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Problem of localization of eigenstates is examined for one-dimensional infinite disordered 
systems with off-diagonal randomness. For this purpose Matsuda and Ishii's theory, based on 
Furstenberg's convergent theorem on products of random matrices, is generalized by intro
ducing "irreducible sequences" S<'> and "irreducible transfer matrices" Q*<'> as useful 
mathematical tools. 

A Furstenberg-type theorem is established for the product of matrices associated with 
a Markov-chain. This theorem leads to some conclusions about the localization of eigenstates, 
which are very similar, except for some minor differences, to those obtained. by Matsuda and 
Ishii for systems with diagonal-randomness only. 

§ l. Introduction 

Recently Weissman & Cohan11 and Bush21 have discussed the density of states 
and the extendedness of an eigenstate of some one-dimensional infinite systems with 
nearest-neighbour random interaction. They predicted that there are some anomal
ous features at the middle of the energy band (E = 0) if the system has off-diagonal 
randomness (ODR). Theodorou and Cohen81 have given a rather general proof, on 
the basis of the central limiting theorem, that the eigenstate is extended at E = 0. 
They predicted further that there exists an example in which all states are ex
tended, by using a perturbation expansion of the Green function and the relation 
proposed by Herbert & Jones41 and Thouless."1 

However, it has been known that rigorous investigations sometimes bring us 
to the conclusions which are at variance with those obtained by approximate meth
ods. Theoretical criticisms on Economou and Cohen's work61 have been given most 
clearly by Ishii. 71 Ishii has cast doubts also to Herbert & Jones and Thouless's 
relation. 71 A prediction has been given on the extended state mentioned above by 
Fleishman and Licciardello.81 In a recent paper Odagaki and Yonezawa91 have 
noted that the L (E) method 101 should be used very carefully for discussing the 
localization problem. 

The purpose of this paper is to discuss the problem of localization of eigenstates 
through Matsuda and Ishii's rigorous approach (hereafter referred to as MP11 and 
F 1). It becomes then necessary to generalize the Furstenberg convergent theo
rem121 to the case of product of matrices associated with a Markov-chain. The 
Furstenberg-type theorem thus obtained plays an essential role in this paper. 
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Localization of Eigenstates 609 

Our formulation is general in the sense that it can treat the systems with 
both kinds of randomness: diagonal one (DR) and ODR. For simplicity's sake, 
however, we confine ourselves in this paper to systems with ODR only and to 
those with mutually independent DR and ODR. 

In the next section the general formulation is given. In §§ 3 and 4 the 
Furstenberg theorem is generalized to the case of matrices associated with a Mar
kov-chain, for the system with ODR only. The concepts "irreducible sequence" 
and "irreducible transfer matrix'' are introduced in these sections. In § 5 it is 
shown that the related theorems given in MI and I can also be extended easily. 
In § 6 it is shown that the same considerations can be made also for systems with 
ODR and DR. The final section is devoted to cone! us ions and discussion. 

§ 2. Formulation of the problem 

The system considered in this paper is an infinite linear chain described by 
the Hamiltonian 

H= I; ln)s,(nl +I; (in)t,,,+ 1(n+11 + ln+1)tn+J.n(nl), (- =<n<=) 
n n 

(2 ·1) 

where t,,,ol and t,.J., are assumed to be nonzero, real and bounded: 

t,,,, 1 =t,.l,, and O<e<lt,,,"i<T<=. (for all n) (2·2) 

The system would become an assembly of separate pieces if some of t's vanish. 
We assume further that the transfer integrals {tn.n+J} can take, mutually independ
ently, r different values with a common probability distribution: 

T 

I: p<il =1. (2·3) 
f-_::[ 

For simplicity it is here assumed that the diagonal elements {c,} can take, in
dependently of {tn.n+J}, r' kinds of different values with a common probability: 

P'(s,=si) =P'(i'=P/, (independent of n) j=1, ... ,r', 

r' 
I;P'<i'=l. (2··+) 
}=I 

The eigenvalue equation of our system can be written 111 the form of a set 
of recurrence relations: 

E·a, = s, ·a,+ t"·"', · an+l + tn.n- 1 ·a,_,, (2 · 5) 

where a, is the amplitude of the eigenstate at the site Jl.. Transfer matrix T, 1s 

then defined as follows: 
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610 JI. Goda 

(2·6) 

=rc / ± fn,n-1 ) ' --tn)n+1 

0 

(2·7) 

where the signs ± and =]= correspond to the cases tn,n+ 1 · tn,n- 1>0 and <O, re

spectively. The sign of det Qn ( = ± 1) coincides with that of tn, n+l · tn, n-J· The 

following relation holds about the exponential growth iiXnll, (X0 ER2 and IIXoll 
7'=0): 

lim _!_ log II err Tz) X a II =lim _!_ log II err Qz) X a II . (2·8) 
n-4co n l=l n-= n l=l 

Our final purpose is to discuss whether the limit (2 · 8) exists, the value of 

which is finite and positive, 1.e., 

1 n 

lim- log II (Il Q 1)Xoll =2r>O, (2·9) 
n-= n l=l 

or not, independent of X 0 E (R2 - {0}) and of sample systems. For this it is neces

sary to generalize the Furstenberg convergent theorem to the case of a product 

of matrices representing a Markov-chain. In the following two sections discussion 

is made for the systems with ODR only. Discussion for the systems with ODR 

and DR will be given briefly in § 6. 

§ 3. Random chains with ODR only 

3.1. A set Q0 is defined as an aggregation of all sample systems of the 

type defined in § 1 and with ODR only. A physically reasonable measure j!} can 

be introduced on Q0 in the same way as in I; fL 1 ° can be extended to a complete 

measure on the whole Borel sets of the interval I [0, 1]. It will be seen later 

that it is more convenient to omit from Q0 a set of special sample systems {u)/} 

with a sufficiently small measure eN>O in order to avoid a mathematical difficulty 

which occurs when we apply the Furstenberg convergent theorem. It will be 

seen there that we can make the measure e,v>O as small as we hope so that eN 
does not affect physical phenomena. We thus define Q = Q0 - {rv/}. 

Obviously a complete measure f.L = f.L0/ (1- eN) is meaningfull (as f..L 0 ({a/}) 

=eN) also on the smallest Borel sets including the intervals I [0, 1]- {a/}, where 

{a/} is a set of intervals corresponding to the set {cu/}. We will use the expres-
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Localization of Eigenstates ()11 

s10n !J.0 ( {w/}) for !J.0 ( {0/}) in this paper. In the cases where we have no mathe

matical difficulty we understand that {w/} =¢ and SN=O. 

The set of sample systems J2 can be decomposed, in one way, as follows: 

,. 
J2= I: Q'i'. 

i---"1 

(3. 1) 

JJ<il 1s a subset of J2 composed of systems for which 

(3. 2) 

When we write 

(3. 3) 

each (JJ<il, {3'i', 1li' = ,u./vm) becomes a probability space. 

3.2. On each sample rll E JJ<il (i = l~r), the Z-th "irreducible sequence" of 

the i-th kind S 1'i', and the corresponding Z-th "irreducible transfer matrix" of the 

i-th kind Q1*w, are defined as follows: An "irreducible sequence" of the i-th kind 

s<il is a sequence of tn.n+/s which fulfills the conditions that (1) the preceding 

t is equal to tw, (2) it ends with t'0 and (3) no other t's in the sequence are 

equal to tw. An ''irreducible transfer matrix" of the i-th kind Q*'0 is a product 

of transfer matrices Q corresponding to an "irreducible sequence" S'il of t. The 

irreducible sequences and transfer matrices of the i-th kind are introduced in order 

to describe the right semi-infinite chain starting from t 0, 1 = tw. Obviously the left 

semi-infinite chain can also be described with the correspondingly defined sequences 

and matrices. More precisely, a right semi-infinite chain can be represented, under 

the condition that t 0 , 1 = t'i'. by an infinite sequence of the irreducible sequences 

(3. 4) 

with probability 1, and also by a prodnct of the irreducible transfer matrices 

(3. 5) 

with probability 1. As an example some possible sets of the irreducible sequences 

and the irreducible transfer matrices are shown in Table I, for the case r = 2 and 

i=l, with their values of probability distribution /J.w (Q*'i') =;ii' (S'0). 

It is now obvious that det Q*w = 1 and Q*'i' E SL (2, R). We define cw as 

the smallest closed subgroup of SL (2, R) inc! uding all kinds of the irreducible 

transfer matrices of the i-th kind Q*w. Then an infinite sequence of Q*<il {Q1*w: 

l = 1, 2, 3, · · ·} can be regarded as a sequence of mutually independent cw -valued 

random variables with a common distribution ,1!'0 . Now we apply the Furstenberg 

convergent theorem to our set of irreducible transfer matrices to obtain the follow-
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612 M. Gada 

Table I. An example of the irreducible sequences, the corresponding irreducible transfer 
matrices and the values of the distribution in the case r=2 and i=l. It is shown 
in § 4 that EN<•> is equal to the sum of (1-P<'>)'P<'> (l=N<'>~oo) in this case and 
thus equal to (1-PC'>) N(l). 

Q*<'> (S<'>) 

(tC'l) "t(l) Q(t<'>, t<'>) pCl) I (1- EN(ll) 
(t<'>) "-t:•> t<'> Q (t<'>, t<'>) Q_(t<'>, t<'>) (1- P<'>) · P<'> 1 (1-EN<'>) 

n-1 
~ 

(tC'l) "-t:•> t<'> ···t<'>t<'> Q(t<'>, t<'>) cgct<'>, t<'>)) <•-•>Q(t<'>, t<'>) (1- p(ll) (n-l). p<l) I (1-EN(l)) 

N<'>-1 
~ 

(t<'>) "-t<'> t<'> ···t<2>tC1l Q (t<1>, t< 2l) (Q (t<2>, t<2>) )(N<1> -2lQ (t<'l, t<1l) (1- pC 1l) (NC1> -1). pC1l 1(1- ENC1l) 

ing conclusion: 
If c<i> satisfies F-conditionl!) for an energy E with the condition that JIIQ*'i)ll 

d,u.w(Q*'i>)<oo (]]Q*co]]=sup]]Q*wX]], XER2 and ]]X]]=1), then 

lim l__ log]] eft Qz*<t>)Xo]] =2r*<t>>O e3·6) 
m-"'= 1n L=l 

with probability 1 on the sample space Q'0 for all X 0 E (R2 - {0}). We thus have 

lim(- tm __ )_!:_ log]] eft Qz*<1>)Xo]] =P<1>2r*<t> =2r<t>>O e3·7) 
m~oo n<>(m) m 1~1 

with probability 1 on ,gw for all X 0 (op0), where nw=n'i>(m) is the number of 
Q contained in the product of the sequence of Q*co's, 1.e., 

(
n<<>(m) ) m II Q, =II Qz*<i>. 
j~l l~l 

e3·8) 

3.3. It has be~n shown that there exists a positive number r'i> defined in 
(3 · 7), if G'0 satisfies F-condition for an energy E with the condition J ]] Q*'1> II d,u.m 
(Q*'1>) < oo. Consequently, it is apparent in this case that for an sufficiently small 
e there exists an integer Nm such as for n> N't>, 

e3·9) 

for each nw (m) where tn.n+l = tw. Quantities a(i) and /3'0 are some positive finite 
numbers. 

The relation (3 · 9) provides us, however, with only partial information about 
the exponential growth of the wave function; it does not guarantee the existence 
of r in (2 · 9) with probability 1 on Q for any X 0op0. There are three cases. 

Case a) Existence of r<i> is guaranteed for every subsets (i = 1r-vr) (for an energy 
E with probability 1). 

Case b) Existence of rw is guaranteed for at least one subset but at the same 
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Loca!i:::ation ~~r Eigcnstates (j J:l 

time it 1s not guaranteed for at least one of another subsets. 

Case c) Existence of r(iJ cannot be guaranteed for any subset. 

It is shown in Appendix A thai at least in the case a) the existence of r 1s 

guaranteed for the energy ·with probability 1 on Q for any X 0cp0 and 

= ... = r<r> 

that is, the limiting \~al ue (2 · 9) exists for the energy with propability 1 on Q 

for any X 0 cp0. 

We thus reach the following conclusion: A sufficient condition for the ex

ponential growth of the wave function is that the property (3 · 6) 1s proved for 

every subset f2 10 (i = 1~r). 

It is noted thai for the model adopted in this paper only the cases a) and 

c) appear. 

§ 4. A Furstenberg-type theorem for the systems with ODR only 

As mentioned just above, a sufficient condition for the exponential gro\vth of the 

wave function is that the property (3·6) is proved for every subset QliJ (i=1~r) 

for the energy E with probability 1. We call it the GF-condition (generalized 

F-condition) . A sufficient condition for the property (3 · 6) to be valid (for a given 

energy E) for one subset .Q<il is 

1) G 1') satisfies F-conclition, 

2) JsLI2.llliiQ*1illld;/il CQ*<0) <= · 
The second condition can be made to be satisfied when we omit from G 01il the 

irreducible transfer matrices corresponding to the irreducible sequences the lengths 

of which are larger than a sufficiently large integer 1Vw> N/ pw. The finite 

integer ]ylil can be made as large as one hopes so that the integer does not 

affect physical phenomena, that is, the probability distribution of the subtracted 

set can be made as small as one hopes by taking a large integer 1V. It can be 

clone by constructing the ensemble defined in § 2 by subtracting from Q0 a set 

{rv/} with a sufficiently small measure c:N>O. Now apparently, it is adequate to 

understand 

r 

{ul/') = ~ {oJ/} ';1 , 
i=l 

r 

8x -=:=-~ j_}(i)Cs\.iJ' 
i=l 

and eac b {o)/} w consists of sample systems, each sample of \vhic h inc! udes at 

least one irreducible sequence of the i-th kind, the length of which is greater 

than 1Vw. The ensemble Q should therefore be understood, when it is necessary, 

as an aggregation of all sample systems in which each sample u) E .Qul (i = 1 r~r) 

can be represented by two infinite sequences of the irreduciblt• sequences. tlw 

lengths of which are less than or equal to 1V(i), describing the right and the left 
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614 111. Gada 

parts of the chain. 

After omitting the irreducible sequences of this kind, we have only to consider 
the condition 1) for each subset SJ<0 • It is evident that we can make the finite 
integer N as large as we hope and accordingly the positive value eN can be made 
as small as we hope so that the existence of eN does not affect physical phe
nomena. 

The following results are obtained about the GF-condition, with a result in 
Appendix B, 

case (1) r = 2 and I t<•> I=/= I t<n I 

case (2) 

case (3) 

The GF-condition is satisfied for all the possible energies except E = 0. 
r=2 and t<•> = -tm 

The GF-condition 1s not necessarily fulfilled for every energy in the 
band. 

r>3 (r<oo) 
The GF-condition 1s satisfied for all of the possible energies except 
E= 0 because G~~l of the system includes at least one subgroup em 
which corresponds to that in the case (1). 

§ 5. Extension of other theorems in MI and I 

Once the GF-condition is proved to be satisfied, it is straightforward to derive 
the conclusions about the localization of eigenstates; it suffices to establish some 
auxiliary theorems. These theorems can easily be derived by slightly modifying 
the corresponding theorems in MI and I. 

The theorems corresponding to the theorems 3, 4 and 6 in MI can be ob
tained by extending the relation ( 4 · 1) in MI as 

(S ·1) 

and modifying the relations ( 4 · S) ~ ( 4 · 9), (2 · 9) ~ (2 ·11) and ( 4 ·13) ~ ( 4 ·1S) in 
MI in an entirely similar way. The theorem 9.3 in I can be extended, in the 
same way, by extending the relations (9 · 29) and (9 · 30) in I as 

(S·2) 

(5·3) 

respectively, and modifying similarly the relations (AS· G), (AS· 8) ~(AS ·11) and 
(AS ·14) in I. 

Thus we can conclude that eigenfunctions of the systems with ODR only 
are localized with probability 1 on Q if the GF-condition is satisfied. 

It is important to note that the extension indicated above is independent of 
whether the system under consideration has only ODR or has both ODR and 
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DR. Thus the same conclusions about the localization m MI and I can readily 

be obtained also for the systems with ODR and DR, if the GF-condition is proved 

to be valid for such systems. We shall prove it in the next section. 

§ 6. Validity of the GF-condition for the chains with ODR and DR 

In this section we shall prove that the GF-condition is fulfilled by the systems 

with ODR and DR, if those are independent of each other. To do this it is only 

necessary to introduce a slightly different measure 11/ for the sample space and to 

define the "irreducible sequences" more carefully. 

6.1. Each sample system characterized by a sequence {en, tn.n, 1 ; n = 1, 2, 3, · · ·} 

can be represented by an r and r' -adic number 

(6 ·1) 

or 

(6 ·1') 

contained m }; = [0, 1], where one-to-one correspondence ts established by 

(n = 1, 2, 3, · · ·) (6. 2) 

Then a suitable measure /11°' can be introduced on the ensemble of systems go 111 

the almost same way as that in I. 
6.2. The "irreducible sequence" of the i-th kind 8'0 should be defined more 

carefully in this stage. It is the sequence of 2n and tn,n+l which fulfills the 

conditions that (1) the preceding t is equal to tw, (2) it ends with t<0 and (3) 

there appear no t<il in any other position in the sequence. Obviously each 2" can 

take all possible values in the sequence. Then the right half of the chain from 

t 0,1 ( = t<il) can be represented, with probability 1, by an infinite sequence of the 

irreducible sequence of the i-th kind 

(6. 3) 

6.3. Now the GF-condition of the system can be discussed in the almost same 

way as that in §§ 3 and 4. The following result is readily obtained, as each 

G<il contains the subgroup GD <il, which corresponds to systems with DR only. 

Each subgroup GD <o is the same as what has been discussed extensively in MI and I. 

Case (4): General case where both ODR and DR exist. The GF-condition 1s 

satisfied for all of the possible energies including E = 0. 

§ 7. Concluding remarks 

The first conclusion obtained in this paper is that a Furstenberg-type theorem 

can be established for products of random matrices representing a Markov-chain; 
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616 JJ. Coda 

the GF-condition 1s a sufficient condition for the convergence of the quantity (2 · 8). 
It should be remarked here that our method will be effective also for systems 
which are more general than those treated in this paper, so that the Furstenberg
type theorems can be established also for these systems. 

Our second conclusion is that any infinite chain which belongs to the category 
considered can be made to have an exponentially localized solution for a given 
energy E for which the GF-condition is satisfied, by modifying a transfer integral 
t 0• 1 (or an atomic energy c0) such that it gets a suitable value, except for the 
chains with measure zero on !2. 

The third conclusion is that almost all of the eigenstates (for the energy E) 
are exponentially localized, in infinite systems, with probability 1 on !2,*' in the 
sense that the following. relation hold with probability 1 on Q, 

IGn,m(E-iO) I<O(exp{-r(E) ln-m/}), in the limit ln-rnl~oo. 

The fourth conclusion is that the weak absence of diffusion7' takes place also 
with probability 1 on Q, for above mentioned energies. 

The fifth conclusion is drawn in the case (2) that all of the eigenstates, 
except those for E = E± = ± 21 tw I (the values of band edges of the regular system 
with tw or t<2') are extended. This is because every irreducible transfer matrix in 
c<l) (and G<2') can be diagonalized by a non-unitary transformation, so that the 
diagonal matrix elements have the from eie and e-ie ((}:real). In this case the 
randomness of phase of the transfer energies does not seem to play any role for 
the localization of the eigenstates. The value of r is obviously 0 in this case except 
for E=E". 

It will be interesting to discuss the rate of exponential growth r and the 
feature of spectral densities. Here we confine ourselves to note, however, that 
some recent developments in the theory of spectral densities 13' (on some different 
model from ours) are possibly helpful to obtain some further conclusions on the 
localization problem. 
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Appendix A 

--.4 Proof of the Statement Given in (3 · 3) for the Case a)--

In the case a) existence of / 0 is guaranteed on each subset Q<i> (i = 1~r). 

*' It should be mentioned that probability 1 on SJ represents probability l-EN on SJ' and 
measure zero on SJ does measure EN on SJ'. 
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Localization of Eigenstates 617 

\V c rcarnmge here the indices such that 

<··· (A·l) 

We have for each r•Jr=gu'(i=1~r) d sequence of numbers ll(i'(m) appeared m 

(:~. 7): 

(A· 2) 

From the exponential properties (3 · 6) and (3 · 7) it follows that for sufficiently 

smnll positive number C:>O there exist integers 1V'i' such that 

( r ([) (-'1l (m J 

independent of the initial condition a 0 and a,. Obviously the site corresponding 

to llw(m) has tn<'l(m).nc'J(ml 1 =tUl. From the independence of the property (A·3) 

of the initial condition X 0 ( 4c0) we can conclude that the exponential properties 

(3 · 6) and (3 · 7) and thus (A .:3) are valid vvith probability 1 on the set of 

systems g_ It is apparent from (A·3) that at least one of the quantities, a"'''Cml (E) 

and anl'l(m) 1 (E), satisfies the following inequalities 

(A·4) 

(A·4') 

for each 11 1n(m) (m=l,2,3,···). 

When the inequality (A· 4) Is satisfied ~we have 

(-~-Ct:(r) C{2JCT!(E) -c},)e[nCrJ(m} J}{~r(r)(E)-c} 
"2 

,,, cml _,(E) +a;,,, em) (E), 

that Js, 

(i'J(m') (E)+ (m')Cl(E) (A·5) 

independent of the kind of the corresponding (the preceding) transfer integra] 

tw'. \Vhen the inequality (A·4') is satisfied, we have 

e}) {n (r) (m) -:-1} {:2r(r) -c} ____..-- :2 ._1_ 2 
e <..._"'-an(T)(m)+l -T an(T)(m)+:2' 

that IS, 

-~z}) e" (m '') {~r (rl e} (A·fS') 
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618 M. Goda 

independent of the kind of the corresponding (the next) transfer integral t<i•J. 

These inequalities show that 

(A·6) 

and hence 

/n = r'2) = ... = /T) = r . (A·7) 

This implies that the limiting value (2 · 9) exists (with r in (3 · 9)) for the energy 

with probability 1 on Q for any X 0=f=O. 

Appendix B 

--A Proof of the Result about the GF-Condition for E= 0 

in the Cases (1), (2) and (3) --

It is shown in this Appendix that each c<iJ does not necessarily satisfy the 

G F-condition for E = 0 in the cases (1) , (2) and (3) . 

First consider the cases (1) and (2). In these cases it is easily seen that 

the closed subgroup c<n (or G'2)) is composed of the elements 

(B ·1) 

wherea=Vit<1ljt<2ll (orVit<2ljt<1ll). In the case (2) (a=l), it is obvious that 

the closed subgroup is compact. This completes the proof. In the case (1) (0 

<a< oo and a=f=1), the following reducible non-compact subgroup R of G 0 J (or 

G(2)) can be constructed 

{ ( 
a2n 

R= ± 
0 

0 ) ; n: all integers}. 
a-2n 

The (left and right) co-set of R on the elements ± ( ~ - ~) 1s 

{ ( 0 _ a-2n) } 
C = ± a 2n 0 ; n: all integers . 

(B·2) 

(B·3) 

It is seen that the product of any elements c, c' E C is an element in R and the 

coset of R on any element c E C is C. Accordingly it is concluded that 

(B·4) 

that is, there exists a reducible non-compact subgroup R'i) of c<i) with the index 

2. 
It is now apparent that the essential feature is the same also in the case (3). 

The difference lies only in rather complex expressions which appear on constructing 

the non-compact reducible subgroup (of the type R) with the index 2. 
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