,

who derived the scaling laws for the radius of the circular fold that forms when the

cap inverts (a schematic of this is shown in Fig. 1-2a). Pogorelov described two sepa-

rate regimes with scaling laws. The first is the linear regime, where the displacement,

e, is proportional to the force, F, for small forces. Including the thickness, h, and the

Eh2

radius, R, in this scaling, the force scales as F -E e for the linear regime. Second
R

is the regime of the inverted cap with a axisymmetric round ridge, in which the force

Eh5 /2
scales as F - e1/2. Pogorelov also described a scaling argument for the elastic

R
Eh5 /2e3 / 2

energy of the circular ridge, which scales as Eridge = /23/

12
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Figure 1-2: Shells under point and plate indentation. Schematics from Audoly

and Pomeau [32]. a) Spherical shell under point indentation forming a circular ridge,

as described by Pogorelov [31]. b) Spherical shell under plate indentation as described

by Updike and Kalnins [33, 34]. For small forces, the shell makes a disc-like contact

with the plate. For larger loads, the shell delaminates from the plate and forms an

axisymmetric dimple.
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The case of a spherical shell indented by a rigid flat surface was studied by Updike

and Kalnins [33, 34] in the early 1970's, who provided analysis for disc-like contact

for small forces, and circular contact for large forces, when the shell buckles and

delaminates from the plane and forms an axisymmetric dimple (a schematic of these

two configurations is shown in Fig. 1-2b). For the disc-like contact, two regions are

specified and analyzed separately: the region of contact, and the outer free part of

the shell. The authors showed that the contact pressure is concentrated near the edge

Ehe3

of the contact region. The lower bound for energy of the disc scales as Edisc > .
R

In the case of circular contact, the applied pressure is localized along a circle, and the

elastic energy scaling is the same as for the Pogorelov ridge under point indentation.

1.3 Mechanics and Geometry of Shells

The mechanics of shells is inextricably connected to its geometry [16] and, for a shell

with positive Gaussian curvature, bending and stretching are intrinsically coupled.

Stretching is energetically costly compared to bending and the deformation of a shell

is governed in large part by a need to minimize stretching, in favor of bending, to

preserve the isometry of the surface. Isometric deformations are such that the distance

along the surface between any two points is preserved, i.e. the surface does not stretch.

In the linear regime (in which the load is linearly proportional to the displacement),

there have been a number of attempts to rationalize the interplay between geometry

and mechanics, ranging from the seminal work of Reissner [27] on spherical shells

to the more recent study of geometry-induced rigidity in non-spherical pressurized

shells [35].

Following an approach from Audoly and Pomeau [32], similar to that for F6ppl-

von Kairmin equations for plates, where the elastic energy is the sum of the bending

and stretching energy, the equilibrium equations for spherical shells can be derived,

under the simplifying assumption of deformations near the apex where the size of

the dimple is much smaller than the radius of the shell [32]. First, we start with the

spherical reference shape, which is parametrically defined in cylindrical coordinates

14



(p, 0, z) by
s s

p(s) = R sin s, z(s) = R cos R 11
R R1

where s is the arc length and R is the radius. In the neighborhood of the apex of the

shell, s << R, one can use the assumptions,

p(s) ~ s, p'(s) ~)1, z'(s) ~1 , (1.2)
R

which leads to what have been called by Reissner the shallow shell equations [27]

From following the kinematics and using the constitutive relations, the equilibrium

equations we arrive at are,

( d(sNs(s)) No(s) + fr(S) = 0, (1.3)

I+ (sN (s) s + #(s)) D d (d(soY(s)) (S) + fz(s) = 0, (1.4)
s ds R s ds ds s)

Eh3

where D 12 Eh 3 is the bending modulus (E is the Young's modulus, h is the
12(1 - V2)

thickness of the shell, and v is Poisson's ratio), and O(s) = -z'(s)v,(s) + p'(s)v'(s) is

the first order rotation to the tangent to the generating curve (where vr and vz are the

components of displacement in the r and z directions). The components of external

force are fz(s) and f,(s) and the membrane stresses No and N, are the integrals over

the thickness of the stress components o-oo and o-s, respectively.

The shell equations we have just described are valid only for the assumption of

deformation near the apex and are not valid for large deformations where we can

see non-axisymmetric buckling such that the surface develops sharp angular features.

During the formation of sharp angular features, energy localizes at vertices and along

straight edges, which, although locally costly, still minimizes stretching globally [36].

A general predictive framework for localization in shells under large deformations has

not yet been developed.

15



1.4 Analogy to Localization in Plates

The scenario for large deformations in doubly-curved shells is similar to what is ob-

served in plates and other developable surfaces (e.g. plates, conical, and cylindrical

shells) under large deformations. When geometric constraints are placed on a plate,

through compression or crumpling for example, energy localizes along ridges and ver-

tices, known as d-cones for 'developable cones' [37, 32]. An example of this, a crum-

pled piece of foil, is shown in Fig. 1-3a, where we see the formation of these localized

features in a polygonal network. This localization of deformation along small regions

allows the rest of the surface to remain developable and minimizes stretching energy

globally. These two localized structures, d-cones and ridges, have been well studied

and characterized through experimental, numerical, and theoretical work [37, 32].

The Fbppl-von Kirmin equations for plates have been applied to ridge singu-

larities, which were first analyzed using scaling laws by Lobkovsky et al. [40]. The

geometry of the ridge (shown in Fig. 1-3b) is produced by creating a fold in the sheet

(of length L and thickness h) which is applied to a rigid frame along its two edges at

a prescribed dihedral angle 7r - 2oz. Using a scaling argument based on the bending

and stretching energy along the fold, the energy of the fold is found to be of the order

Eold = Eh8/3a7/ 3L 1/3 . Lobkovsky later analyzed this geometry through a boundary

layer analysis [38] and this problem has been solved numerically [41, 32].

Experimentally, d-cones have been studied by forcing a thin sheet through a circu-

lar hoop using a sharp point indenter [42, 39] (shown in Fig. 1-3c). Other studies have

looked at more complex geometries that comprise networks of several d-cones that

evolve under loading [43, 44]. As for ridge singularities, theoretical understanding of

d-cones has also been developed through the application of the F6ppl-von Kirmin

equations and boundary layer methods to the geometry of the sheet pushed through

a hoop to arrive at numerical solutions [45, 32]. Far from the tip of the cone, the

elastic energy is dominated by the bending contribution. Numerical solutions have

been found for the d-cone far from the tip. However, for the region close to the tip,

a solution is still unsettled and even the size of the region is still up for debate [32].

16



a)

b) c)

Figure 1-3: Energy focusing in sheets. a) Crumpled foil showing a network of

polygons where energy localizes along vertices and straight lines (from Audoly and

Pomeau [32]). b) Ridge singularity formed by folding a sheet through a dihedral angle

7r - 2a (from Lobkovsky [38]). c) A sheet pushed with a sharp point through a hoop,
forming a d-cone (from Cerda and Mahadevan [39]).

Drawing an analogy with d-cones in plates and cylindrical shells [43], we designate

the localized objects in doubly-curved shells as s-cones, short for 'shell cones'. The

key distinction to emphasize is that doubly-curved shells are not developable.

1.5 Previous Studies on Localization in Shells

The formation of localized polygonal structures (i.e. s-cones) in shells occurs far be-

yond the initial buckling threshold in the post-buckling regime [32]. The previous

work on shells discussed thus far correspond to deformations below the threshold for

the formation of localized structures. Though the appearance of s-cones can be sup-

17



ported through scaling arguments [38, 46 a full theoretical groundwork for s-cones is

far from being fully developed. For this reason, there is much need for an exploration

of parameter space though precision experiments to begin to develop an understand-

ing of s-cones.

Previous studies on large deformations and localization in shells have considered

a variety of loading mechanisms. Experimental work has shown that colloidal parti-

cles that are depressurized through evaporation can take on polygonal conformations

[47]. Other studies on depressurization of spherical shells primarily follow numerical

and theoretical approaches to characterize a variety of buckled shapes, which include

configurations with localized deformation [48, 49, 50].

For studies of shells that are deformed by indentation, the most common scenarios

involve either point loading or plate loading. Vaziri and Mahadevan [36] conducted a

numerical investigation of an elastic hemispherical shell under point indentation. For

large indentation, they showed that the round ridge that forms loses its axisymetry

and three sharp vertices along which the deformation is localized appears. Upon

further indentation, there is a transition to a configuration with four vertices, and

later a transition to five and six vertices. Vaziri [51] also studied plate indentation

through a numerical study, and showed that five localized vertices form under plate

indentation. Some experimental studies on localization have been conducted using

ping pong balls, either through indenting single balls or by compressing packings of

balls [52, 53]. The consideration of the effect of plasticity in the indentation of shells

has been investigated in a few studies with numerical simulations and experiments

on metal shells [54, 55, 56].

Previous studies on the indentation of shells focus on the two extremes of point

load and plate load indentation. What is lacking is a systematic investigation of the

effect of indenters of various curvatures on localization between the two limits of zero

and infinite indenter curvature. To fill this need, we conduct precision model exper-

iments where the various geometric and material properties and parameters can be

accurately controlled, which is needed to explore this parameter space.

18



1.6 Outline of Thesis

In this thesis, we study indenters with intermediate curvatures are studied, filling the

gap between point and plate indentation. We perform precision model experiments

using hemispherical elastomeric shells and indenters with custom controlled geome-

tries that we fabricate using rapid prototyping. The indenters have a range of radii

of curvature, such that the ratio between the radius of the indenter, R2 , and that of

the shell, R1, defined as F = R2/R1 (shown schematically in Fig. 2-1d), lies in the

full range 0 < F < oc, from point load to plate load, respectively. The mechanical

response is quantified through indentation tests and the evolution of the deformation

of the shell is captured with digital images using a camera located underneath the

shell. In parallel, Finite Element Analysis (FEA) of the same scenario explored ex-

perimentally are performed.

The details of the materials, geometries, and methods involved in the experimental

and numerical study are detailed in Chapter 2. In Chapter 3, we begin by investi-

gating the case of point indentation in Section 3.1 through both experiments and

FEA simulations and find excellent agreement between the two. Given the predictive

power of our numerics, in Section 3.2, the simulations are then exploited to gain fur-

ther insight into the characterization of localization of strain energy, a quantity that

cannot be readily accessed experimentally. In Section 3.3, we systematically vary the

shape of the indenter and observe that the indenter's shape affects both the number

of s-cones that form as well as the indentation onset of localization. We investigate

the geometry of shell-indenter contact in Section 3.4 and explore a purely geometric

argument to rationalize the effect of the indenter shape and find important qualitative

differences are observed between sharp indenters (F < 1) and blunt indenters (F > 1).

In Section 3.5, we explore the effect of friction on the mechanical response and show

that friction is necessary to include in the FEA model to agree with the experiments.

The work described in the outline thus far has been published recently by the author

with her colleagues [57].

Taking advantage of the predictive power of the numerics, we conduct an explo-

19



ration of parameter space through FEA simulations in Chapter 4. We demonstrate

the prominence of geometry in the indentation of shells and show that localization

in shells and the mechanical response is minimally dependent on self-weight (in Sec-

tion 4.1) and independent of shell size (in Section 4.2). In Section 4.3, we quantify

the maximum principal strains strains and find that they remain small despite large

macroscopic deformations. Given that the strains remain small, in Section 4.4, we

demonstrate the applicability of our results beyond hyperelastic elastomeric materi-

als to linear elastic materials, since material non-linearities do not play a role. In

Section 4.5, we show that the ratio of the thickness of the shell to the radius, t/R 1,

has a significant effect on the onset and evolution of s-cones, as well as the extent of

localization at the s-cones. Motivated by our discovery of the importance of friction

in the experimental system, in Section 4.6, we perform a systematic investigation of

the effect of friction and demonstrate that friction acts to suppress localization and

strengthen shells.

20



Chapter 2

Physical and Numerical

Experiments

In this chapter we describe the methods and parameters used for the physical exper-

iments and the numerical simulations, both of which we perform in tandem. Rapid

prototyping techniques were employed to fabricate shells and indenters used in the

physical experiments, which were then mechanically tested for precision quantifica-

tion. The numerical simulations were carried out using the finite element method.

2.1 Geometry and Configuration of the Tests

A thin hemispherical shell clamped at the edge of its equator is indented quasi-

statically (i.e. slowly enough such that dynamic effects are negligible) at the pole

along its vertical axis. The curvature of the indenter relative to the shell is varied.

This scenario is carried out through both physical and numerical experiments.

For the experimental and numerical studies conducted in Chapter 3 and the study

on the effect of weight in Chapter 4, the shell has a radius of radius R1 = 25 mm

and thickness t = 0.3 ± 0.01 mm. Note that t/R 1 = 0.012, which ensures that our

structures are in the thin shell limit. For the numerical studies conducted in Chapter

4 (with the exception of the study on the effect of weight), the shell has a radius of

R, = 1 m and a thickness of t = 1 cm (t/R 1 = 0.01). The reason for this change is

21



that in Chapter 4 we show that the mechanical response is scalable with the radius, as

long as t/R 1 remains the same and this choice presented advantages in the numerical

implementation.

The indenters have a range of radii of curvature, such that the ratio between the

radius of the indenter, R 2, and that of the shell, R 1, defined as F = R 2/R 1 (Fig. 2-1d),

lies in the range 0 < F < oc, from point load to plate load, respectively (examples of

these indenters are shown in Fig. 2-le).

2.2 Fabrication of the Shell

Both the shells and the indenters are fabricated using rapid prototyping techniques.

Vinylpolysiloxane (a silicone based elastomer with the product name Zhermack Elite

Double 32) was used to make the shells. VPS has a density of p = 1.2 g/cm 3, a shear

modulus of Go = 454.6 kPa, and a Poisson's ratio of v = 0.5. A Neo-Hookean model,

a hyperelastic constitutive description that is appropriate for elastomeric materials

that are non-linearly elastic, was used to describe the material [581. The Neo-Hookean

strain energy potential for VPS is ) = Cio (1 - 3) + - (J - 1)2, with the coefficients

C10 = 227300 Pa, and D, = 2.36 x 10- Pa1 determined directly from experiments

(described in detail below). The coefficients are related to the shear modulus Go and

the bulk modulus K, with C10 = Go/2 and D, = 2/K, respectively. The determinant

of the deformation gradient is J = det(F) and I1 = j-2/3I 1 is the first invariant of

the deviatoric part of the left Cauchy-Green deformation tensor [58].

22
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b) c)

e)

point load F = 0.75

U

F = 1

d) I'= R2/R1

V 7 ,)indenter

ALJL1 C~M

r = 3 F= 10 plate load

4V77 - 7-7
Figure 2-1: Shell and indenter fabrication. a) Coating technique used to fabricate

thin and uniform hemispherical shells. b) CAD model of indenter and shell molds.

c) Hemispherical elastomeric shell created by the coating technique. d) Schematic of

shell, with radius R1 and indenter, with radius R 2 e) Series of indenters ranging from

F = R2/R1= 0 (point load) to F = oo (plate load).
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r_ --- Test

1.2 - Neo-Hookean Curvefit

Go = 454.6 kPa
v= 0.5 '
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E E

C/) E E

cl) 0.4-(D 3n

S0.2 -
i- 20.2-

0
0 0.2 0.4 0.6 mm

True Strain, Etr ~11

Figure 2-2: Neo-Hookean curve-fit. Stress-strain data (dotted line) from a uniaxial

tension test on a dogbone-shaped sample cast from VPS. The Neo-Hookean model is

fit from this data (plotted in red).

The coefficients Co and D1 of the Neo-Hookean model were determined by per-

forming a curve fit on the data from a uniaxial tension test on a dogbone-shaped

specimen made out of VPS (dimensions of the specimen are shown in Fig. 2-2). The

stretch-stress expression used for the incompressible Neo-Hookean uniaxial tension

curve fit is oa = 2Go(A2 - I) where ol is the true stress and A is the stretch, both

in the direction that the sample is pulled in tension. To find the bulk modulus and

the Young's modulus, the Poisson's ratio is set to v = 0.4975 so that the material

is nearly incompressible (if the material were modeled as perfectly compressible with

v/ = 0.5, the bulk modulus is infinite and the coefficient D1 would be zero). The

Young's modulus and bulk modulus are related to the shear modulus and Poisson's
E

ratio such that E = 2GO(1 + v) and K In Fig. 2-2, the true stress is
3(1 - 2v)

plotted as a function of the true strain (as a black dotted line) for the VPS specimen

under uniaxial tension. The red curve corresponds to the stress-strain curve obtained

from using coefficients from a Neo-Hookean model that fit the experimental test data.
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Two different methods for fabricating shells were explored. Ultimately, the sec-

ond method for shell fabrication was chosen. The first method involved casting shells

using a 3D printed two-part mold. Starting with a CAD model, a mold is designed

for a shell with a specified target radius and thickness. The thickness is tuned by the

relative sizes of the two mold parts. The shell is then cast using the VPS silicone

polymer. The resulting shell has a thickness t = 0.5 mm with up to 60% variation

in thickness. This variation in the thickness is due to limitations of the resolution

of the 3D printer (Dimension uPrint), which imprints a texture on the printed mold

parts with a characteristic length scale of ~ 178 pm, which is the diameter of the

ABS plastic filament.

The second method for fabricating shells involves a coating technique pictured in

snapshots from the fabrication process in Fig. 2-la. A mold made of polyacetal was

machined through CNC milling, which results in a smoother surface finish in com-

parison with the 3D printed mold above. The silicone polymer was poured into the

mold and then rotated so that the polymer wetted its entire surface. The excess was

then poured out and the mold was left upside-down to allow the excess to drain while

the polymer cured. The resulting shells have a thickness of t = 0.28 ± 0.027 mm,

which is set by a balance between the viscosity and surface tension of the polymer

and curing rate, although the process is not understood in detail. In a scenario sim-

ilar to Landau-Levich dip coating for fibers and plates [59], this fabrication method

results in shells with small variations on their thickness (- 9.7%). Compared to the

casting method described above, this method creates shells that are approximately

40% thinner and 5 times more uniform.

To compare these two fabrication methods, we consider the mechanical response of

the two different shells under point indentation, as measured through load-displacement

curves plotted in Fig. 2-3 a) (details of mechanical testing are given in Section 2.4).

For shells fabricated using the first method, the load-displacement curve for the casted

shell has many local minima and maximum, which appear because of the variation in

thickness. This variation is demonstrated by the profile of the shell, which is obtained

by scanning the cross-section of the shells after they have been cut in half (Fig. 2-3
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b). In contrast, the mechanical response of the coated shell (the second fabrication

method) increases monotonically and is smoother since the thickness profile is untex-

tured and more uniform (Fig. 2-3 c). For thin shells in the nonlinear regime (past a

small indentation where the load response is nonlinear), the mechanical response is

considerably imperfection sensitive. It is clear that the second method for shell fab-

rication is therefore preferred for studying localization, which occurs in the nonlinear

regime.

a) b)

200
- Coating technique

- Casting technique
150!

J:100

C)

501

00 .0.5
Dimensionless indentation, = /R

Figure 2-3: Comparing shell fabrication techniques. a) Non-dimensional force-

indentation curves for the shells fabricated with the coating technique (in blue) and

the casting technique (in red). The dimensionless indentation is defined as E = 6/R,

where 8 is the depth of indentation and R1 is the shell radius. b) Scanned profile of a

shell fabricated from the coating technique (Method 1). c) Scanned profile of a shell

fabricated from the casting technique (Method 2).

2.3 Fabrication of the Indenters

Twelve indenters were designed with a variety of radii of curvature so that the ratio

of the radius of the indenter and the radius of the shell, F = R2/R 1 had the following

values: F = 0 (point load), 0.5,0.75,0.8725, 1, 1.5,2,3, 5,7, 10, and oc (plate load)

(a schematic of the indenters is shown in Fig. 2-le). Indenters with F ranging from

0.5 to 10 were cast out of a hard polyurethane using a mold made of polyacetal that
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was machined using CNC milling. The indenter for point load was a steel screw

with a hemispherical cap (1.5 mm radius). The indenter for plate load was laser

cut from a sheet of acrylic. All indenters can be considered rigid relative to the

elastomeric shells since the polyurethane used to cast the indenters has a Young's

modulus E = 147 MPa, whereas the VPS used to cast the shells has a Young's

modulus E 1.36 MPa.

2.4 Mechanical Testing and Imaging

A photo of the mechanical testing and digital imaging setup is shown in Fig. 2-

4. Shells are indented at their pole using the fabricated indenters at the constant

speed of 5 mm/min, such that the strain rate defined with the shell's radius is 3.3 x

10-3s-1. The compressive force, P, resulting from the indentation by the imposed

displacement, 6, is recorded using the load cell of an Instron 5943 machine with a

resolution of ±100IpN. The evolution of the deformation of the shell is recorded with

digital images that are captured from underneath the shells at a rate of one frame

per 0.5 mm of indentation. The light source is a fluorescent light ring placed around

the lens of the camera to provide homogeneous lighting. This lighting arrangement

is optimal for visualizing localization since a sharp white reflection lines can be seen

on the surface of the shell along the regions where the shell inverts and forms a ridge

on which localized structures form (examples of these images can be seen in Fig. 2-4

b).
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a) b)0.1

6= 0.72

c=0.98

Figure 2-4: Mechanical testing and imaging arrangement. a) A photo of the

mechanical testing setup using an Instron materials testing machine. The load cell

applies a load to the shell through an indenter, which indents the shell at the pole.

Underneath the shell, a camera and a fluorescent light ring are used to capture digital

images as the shell is indented. b) Images from underneath the shell as it evolves

under point indentation.
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2.5 Friction Tests

The friction from the contact between the shell and the indenter was estimated

through friction tests. A block (with dimensions 30 mm by 45 mm by 60 mm) of

Vinylpolysiloxane (the shell material) with a force sensor attached was pulled hori-

zontally along a surface made of polyeurethane (the indenter material). The coeffi-

cient of friction, measured through these tests was M = 1.46 ± 0.53, the average from

ten experiments of the ratio of the force required to pull the block to the weight of

the block.

2.6 Numerical Simulations

Numerical simulations were performed using the commercial finite element package

ABAQUS/CAE (SIMULIA, Providence, RI). The hemispherical shell was modeled

with a clamped boundary condition on the free edge. The indenters were modeled

as analytical rigid shells with a displacement-control boundary condition. For the

material properties (except for the tests in Chapter 4 using a linear elastic model for

a material model comparison), we used an isotropic hyperelastic model using the ma-

terial parameters measured independently in the experiments. Four-node thin shell

elements with reduced integration (element type S4R) were used in all simulations.

S4R elements are general purpose shell elements that use Kirchoff shell theory in

the thin shell limit. A mesh sensitivity study was carried out to ensure that the

results are minimally sensitive to the element size. The free mesh scheme available

in ABAQUS was used and no initial geometric or material imperfection was included

in the computational model. To capture the local instabilities in the structure, we

used a stabilizing mechanism (available in ABAQUS/Standard solver) based on the

automatic addition of volume-proportional damping, which was decreased systemat-

ically to ensure that the response was insensitive to this change. To model friction, a

penalty formulation was used with the appropriate coefficient.
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Chapter 3

The Role of the Indenter's Shape

in Localization

In this chapter we conduct a combined series of experimental and numerical studies

for the same material and geometric properties. By aiming to numerically capture

the phenomena observed in the experimental study, we seek to gain insight towards

understanding the essential physical ingredients involved in the indentation of our

doubly-curved shells. In this chapter, we start by considering the case of point inden-

tation. Under point indentation, we investigate the formation and evolution of s-cones

and use numerics to understand the localization of energy across the various features.

Then, we proceed by studying the effect of changing the shape of the indenter. We

compare several quantities across indenter shapes, such as number of s-cones, critical

indentation for s-cone formation, and ridge-height as a function of indentation. We

investigate the role of geometry in the shell-indenter contact and friction, which we

found to have a significant effect on the mechanical response.
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3.1 Formation and Evolution of S-cones under Point

Indentation

We begin by considering the case of point indentation. A thin hemispherical shell is

clamped at its equator. A point load is then applied to the shell's pole along its axis

and the indentation is performed quasi-statically at 5 mm/min (see Chapter 2 for

more details). This same scenario is implemented and studied both experimentally

and through FEA simulations. In the experiments, the evolution of the deformation

upon indentation is captured through digital imaging, as shown in the sequence of

photographs in Fig. 3-la). The white lines in the photographs, which aid identify-

ing the loci of localization, correspond to light reflections from the ridge-like regions,

where the shell inverts. The FEA simulations provides additional means to quantify

the localization process, for example by having access to the energy density as indi-

cated by the color map in Fig. 3-1b). Localized structures are associated with sharp

local increases in energy density.

In Fig. 3-la,b) we present a sequence of representative snapshots of the shell at

different stages of indentation, for the experiments and the FEA simulations, respec-

tively, at the same values of indentation. We recall that the dimensionless indentation

is defined as 6 = 6/R 1 , where 6 is the indentation displacement and R1 is the radius

of the shell. Excellent qualitative and quantitative agreement is found between ex-

periments and FEA simulations.

At small values of E (e.g. 0.02 < c < 0.29), the cap of the shell inverts inwards,

31



al)

I

Enh b2)

I

b3)

I

b4)

I

0.1 0.6 0.72 0.98
Dimensionless Indentation, E= 8/R2

C)

300

(D,
()L)
a) 200

100

0

4 s-cones

3 s-cones

0.4 0.6 0.8 1
Dimensionless Indentation,E= 8/R 2

Figure 3-1: Point indentation. a) Experimental snapshots (captured from under-

neath the shell) of the evolution of the pattern of localization for an elastomeric shell

under point indentation at the pole. The white reflection corresponds to the location

at which the shell inverts. b) Snapshots from FEA simulations of an elastomeric shell

under point indentation at the pole. c) Angular position of s-cones vs. indentation

obtained from experimental images; 0 is defined as in the red schematic drawn in a2.
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forming an axisymmetric circular ridge, known as Pogorelov ridge [31], along which

the shell stretches (Fig. 3-lal,bl). Due to the high energetic cost associated with

stretching, past a critical value of indentation, the round ridge loses its axisymmetry

and strain focuses at three conical-like vertices (around c = 0.295), the s-cones, which

help reducing the stretching globally (Fig. 3-1a2,b2) [51]. Once these three s-cones

form, the inverted portion of the shell develops a tetrahedral shape. One vertex of

the tetrahedron is located at the point where the indenter makes contact with the

shell. The outer three vertices are located along a path on the surface where the shell

inverts. These three s-cones are connected by straight segments, which we designate

as ridges, acting as folds between the mostly undeformed outer shell and the inner

inverted region. Inside the inverted tetrahedral region, additional folds form, which

we refer to as gullies, that connect each of the s-cones to the point of indentation.

As the shell is indented further, the s-cones travel along the shell's surface and

eventually new s-cones form (around 6 = 0.69). It is interesting to note that the

birth of additional s-cones appears by division of an existing s-cone (Fig. 3-1a3,b3),

rather than through nucleation at a previously smooth region of the shell. Further

indentation past the splitting event results in four well defined s-cones (Fig. 3-1 a4,

b4).

To further quantify the process of birth and growth of s-cones, digital image pro-

cessing is performed on the experimental frames to track the angular position of each

of the s-cones (projected on a plane perpendicular to the vertical axis of indenta-

tion). The schematic definition of the s-cone's angular position, 0, is presented in

Fig. 3-1a2). As the shell is indented, the evolution of the s-cones' angular position

illustrates the splitting mechanism by which new s-cones form; at 6 ~ 0.7, the forth

new s-cone emerges through the branching of one of the older three. Outside the

splitting region, at a higher indentation, the s-cones become more equally spaced in

their angular positions 0.

The mechanical response of the shell is quantified with a load-indentation curve,

as shown in Fig. 3-2, where we plot the load for a shell that is indented with a point

load. For small indentation (E < 0.02), there is a linear regime where the load is
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linearly proportional to the indentation. The load increases monotonically as the

shell is indented. These findings are in contrast with some past numerical and an-

alytical studies that predicted drops in the load-displacement curves when s-cones

form, corresponding to reduction in apparent stiffness of the shell as an asymmetric

buckling pattern occurs [36, 60, 61]. The monotonic increase in the load suggests

that the formation of s-cones occurs through a continuous deformation, and not via

snap-buckling, which would be accompanied by a drop in stiffness. We have not been

able to rationalize the discrepancy between our experiment and previous numerical

studies but hope that our results will motivate further developments.

251
3 s-cones 4 s-cones

20

Z'15
E

.10

5-

Dimensionless rientation, 1 /R

Figure 3-2: Load under point Indentation. Mechanical response of shell under

point indentation is captured through experimental measurement of load as the shell

is indented. Vertical dashed lines represent critical indentations at which 3 and 4

s-cones form.
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3.2 Localization of Energy for Point Indentation

We further characterize the various localized structures identified above for point load,

using quantities extracted from the FEA that are not available experimentally. In

this section, we explore the power of the FEA simulations in predictively reproducing

the experimental results. In particular, a quantitative comparison is made for the

strain energy density S, the energy stored in a body due to deformation per unit

volume, between the s-cones, ridges, and gullies. We analyze the specific example of

indentation to 5 = 15mm (e=0.6). The paths along the shell's surface that we shall

use in our discussion are schematically drawn on top of the FEA snapshots shown in

Fig. 3-3a,b).
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Figure 3-3: Energy localization. a,b) Snapshots from a finite element simulation

of a shell indented with a point load. b) Top view. c) Energy density E along Path

#1, which traces over the three s-cones and the three ridges that connect them. d)

Energy density along Paths #2, #3, and #4 start from the pole of the shell, trace

along one of the gullies and one of the s-cones, and end at the base of the shell. e)

Energy density along Path #5, which starts from the pole of the shell, climbs between

the s-cones and ends at the base of the shell. f) Energy density along Path #6, which

intersects the three gullies.
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In Fig. 3-3c, the energy density is traced along Path #1, which is a closed contour

that traverses over the range of the three s-cones and the ridges that connect them.

The energy density is highest at the s-cones and is minimum at the ridge's midpoint,

half way between adjacent s-cones. The energy density level in the neighborhood of

the s-cones is 25 times higher than along the ridges, which is significant of localization.

Paths #2, #3, and #4 define meridians; they start from the pole of the shell, pass

along a gully, over one of the s-cones, and end at the shell's equator, with each of

the paths passing over each of the three s-cones. In Fig. 3-3d), the energy density

is plotted along these paths. The maximum of energy occurs at the pole where

the indenter contacts the shell. Moving away from the pole, the energy density drops

along the gullies, then sharply increases at the s-cones, before rapidly decaying by four

orders of magnitude towards zero at the clamped equator of the shell. The energy

density curves corresponding to these three paths are superposed, highlighting the

symmetry of the process.

In Fig. 3-3e), the energy density is plotted along Path #5, which starts at the pole,

traces along one of the faces of the tetrahedron, crosses over the ridge's mid point,

and ends at the shell's clamped equator. As stated previously, energy is localized

most intensely at the pole where the shell is indented. The strain energy along the

face of the tetrahedron is small (1% compared to the energy localized at the s-cones).

While climbing and traversing over the ridge, there is a small increase in strain energy,

indicating that there is some focusing of strain energy at the ridge (4% compared to

the energy localized at the s-cones). The energy then decays towards zero at the

shell's equator, consistently with the clamping boundary conditions there.

In Fig. 3-3f), energy density is traced along Path #6, which is a circular contour

near the shell's pole and crosses over the gullies and faces of the tetrahedron. Along

this path, the energy is maximum at the gullies.

In summary for point indentation we find that energy is most strongly localized

at the s-cones. Energy is localized to less of an extent along gullies and ridges, with

energy being ten times more focused along gullies in comparison to ridges.
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3.3 Varying the Shape of the Indenter

Having described the behavior observed for point indentation, we now consider the

effect of changing the shape of the indenter on the localization process, in both ex-

periments and FEA simulations. The ratio of shell and indenter radii is varied from

F = 0 (for point load) to F = oo (for plate load), and we consider twelve indenters

between these extreme values. In the experiments, rapid prototyping was employed

to design and custom fabricate indenters (rigid with respect to the shells) with the

range of radii of curvature shown in Fig. 2-le). More information on how the inden-

ters are fabricated was given in Chapter 2.

In Fig. 3-4, we show a series of representative experimental and FEA snapshots

of the shells, for increasing values of the ratio of shell-to-indenter radii, F. In the

experimental images, s-cones are identified by sharp corners in the ridge, as imaged

by the white reflection line, and in the FEA simulations they are identified by small

regions with a sharp increase in energy density. Localization occurs and s-cones form

for all of the indenters, except for F = 1,1.5 and 2. In the neighborhood of F = 1,

the indenter has a curvature close to that of the shell. As a result, upon indentation

their two surfaces remain in complete contact, preventing the formation of s-cones,

which would otherwise require delamination from the indenter.

We refer to this neighborhood of 1 < F < 2 as the "localization band gap", since

the formation of s-cones is forbidden for these geometries. The lower bound for the

localization band gap is 0.8725 < F < 1 (uncertainty of ~ 3%, based on the fact that

simulations and experiments were not conducted within the given range) and the

upper bound lies in 2 < F < 2.5 (uncertainty of ~ 11%). This band sets two regions

with qualitatively different responses; sharp indenter for F < 1 and blunt indenters

for F > 2.
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Figure 3-4: Varying the shape of the indenters. a) Snapshots from experiments
with elastomeric shells indented at the pole for a variety of indenters, ranging from
point load (F = 0) to plate load (F = oo). b) The same scenario with the same
snapshots in FEA simulations. The color map corresponds to strain energy density.
The color and energy scale correspondence is adjusted for each of the images to aid
in highlighting localization. Red circles indicate location of s-cones. Dashed red lines
are drawn over ridges that connect s-cones along where the shell is inverted. Solid
red lines are drawn over gullies that connect s-cones to the pole of the shell (only
present for point load). No localization (indicated by grey area) occurs for indenters
with F = 1, 1.5, or 2.
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Concentrating on the experiments for sharp indenters, the number of s-cones at

onset is a minimum (n = 3) for point load (F = 0) and it increases with increasing F,

with the maximum number at onset forming just outside the localization band gap

region. For blunt indenters, n = 5 s-cones form at onset for plate load (F = 00), and

increasingly more s-cones are observed as F is decreased towards F - 2. For the

case of point load above, we saw that past the initial formation of 3 s-cones, a forth

can emerge by splitting of a previous one. This mode of transition in the number

of s-cones is also observed for other indenter geometries: n = 4 -+ 5 for F = 0.75,

n = 6 - 7 for F = 10 and n = 5 -+ 6 - 7 for F = oo (plate load).

The FEA simulations show qualitative good agreement with this experimental

scenario with differences in the number of s-cones varying at most by n = 1, possibly

due to differences in the details of imperfections between experiments (defects) and

FEA (meshing), or a consequence of the fact that multiple states may coexist (as is

common in nonlinear systems but are difficult to capture through FEA). Moreover,

FEA simulations also exhibit a localization band gap region for 1 < F < 2 as well as

the same qualitatively different responses for sharp indenters versus blunt indenters.

We have just seen that the geometry of the indenter strongly affects the morphol-

ogy and number of s-cones at onset. We now quantify how the indenter's geometry

also sets the critical indentation, 6c, at the onset of localization, i.e. the 6 at which

the first set of s-cones forms. In Fig. 3-5, we plot the critical indentation as a function

of F. As F approaches the band gap region in the neighborhood of F = 1, from either

above or from below, the onset of localization is significantly delayed. The critical

indentation exhibits a divergence-like behavior around the band gap region, and the

critical indentation is maximum on either side. The critical indentation decreases as

F - 0 or F -+ oo (with the exception of the decrease in 6c between point load and

F = 0.5, which disrupts the otherwise monotonic behavior to the left of the localiza-

tion band gap). Excellent quantitative agreement is again found between experiments

and simulations.
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Figure 3-5: Critical indentation. Onset of localization versus the indenter-shell
radii ratio, F. No localization occurs between F = 1 and F = 2 (indicated by the grey
region, denoted as the localization band gap).

3.4 Geometry of the Shell-Indenter Contact

The indenter shape also effects the ridge-height, h, which we define as the vertical

distance between the equator of the hemispherical shell, where it is clamped, and the

point on the shell at which its surface inverts due to the indentation, thereby forming

a ridge (see the schematics in Fig. 3-6a). In Fig. 3-6a), we plot this ridge-height

measured experimentally (open symbols), as a function of indentation for point load,

F = 1, F = 3, and plate load. For comparison, the corresponding data from the

FEA (solid lines) is superimposed for the extreme cases of point and plate load. Even

for large values of indentation, the ridge-height h decays approximately linearly with

indentation, c. Therefore the slope, m = dh/d6, can be measured and plotted as a

function of the indenter's radii ratio, F, in Fig 3-6b). The ridge-height decreases the

slowest for point indentation, with a rate of m - -0.5, and the fastest for plate load,

with m ~ -1 (the ridge moves at the same rate as the indenter). For intermediate

indenters (0 < F < oo) the slope decreases monotonically with F and -0.5 < m < -1.
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Figure 3-6: Ridge-height. a) Height of the ridge versus indentation for indenters

with different geometries; experiments (data points) and simulations (solid lines).

b) Slopes of ridge-height, m vs. indentation curves from experiments (red squares)

and simulations (blue circles) indenters ranging from F = 0 to F = oc. The theory

line corresponds to the prediction from Eq. (3.6). Inset illustrates sharp and blunt

indenters.
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We now present a geometric argument that rationalizes these results. The schematic

diagram in Fig. 3-7a illustrates the deformed configuration of the shell for F < 1. Here,

the radius of the shell is R1 = h + 6/2, which in return gives

--= I - 0.5 ),(3.1)

and yields the slope m = dh/d6 = -0.5, for F < 1.

For F > 1, the nature of contact between the shell and the indenter is qualitatively

different, as shown in the schematic diagram of Fig. 3-7b. Taking the radius of

the indenter, R 2, into account and assuming small deformations, we obtain R1 =

h + (6 - A), where A is the vertical distance between the pole of the indenter and

the ridge-height, h (see schematic in bottom left of Fig. 3-6b). The vertical distance

between the ridge-height h and the pole of the undeformed shell is A'. We construct

a triangle (in blue in Fig. 3-7b) with the radius of the shell R 1, the radius of the

indenter R 2, and the centerline that passes through the center points of the indenter

and shell. We define a as the angle between the centerline and R1 , and #3 as the

angle between the centerline and R2. These angles (a, 0) and the radii (R1 , R 2) are

a) b) /

R2 R2
R2/3

Indenter

h R I h ------

Shell Shell R

Figure 3-7: Sharp vs. blunt indenter-shell contact. a) Schematic for indentation
with a sharp indenter, F < 1. b) Schematic for indention with a blunt indenter blunt
indenters (indenter in red), F > 1. Blue triangle is constructed from the radius of the

shell R1, the radius of the indenter R 2, and the centerline that passes through the

centers of the indenter and the shell.
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related with a trigonometric relationship assuming the angles are small, such that

Ria = R 2/3. Using the trigonometric identity 2 sin 2 
0 = 1 - cos 0, we obtain:
2

A = R 2 (1 - cos) 2R 2 sin 2  . (3.2)

For small values of the angle 3, we get A R 2L2. Similarly for A' and R 1, we get

A' = Ri2. Now, we use the relationship 6 A + A' to obtain,

A' - A Ri&2

A- A = (3.3)A A R2 02

Since we showed previously that Roz = R2 , we can equate the ratio of radii to the

ratio of angles F = R2/R1 = a/0. Then, we can obtain the relation,

A = 1 . (3.4)
1 + F

By substituting this expression for A into our original expression for the radius of the

shell, R 1 = h + (6 - A), we obtain

R, = h+6 1 - (1,+7) (3.5)
1 + 1)

which yields the following slope for the h-6 curves,

M -= - ]. (3.6)
d6 1 + F

The dependence of m on F predicted by this geometric argument underlying

Eq. (3.6) is plotted as the solid line in Fig. 3-6b and is found to be in excellent agree-

ment with both the experimental and FEA data. This confirms that the variation

in m is due to the different geometric nature of the indenter-shell contact proposed

above, and which is explored in more detail next.
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3.5 Role of Friction in the Mechanical Response

In order to achieve the excellent agreement between experiments and simulations

highlighted above, we had to treat the shell-indenter interaction with care, and assume

a frictional contact, while neglecting adhesion. This is even more important since,

as we saw in the previous section, the nature and morphology of the shell-indenter

contact varies for different values of F; from sharp indenters to blunt indenters. To

stress the importance of friction, we now focus on the mechanical response during

the indentation process, as quantified by the indentation load, P, as a function of

indentation, c. A series of P - c curves, for increasing values of F, is presented in

Fig. 3-8. For small indentation, there is a linear regime significant of the shell's

stiffness, as previously described by [35, 62]. For large indentations, all curves with

F < 1 eventually asymptote to an approximately constant value. In contrast, the

various curves with F > 1 exhibit an inflection point and fan out; higher values of F

result in higher loads.

Again, we observe a quantitative difference between sharp and blunt indenters.

150 __r i
150e xperiment r= 1o

----- FEA

"100-
z

r= 3
50-

r= 1.5

- = 0.75

0 r=o
0 0.1 0.2 0.3 0.4
Dimensionless Indentation, E =6/R

Figure 3-8: Mechanical response and effect the shape of the indenter. a)
Force-indentation curves from experiments (solid lines) and finite element simu-
lations (dashed lines) for a variety of indenters. Coefficients of friction for F
0, 0.75, 1.5, 3, 5, 10 are, respectively, p = 0, 1.5,1.2,1.7,1.5
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For F > 1, a significantly higher load is required to indent a shell when compared with

sharp indenters (F < 1) due to the different nature of the indenter-shell contact. For

sharp indenters, the poles of the indenters and the shells remain in contact throughout

indentation. On the other hand, for blunt indenters, the shell delaminates from

the pole of the indenter, and pushes onto the shell at its ridges. This requires a

substantially higher force level (as high as a factor of 10 for E = 0.4, when comparing

F = 0 and F = 10) and also involves sliding and rolling of the two surfaces. These

two scenarios are illustrated in the inset of Fig. 3-6b.

150
--. no friction

0.75

100 -- =1. 25

Z 1.5
E

50 ---

01
0 0.1 0.2 0.3 0.4
Dimensionless Indentation, = 8/R

Figure 3-9: The effect of friction on the mechanical response. Force-
indentation curves from simulations for F = 10 for no friction and a variety of friction

coefficients.
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From the detailed comparison between the experimental and FEA force-indentation

curves, we have learned that friction plays an essential role on the mechanical re-

sponse. Force-indentation curves from simulations without friction showed a sig-

nificantly lower mechanical response than what was measured experimentally. As

presented in Fig. 3-9), when the coefficient of friction [i is increased, the load required

to indent the shell is also significantly increased. For example, at 6 = 0.45, the load

required to indent a shell for p = 1.5 is increased by a factor as large as 5, when

compared to doing so for a frictionless indenter-shell contact. Using an independent

friction sliding test (details in Chapter 2), the friction coefficient was experimentally

measured to be A = 1.46 ± 0.53. The large variation in this measured value can

be attributed to the fact that a dry friction description is oversimplistic for polymer-

polymer surface contacts. Still, in the FEA, p has been treated as a fitting parameter,

bound within the measured experimental range (each values of A for each indenter

are listed in Table 3.1).

IFA

0 0

0.05 1.5

0.75 1.5

0.8725 1.5
1 0
1.5 1.2

2 1.2

3 1.2

5 1.7

7 1.5
10 1.5
plate load 1.7

Table 3.1: Friction coefficients for each indenter.
FEA simulations for each value of F

Friction coefficients p used in

This is appropriate since the experimental friction coefficients for each of the

individual indenters are not precisely known due to the varying levels of roughness

for indenters of different curvature, imparted by the fabrication process and set by

the resolution of the CNC milling process.
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Chapter 4

Numerical Exploration of

Parameter Space

Given the predictive power of the numerics demonstrated in the previous chapter, we

proceed by taking advantage of numerical simulations to conduct numerical experi-

ments that are difficult to implement in the physical experiments. We first conduct

a series of studies to demonstrate the prominence of geometry in the indentation of

shells. To this end, we show that self-weight of the shell has minimal effect and that

localization in shells is independent of the shell size. Additionally, we quantify the

maximum principle strains and show that elastic and Neo-Hookean models produce

nearly identical results, due to the fact that material non-linearities are negligible at

small strains. We then investigate how the ratio between the thickness and the radius

of the shell, t/R 1, effects the emergence and evolution of s-cones. Motivated by our

previous observation that friction plays an important role, we further investigate the

role of friction in localization.

4.1 Effect of Self-Weight

We begin by investigating the effect of the self-weight of the shell on the mechanical

response. In particular, we study the case of point indentation for a shell with the

same geometric and material parameters as the experiments and FEA simulations in
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Chapter 3. In Fig. 4-1 a), we plot two load-displacement curves; the curve in red

corresponds to a model that excludes the weight of the shell, and the curve in blue

corresponds to a model that includes the self-weight of the shell. The vertical dashed

lines indicate critical indentations at which 3 and 4 s-cones form. For small inden-

tations, both curves exhibit nearly the same load under indentation, demonstrating

that the weight of the shell has little effect in the indentation regime before s-cones

form. The two curves start deviating from each other once s-cones first emerge. We

quantify the deviation between the two curves by the ratio of the difference and the

mean, 0, between the two curves at each value of indentation, shown in Fig. 4-1 b).

The ratio so remains small (approximately less than 10%), especially for the values of

indentation of interest (c = 0.21 and e = 0.67) where s-cones form and evolve. Given

that the effect of weight appears to have little effect on the mechanical response, we

choose to neglect it in the studies that follow.

a) 0.025 b)
3 s-cones 4 s-cones ) 3 s-cones 4 s-cones

0.02-

0.2
0.0 15

0.01
0.1-

0.005-
- weightless
-weight

0 0.5 1 0 0.5 1
Dimensionless Indentation, E = 8/R1 Dimensionless Indentation, e =8/R

Figure 4-1: The effect of self-weight on the mechanical response. a) FEA force-

indentation curves for a shell under point load indentation when weight is included

(blue) or excluded (red) b) The ratio of the difference to the mean, so, of the two

force-indentation curves. The vertical dashed lines correspond to indentation values

at which 3-scones and 4-scones form.
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4.2 Varying the Radius of the Shell

To verify the universality of localization across lengthscales, i.e. to show that shells

can be expected to have a similar response to indentation regardless of scale, we

study the effect of the shell size (radius) on the formation of s-cones and also the

mechanical response. In Fig. 4-2, we present a series of non-dimensionalized FEA

load-indentation curves for shells under point indentation with various radii ranging

from R1 = 0.01 m to R1 = 1000 m. The thicknesses of the shells is set such that

the thickness to radius ratio, t/R 1 = 0.01, remains the same across all the shells

considered in this part of the study. Upon non-dimensionalization of the indentation

loads by Et2 (E is the Young's modulus and t is the thickness of the shell), the

load-indentation curves collapse onto a single master curve, indicating that the load

response is scaleable for shells of different radii, given that the thickness to radius

ratio, t/R 1 , is kept constant.

0.2

0.15

0.1 R = 0.01

R~ 0..1R = 0.5

R =1

0.05 -R =10

R = 100

R = 1000

0 0.5
Dimensionless Indentation, = /

Figure 4-2: The effect of shell radius on mechanical response. Non-

dimensionalized force-indentation curves for shells with various radii, ranging from

R, = 0.01 to R1 = 1000 with the same thickness ratio of t/R 1 = 0.01. Force is non-
dimensionalized with the Young's modulus E and the thickness t. The solid vertical

lines correspond to the average critical indentation (across the various shell radii) for

the formation of 3 and 4 s-cones. The vertical dashed lines correspond to the standard

deviation.
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In addition to the mechanical response, the critical indentations for the onset of

both 3 and 4 s-cones is plotted in Fig. 4-2; solid vertical lines correspond to the

average critical indentation (across the various shell radii) and the vertical dashed

lines correspond to the standard deviation. The critical indentations for n = 3 s-

cones (E = 0.18 + 0.005) and n = 4 s-cones (E = 0.71 ± .01) are nearly identical

across the varying shell radii, with small standard deviations from the average values,

further demonstrating the universality of localization across lengthscales.

4.3 Maximum Strains

We now quantify the shell's maximum principle strains, defined locally at the material

level, in the shells as they are indented. This is important to consider in scenarios

where measures of strain are needed for yield criteria (such as in plasticity) or. for

quantifying the effect of material non-linearities (such as in hyperelastic materials).

The maximum principle strain is the maximum strain in the principal coordinate

system, which is a measure of the maximum stretch (since there are no shear strain

components in this frame). The principal strains are difficult to obtain in physical

experiments and would have required 3D Digital Image Correlation (DIC), so we take

advantage of FEA simulations to obtain these quantities.

In Fig. 4-3a), the maximum principle strain is plotted for a variety of sharp inden-

ters (with F < 1). For each of the indenters, the maximum principle strain increases

with indentation. For sharp indenters, the maximum principle strain is greatest for

point load, and decreases as F increases towards 1. In Fig. 4-3 b), the maximum

principle strain is plotted for a variety of blunt indenters (with F > 1). For blunt

indenters, we see the opposite trend and find that the maximum principle strain is

maximum for plate load and decreases as F decreases towards 1. The curves for the

the maximum principle strain with respect to indentation sharply increase after the

critical indentation points (indicated by black diamonds) for blunt indenters. For all

the indenters, the maximum principle strains remain small and do not exceed 6%. It

is remarkable that although the shells undergo significantly large macroscopic com-
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pression under indentation, the local strains remain of the order of a few percent,

albeit still localized. Given that the strains are small and the shell is thin (the thick-

ness to radius ratio is small), the use of Kirchoff theory (as employed in the FEA

simulations) is appropriate. Kirchoff theory is only valid for thin shells and small

local strains, i.e. for scenarios in which transverse shear deformations are negligible

[16].

a) 06 b)
C0.06 0.06

- Point Load - * r=3

- ][= 0.75 -9 =5
- r = 0.8725 -0 =*10

CL0.0 4  I = 1 c0.04 - Plate Load

C

E002 .........1 2 00 . 204E E

CUZ

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Dimensionless Indentation, E =8/R Dimensionless Indentation, 6 =8/R1

Figure 4-3: Maximum Principal Strains a) Maximum principal strains as a func-

tion of indentation for sharp indenters (with F < 1). Black diamonds indicate the

critical indentation for the formation of s-cones for each of the indenters. b) Same

for blunt indenters (with F > 1).

4.4 Comparison of Elastic and Neo-Hookean

Material Models

The experiments and simulations in the previous chapter were conducted using a Neo-

Hookean model, which is appropriate for rubbery materials, such as elastomeric VPS,

that are non-linearly elastic. This is in contrast with previous studies on localization

in thin shells which used a linear elastic elastic material model [36, 51]. We continue

by comparing linear elastic and Neo-Hookean material models to understand the role

of material non-linearities in localization. Two sets of FEA simulations are conducted,

one with an elastic model and one with a Neo-Hookean model. In both models, the
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material parameters were obtained from mechanical tests of the VPS polymer (details

are in Chapter 2). In Fig. 4-4 we present a series of FEA snapshots for shells for a

variety of shell-to-indenter radii, F, ranging from point load (F = 0) to plate load

(F = oc). Each of the corresponding snapshots in the FEA and elastic models are

taken from the same values of indentation, c. As in experiments before, s-cones are

identified by sharp corners, but with the added value that in FEA simulations, we can

also identify them with a sharp increase in energy density. Qualitatively, the elastic

and Neo-Hookean models produce identical results, with the same number of s-cones

forming for each of the indenters. As we saw in Chapter 3, localization occurs for all

the indenters, except for F = 1, where the curvature of the indenter is identical to that

of the shell and the two surfaces remain in complete contact, preventing the formation

of s-cones. For sharp indenters with F < 1, there is an evolution in the number of

s-cones that form with indentation, whereby the transition occurs when new s-cones

emerge by splitting from previous ones. In contrast, for blunt indenters with F > 1,

there is no evolution in the number of s-cones that form under indentation. This ob-

servation differs from what is seen in the FEA simulations and experiments presented

in Chapter 3, where friction is included in the model. It could be possible that this

discrepancy is a consequence of excluding friction in this part of the study.

To further compare the linear elastic and Neo-Hookean material models, we com-

pare how the critical indentation changes with indenter geometry for both cases. In

Fig. 4-5, the critical indentation is plotted as a function of F. As we saw in Chapter

3, the critical indentation has a divergence-like behavior around F ~ 1, where the

critical indentation is maximum for the values of F on either side. The critical inden-

tation decreases as F -± 0 or F - oc. Again, we find nearly identical quantitative

results between the two material models, with the deviation between the two being

within 2%.
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Figure 4-4: Comparing elastic and Neo-Hookean Models a) Snapshots from

FEA simulations for an elastic shell indented at the pole for a variety of indenters,

ranging from point load (F = 0) to plate load (F = oc). b) Scenario with snapshots

for FEA simulations for a Neo-Hookean shell at the same values of C. The color map

corresponds to strain energy density. Red circles indicate the location of s-cones.

Dashed lines are drawn over ridges that connect s-cones along where the shell is

inverted. Solid red lines are drawn over gullies that connect s-cones to the pole of

the shell (only present for point load). No localization (indicated by the grey area)

occurs with indenters with F ~ 1.
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Figure 4-5: Critical Indentation for elastic and Neo-Hookean models for the

onset of localization comparing Neo-Hookean and elastic models. No localization

occurs for F = 1 (indicated by the vertical dashed line).

An additional way to quantitatively compare the elastic and Neo-Hookean models

is through the mechanical response, as measured by the indentation load, P, as a

function of indentation, E. In Fig. 4-6, load-indentation curves are plotted for inden-

ters over a range of values of F. For all indenters, the load monotonically increases

with indentation and the curve has a concave-down shape. This observation is in con-

trast with the load-indentation curves from FEA simulations and experiments where

friction is included in the model (discussed in Chapter 3 in Fig. 3-8), where the curves

for F > 1 have a concave-up shape. Again, we see nearly identical quantitative results

between the two material models.
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Figure 4-6: Comparison mechanical response between elastic and Neo-

Hookean models Load-indentation curves for a variety of indenters (F = 0, F = 1,

F = 3, and F = 10) from FEA simulations using an elastic model (indicated by solid

lines) and a Neo-Hookean model (indicated by dashed lines).

Combining the three quantitative comparisons conducted thus far, i) morphol-

ogy of the shells under indentation through the number of s-cones that form, ii)

critical indentation, and iii) mechanical response, we conclude that the elastic and

Neo-Hookean models produce nearly indistinguishable results. Although the shells

undergo large macroscopic deformations under indentation, the maximum principal

strains remain small, and thus the material non-linearities that play a role at higher

strains for hyperelastic materials are negligible at these low strains. The mechanical

testing data for VPS in Chapter 2 in Fig. 2-2 shows that the mechanical response

is linear at the levels of strain measured in the simulations (below 6%). Because of

this, the elastic and Neo-Hookean models are nearly indistinguishable in modeling

thin shells under indentation.

The fact that we found such low values of strains despite the large macroscopic

deformations suggests that s-cones, ridges, and gullies could be utilized as a natu-

ral designs for energetically efficient hinges, which could be useful to devise folding
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origami-like shell structures. Additionally, our findings suggest that these results are

not just applicable to elastomeric materials, but also extend to other materials within

their elastic response, as long as the yield strains are not so low so that plasticity

must be taken into account (which would be the case for metals, which yield at small

strains, - 1 - 2%).

4.5 Varying Thickness

We now consider the effect of the dimensionless thickness of the shell as characterized

by the ratio of the thickness to the radius, t/R 1. FEA simulations are conducted for

shells under point indentation with a variety of t/R1 ratios ranging from 0.001 to 0.07.

The ratio t/R 1 is varied by keeping R1 = 1 m constant and varying the thickness t. In

Fig. 4-7 we present a series of representative snapshots of shells with a range of t/R 1

values for which the formation and evolution of s-cones qualitatively differ. For shells

of intermediate t/R 1 ratios, for example, t/R 1 = 0.005, 0.01, and 0.02, three s-cones

form under point indentation, and later there is a splitting of an s-cone to form four

s-cones in total, similar to the scenario presented for point indentation in Chapter 3.

For the thinner shells, with t/R 1 = 0.001, 0.002, 0.003, and 0.004, there is a further

splitting of s-cones such that five s-cones form upon further indentation after one of

the four s-cones splits. For the thicker shells, with t/R 1 = 0.03, 0.04, 0.05, and 0.06,

the maximum number of s-cones that forms is three, with no further evolution in the

number of s-cones with indentation. For the thickest shell tested, with t/R 1 = 0.07,

the deformation remained axisymmetric and no s-cones form.

FEA simulations are now used to quantify the effect of shell thickness on strain

energy localization. In Fig. 4-8 b), the strain energy density, E, is plotted along paths

traced over ridges between adjacent s-cones for shells of various t/R 1, ranging from

t/Ri = 0.002 to 0.03, for shells indented to E = 0.75 under point load. Examples of

these paths between adjacent s-cones are depicted with black dashed lines in Fig. 4-8

a). As the t/R 1 ratio decreases, energy localization increases at the s-cones relative to

the ridges. For thinner shells, energy is focused more sharply at s-cones in comparison
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Figure 4-7: The effect of shell thickness on the formation and evolution of

s-cones. Representative snapshots of shells with a range of t/R 1 values (0.004,0.02,
and 0.05), as they evolve under point indentation. The color map corresponds to

strain energy density.

to thicker shells. The sharpness of the energy focusing is quantified in Fig. 4-8 c) by

plotting the minimum and maximum energy density, 8 min and Emax, as a function

of t/R 1. These quantities are useful for comparing the localization at s-cones and at

the center of the ridge, where the strain energy density is maximum and minimum,

respectively. The energy density at the s-cones, Ema, does not vary much with t/IR 1

(stays within the range of ~ 103 J/m 3) in comparison to the energy at the ridges,

which increases significantly with t/R1 and spans four decades. The simulation data

is consistent with a power law with a slope of 2, suggesting an Emin (t/R1 )2 scaling.

As t/R 1 increases, strain energy becomes less localized at the s-cones in comparison

to the ridges as the difference between the energy at the ridges and the energy at the

s-cones decreases.
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Figure 4-8: The effect of shell thickness on energy localization a) FEA snap-

shots of shells with various t/RI ratios under point indentation at 6 = 0.75. The

color map indicates strain energy density. The black dashed lines trace a path along

ridges between adjacent s-cones. b) Strain energy density S plotted along paths

over ridges between adjacent s-cones for shells with various t/R1 ratios, varying from

t/R1 = 0.002 to 0.03 for shells indented to E = 0.75 under point indentation. c) Smax

(at the s-cones) and Emi (at the ridges) along the paths plotted to the left, as a

function of t/RI. The black line indicates a power law with an exponent 2 which is

consistent to the simulation data.

59

A

0.01
C) t/R1

0.02

1041

CO,

E

$10 2

(D,

C
LuJ

-1

* 0 *

2

* 1

£max (at s-cones)

Smin(at ridges)
10 01-3

10 102
t/R

1

I

0.03

0.02

0-01 -

0.005

0.003
0. 2

109 2

1



Additionally, we quantify the effect of thickness on localization by studying the

effect of t/R 1 on the critical indentation, the indentation at which s-cones form,

which is plotted in Fig. 4-9. We compare two sets of FEA simulations: one for the

material parameters for VPS (plotted in red), and one for a considerably stiffer elastic

material with a Young's modulus E = 69 GPa (plotted in blue). We find excellent

agreement between the two sets of data, demonstrating the applicability of these

results to soft and stiff materials, as well as hyperelastic and elastic materials. The

critical indentation increases linearly with t/R 1, with a slope of 16.3 ± 0.5 for the

VPS, and 16.3 ± 0.8 for the stiffer elastic material. We find good agreement for the

slopes for the soft and stiff materials, despite the large magnitude in difference in the

Young's modulus E. For thinner shells, s-cones form for relatively small indentation,

whereas the onset of s-cones is delayed for thicker shells. The linear relationship

between critical indentation and t/R 1 has been predicted by previous studies. Vella

9-
CCi

0 0.8

A 0.

-FZ0.2-

0 0.02 .004 0.06
Dimensionless Thickness, t/R1

Figure 4-9: The effect of shell thickness on critical indentation for the onset of

localization versus the ratio of shell thickness to radius, t/R1. Red points and fitted
line (with slope 16.3 ± 0.5) corresponds to FEA simulations using a Neo-Hookean

model with the material parameters of VPS. Blue points and fitted line (with slope

16.3 ± 0.8) correspond to FEA simulations using an elastic model of a much stiffer

material.

60

" NeoHookean, E = 1.36 MPa

" Elastic, E = 69GPa
A

/
/

//
/

/7
'-7

L

77
'7



et al. [62] showed through non-dimensionalizing the governing equations that for

shells in the weakly pressurized limit, the critical indentation for the formation of

localized structures is linearly related to thickness. Through numerical studies, Vaziri

[51] found the constant of proportionality to be 14, which is 16% smaller than the

constant of proportionality measured in this study.

4.6 Effect of Friction

Previously in Chapter 3, we showed that friction has a significant effect on the me-

chanical response and that it was essential to assume a frictional shell-indenter contact

in the FEA model, in order to produce good agreement with the experiments. Moti-

vated by this discovery of the importance of friction, we further investigate the role

of shell-indenter frictional contact in the indentation of shells. A series of FEA sim-

ulations are conducted for F = 10 with a variety of friction coefficients ranging from

p = 0 to 1.7. Friction plays a particularly important role for blunt indenters, thus

F = 10 was chosen as a representative blunt indenter for this study. We leave it to

a future study to conduct a systematic invesetigation of the effect of F on frictional

contact.

b)

C:

C

Figure 4-10: Global buckling a) Isometric view of a shell exhibiting a global buckling
mode under large indentation (configuration shown at E = 0.51) for an indenter with
F = 10 and a high friction coefficient p = 1.7. b) Side view. Color map indicates
strain energy density.
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For the low friction coefficients, t = 0, 0.25, 0.5, and 0.75, six s-cones form under

indentation. The number of s-cones that develop increases to seven for higher friction

coefficients f = 1, 1.2, and 1.3 and to 8 s-cones for f = 1.4. Select snapshots of

the shells from FEA simulations showing six, seven, and eight s-cones for different

values of the friction coefficient M and the same value of indentation 6 = 0.4 are shown

in Fig. 4-13. For the highest friction coefficients, Mu 1.5 and 1.7, the deformation

remains axisymmetric and no s-cones appear. For f = 1.7, the shell undergoes global

buckling under high indentation, in which the sides of the shell cave inwards near the

base of the shell, forming a pattern of five horizontal dimples (shown in Fig. 4-10).

Next, we quantify the critical indentation for the onset of localization as a function

of the friction coefficient p, plotted in Fig. 4-11a. The formation of s-cones is delayed

with the increase in the friction coefficient M. The critical indentation asymptotes to

E = 0.18, as M decreases towards 0. Additionally, we plot the reaction force at the

critical indentation as a function of p (Fig. 4-11b). Similar to the critical indentation

as a function of M, the reaction force at the critical indentation increases with A and

asymptotes to 30 N as p decreases towards 0. These two results suggest that rougher

shells, therefore with a higher friction coefficient p, are stronger and more resistant

to localization.
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Figure 4-11: The effect of friction on the critical indentation a) The critical
indentation for the onset of localization for an indenter with F = 10 for a range of
friction coefficients p. b) Reaction force, P, at the critical indentation, for a range of
friction coefficients p.
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We also quantify the effect of friction on the mechanical response, as measured

by load-indentation curves (Fig. 4-12) for F = 10 for a variety of friction coefficients

p. The load significantly increases with the friction coefficient A. For small friction

coefficients p < 1, the load-indentation curve has a concave-down shape in which

the load asymptotically approaches an approximately constant value. In contrast, for

large friction coefficients p > 1, the load-indentation curve has an inflection point

after which the curve has a concave-up shape.
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Figure 4-12: The effect of friction on the mechanical response load-indentation
curves for an indenter with F - 10 for a variety friction coefficients A.

The effect of friction is now quantified through the strain energy density, E. In

Fig. 4-13 b), & is plotted over paths traced over ridges between s-cones. As the friction

coefficient M increases, energy becomes less sharply focused at s-cones relative to the

ridges. In Fig. 4-13 c), the maximum and minimum energy density along the paths

are plotted as a function of the friction coefficient M. These quantities, allow us to

compare the energy focusing at the s-cones (corresponding to Emax and at the ridges

(corresponding to 'Emi). As the friction coefficient p increases, the energy at the s-

cones decreases and the energy at the ridges increases. The energy at the s-cones and

energy at the ridges appear to asymptote towards the same value (~ 2 x 103 J/m 3) as
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[ increases. As the the frictional contact between the shell and indenter increases, the

energy becomes less localized at the s-cones relative to the ridges. With increasing

p, the energy becomes more evenly distributed along the ridges, eventually to the

extent that s-cones are no longer distinguishable and the deformation is essentially

axisymmetric (which is the case for the highest friction coefficients we tested, P = 1.5

and 1.7, where no s-cones are identified).

0

0.2 0.4 0.6 0.8
Normalized Distance

Figure 4-13: The effect of friction on energy localization a) Snapshots from

FEA simulations for an indenter with F = 10 for various friction coefficients A. The

color map indicates strain energy density. The black dashed lines trace a path over

ridges between adjacent s-cones. b) Strain energy density plotted along paths over

ridges between adjacent s-cones for shells with various friction coefficients [, ranging

from p = 0 to 1.4 for shells indented to c = 0.4 for an indenter with F = 10. c)

&max (at the s-cones) and Emi, (at the ridges) along the paths plotted to the left, as

a function of M.
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Chapter 5

Conclusions and Discussion

5.1 Summary and Discussion of Findings

Using both precision desktop-scale model experiments and finite element numerical

simulations, we have presented a rich scenario for the large deformation of a thin

spherical shell under indentation. The curvature of the indenter was systematically

varied and was found to have a strong effect on the onset and evolution of localized

structures. A localization band gap region where no s-cones form and the deformation

remains axisymmetric was found for indenters whose curvatures are near that of the

shell. Just outside of the localization band gap, the number of s-cones that forms is

maximum and decreases as the curvature of the indenter approaches zero (for point

load) or infinity (for plate load). Around the localization band gap, the critical inden-

tation for the onset of localization has a divergent-like behavior, where the onset of

localization is significantly delayed as the curvature of the indenter approaches that

of the shell. The nature of the contact between the shell and the indenter was found

to be a crucial ingredient in the process. Geometry plays a prominent role in the

shell-indenter contact, which was rationalized through a simple geometric argument

that accurately described the effect of the curvature of the indenter on contact with

the shell.

The nature of the shell-indenter contact was also found to be important in the

context of friction, which we had to include in the finite element model in order to ar-
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rive at the excellent agreement with the experiments. We found that friction between

the indenter and the shell significantly affects the shells's load-bearing capacity, es-

pecially for blunt indenters (F > 1), which require significantly higher loads to indent

shells compared to sharp indenters (F < 1). Through a systematic study of the effect

of varying the friction coefficient p, we observed that rougher shell-indenter contacts

can lead to the suppression of localization, in which energy becomes more evenly

distributed and the onset of localization is delayed. This finding, in conjunction with

the observation of increased load-bearing capabilities for rough shell-indenter contact

has implications for engineering scenarios, where the design of strong shells that resist

localization can be enhanced by roughening their surfaces.

By varying the radius of the shell, while keeping the thickness-to-radius ratio t/R 1

constant, we demonstrated the scale-invariance of localization in shells, in the onset

and evolution of s-cones. This finding demonstrates that our results are relevant and

applicable for engineering scenarios across a wide range of lengthscales. Although the

size of the shell does not play an important role, we also found that the thickness

of the shell relative to its radius has a significant effect on localization. The onset

and evolution of s-cones, and whether or not they form at all, strongly depends on

the thickness of the shell. The extent of localization at the s-cones relative to the

ridges, as measured by the strain energy density stored, is also strongly dependent

on the shell thickness; energy is more strongly localized at s-cones for thin shells in

comparison to thick shells.

Though shells can be subjected to large macroscopic deformation under indenta-

tion, we showed that the strains remain relatively small (less than - 6%). Because

material non-linearities for hyperelastic materials do not play a large role at such

small strains, we observe nearly identical response to indentation for shells modeled

with both linear elastic and Neo-Hookean materials. This observation suggests that

our results are applicable beyond elastomeric materials and can be extended to other

materials that remain in the elastic regime at these values of strain, provided that

there is no plastic deformation at the levels of strains that are reached. The fact

that large macroscopic deformations can be achieved with small strains suggests that
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localized structures such as s-cones, ridges, and gullies can be employed as energet-

ically efficient hinges, which could be applied to the design of folding origami shell

structures.

5.2 Geometric Frustration Leads to Localization

Without a general predictive analytical model of the localization process at hand,

we are lead to speculate that geometric frustration underpins the buckling transition

from the axisymmetric state into the onset of s-cones. We propose that the mecha-

nism is related to that recently reported by Dias et al. [63], who studied the mechanics

of folding of an annular flat plate containing a concentric circular crease (a model of

this from their paper is shown in Fig. 5-1). Folding the crease induces out-of-plane

buckling of the plate. Further increasing the dihedral angle of the fold, results in

increasingly more non-planar configurations and an increasing storage of stretching

energy at the crease. If the annulus is cut, the geometric constraint is released, and

it collapses into a planar state. Geometric and topological constrains, coupled with

the mechanics of plates, dictate the permissible configurations in this scenario.

Similarly in our system, indentation introduces geometric frustration that disrupts

the isometry of the shell's inverted cap. Once the circular ridge forms, the angle of

the folded region where curvature of the shell inverts, increases as the shell is indented

further which leads to a growing storage of strain energy at the ridge (the angle can be

derived using an argument similar to that presented for the slope of the ridge-height

vs. indentation curves, shown in Fig. 3-6). Past a critical indentation (quantified

in Fig. 3-5) the circular ridge looses symmetry and due to its high energetic cost,

stretching is focused onto localized structures, the s-cones. Understanding this inter-

play between geometric frustration and localized deformation could help rationalize

our findings.
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Figure 5-1: Geometric frustration in an annular flat plate. Fig. 1 from Dias et

al. [63] a) An otherwise flat annular plate buckles out of plane when it is folded along

its centerline. b) If the annulus is cut, it collapses into a planar state. c) A schematic

with the dihedral angle 0 of the fold between the left (-) and right (+) planes.

5.3 Analogy with Buckling of Confined Elastica

We observed that the number of s-cones at onset increases, when the curvature of

the indenter approaches the shell's curvature towards F ~ 1, either from above or

below. To comment on this observation, we establish an analogy with buckling of

confined elastica. When a slender beam is compressed axially, but its transverse dis-

placement is constrained by two confining walls [64, 65], high-order buckling modes

can be excited (in contrast to the classic mode-one Euler buckling when the beam

is unconstrained). In this case, the buckling wavenumber increases with the lateral

confinement and the geometric constraint of the two confining walls is the driving

mechanism for exciting high-order buckling modes. In Fig. 5-2 is an example of a

sheet confined between two plates. With increased confinement, the sheet transitions

from the first buckling mode to a mode-two buckling.
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Figure 5-2: Buckling of a confined sheet. Fig. 2 from Roman and Pocheau [65].

A polycarbonate sheet confined between two plates transitioning from the first Euler

buckling mode to a mode-two buckling as the plate is compressed.

Following this analogy and applying it to the indentation of shells, point load

indentation in our problem can be considered as being unconstrained. At the other

extreme of maximum constraint, when F ~ 1, the surfaces of the shell and indenter

are in close contact with each other, preventing the shell from delaminating from the

indenter, thereby precluding local buckling (no s-cones form). In the constrained Euler

buckling analogy, this corresponds to the case where the two constraining plates are

separated by a distance equal to the thickness of the strip such that buckling cannot

occur. For F > 0, and outside the localization band gap in the neighborhood of F ~ 1,

are cases of intermediate constraint, in which local buckling is allowed to occur, yet

the shell-indenter contact constrains the buckling morphology. This constraint due

to the shell-indenter contact excites higher order modes (increasing the number of s-

cones) and affects the onset of localization, which is delayed as the indenter curvature

approaches that of the shell.

5.4 Future Work and Potential Applications

Thus far we have only considered elastic and hyperelastic materials. In many en-

gineering applications, such as in metallic structures, the effect of plasticity, which

begins to play a role at small strains, is an essential ingredient to consider. There have

been a number of studies on the buckling of spherical shells under indentation that
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include the effects of plasticity [54, 66, 56, 52]. Similar to what is seen in elastic shells

as in our study, deformation localizes and s-cones form. However, the added effect of

plasticity leads to irreversible deformation and affects the formation of s-cones. Most

studies focus on either point load or plate load indentation and do not consider inden-

ters of intermediate curvatures, which are relevant for many engineering scenarios. A

systematic study with the variation of the indenter curvature, similar to the one we

have conducted in the present study, could be extended to materials that are subject

to plastic deformation. We expect that a similar set of rich phenomenology would be

found in such systems which would call for detailed quantitative predictions.

Furthermore, we have only considered quasi-static loading via indentation. There

are a plethora of ways to load a shell, for many of which dynamic effects are impor-

tant to include. For example, shell structures such as the bodies of cars and airplanes

undergo dynamic loading during high speed collisions [12]. Moreover, shell structures,

such as radomes and dome-shaped stadiums, are often subject to wind loading, which

can lead to localized deformation [67]. Depressurization is another common loading

mechanism, which has been considered in a number of recent studies [1, 47, 48, 49].

Our dual approach of desktop-scale model experiments and finite element modeling

could potentially be explored beyond indentation and be applied to some of these

alternative loading mechanisms. Through a systematic variation of the control pa-

rameters in these various loading mechanisms, we could gain insight into the essential

physical ingredients involved in localization and also make a direct comparison with

our scenario of indentation.

So far our study has only considered unpressurized shells. Vella et al. [68] re-

cently conducted a theoretical and numerical study of the indentation of pressurized

shells. They show that for shells that are unpressurized, or only weakly pressurized,

polygonal localized structures (s-cones) form under point indentation. For increasing

pressurization, there is a transition from s-cones to wrinkles. However, the focus of

the study is mostly on wrinkling and not much is known about when and how one

goes from polygonal localization to wrinkles. Our desktop-scale precision model ex-

perimental approach could contribute to these past studies, which have not yet used
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experimental methods for systematic exploration. Our experiments would provide

invaluable insight into the transition between polygonal localization to wrinkling.

Moreover, given the scale-invariance of the scenario presented here, our results

should find uses for engineering applications at a large range of lengthscales. Of re-

cent interest at the microscale is Atomic Force Microscopy (AFM). As the limits are

pushed towards applying AFM to increasingly smaller objects, the curvature of the

tip relative to the object being indented will be increasingly important to consider

in measuring the mechanical response of objects at the micro-, or even nano-scale

[62, 4]. Our insight into the role of geometry in shell-indenter contact could be ap-

plied to AFM to understand how the shape of the probe affects measurements, which

would allow for a more accurate characterization of objects at smaller and smaller

scales.

The robustness of the observed localization behavior and the excellent agreement

found between experiments and numerics in this study suggest that there is an under-

lying mechanism at play that arises from the strong interplay between geometry and

mechanics. However, we are still far from a full predictive understanding of the under-

lying mechanism for the observations we have made. We hope that our exploratory

study will help catalyze further theoretical efforts in this direction.
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