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LOCALIZATION OF ELLIPTIC MULTISCALE PROBLEMS

AXEL MÅLQVIST AND DANIEL PETERSEIM

Abstract. This paper constructs a local generalized finite element basis for
elliptic problems with heterogeneous and highly varying coefficients. The basis

functions are solutions of local problems on vertex patches. The error of the
corresponding generalized finite element method decays exponentially with
respect to the number of layers of elements in the patches. Hence, on a uniform
mesh of size H, patches of diameter H log(1/H) are sufficient to preserve a
linear rate of convergence in H without pre-asymptotic or resonance effects.
The analysis does not rely on regularity of the solution or scale separation in
the coefficient. This result motivates new and justifies old classes of variational
multiscale methods.

1. Introduction

This paper considers the numerical solution of second order elliptic problems with
strongly heterogeneous and highly varying (non-periodic) coefficients. The hetero-
geneities and oscillations of the coefficient may appear on several non-separated
scales. It is well known that classical polynomial based finite element methods
perform arbitrarily badly for such problems; see e.g. [4]. To overcome this lack
of performance, many methods that are based on general (non-polynomial) ansatz
functions have been developed. Early works [1, 2], that essentially apply to one-
dimensional problems, have been generalized to the multi-dimensional case in sev-
eral ways during the last fifteen years; see e.g. [7, 13, 14]. In these methods the
problem is split into coarse and (possibly several) fine scales. The fine scale ef-
fect on the coarse scale is either computed numerically or modeled analytically.
The resulting modified coarse problem can then be solved numerically and its so-
lution contains crucial information from the fine scales. Although many of these
approaches show promising results in practice, their convergence analysis usually
assumes certain periodicity and scale separation.

For problems with general L∞ coefficient, the paper [3] gives error bounds for
a generalized finite element method that involves the solutions of local eigenvalue
problems. The construction in [6, 19] depends only on the solution of the original
problem on certain subdomains. However, the size of these subdomains strongly
depends on the mesh size. This dependence is suboptimal with respect to the
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theoretical statement given in [12], that is, for any shape regular mesh of size H

there exist O
(
(log(1/H))d+1

)
local (non-polynomial) basis functions per nodal

point such that the error of the corresponding Galerkin solution uH satisfies the
estimate ‖u− uH‖H1(Ω) ≤ CgH with a constant Cg that depends on the right-hand

side g and the global bounds of the diffusion coefficient but not on its variations.
The derivation in [12] is not constructive in the sense that it involves the solution
of the (global) original problem with specific right-hand sides.

In this paper, we show that such a (quasi-)optimal basis can indeed be con-
structed by solving only local problems on element patches. We use a modified
nodal basis similar to the one presented in [16] and prove that these basis functions
decay exponentially away from the node they are associated with. This exponential
decay justifies an approximation using localized patches.

The precise setting of the paper is as follows. Let Ω ⊂ R
d be a bounded Lipschitz

domain with polygonal boundary and let the diffusion matrix A ∈ L∞ (
Ω,Rd×d

sym

)
be uniformly elliptic:

(1.1)

0 < α(A,Ω) := ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v
v · v ,

∞ > β(A,Ω) := ess sup
x∈Ω

sup
v∈Rd\{0}

(A(x)v) · v
v · v .

Given g ∈ L2(Ω), we seek u ∈ V := H1
0 (Ω) such that

(1.2) a (u, v) :=

∫
Ω

(A∇u) · ∇v =

∫
Ω

gv =: G(v) for all v ∈ V.

The bilinear form a is symmetric, coercive, bounded, and hence, (1.2) has a unique
solution.

The main result of this paper (cf. Theorem 3.6) shows that the error u − ums
H,k

of the generalized finite element method, which is based on our new (local) basis
functions mentioned above, is bounded as follows

‖A1/2∇(u− ums
H,k)‖L2(Ω) ≤ CgH;

H being the mesh size of the underlying coarse finite element mesh and k ≈
log(1/H) referring to the number of layers of coarse elements that form the support
of the localized basis functions. This estimate shows that our new numerical up-
scaling procedure is reliable beyond strong assumptions like periodicity and scale
separation. Moreover, the error bound is stable with respect to perturbations aris-
ing from the discretization of the local problems. These results give a theoretical
foundation for numerous previous experiments where exponential decay of a similar
modified basis have been noticed; see e.g. [18].

The outline of the paper is as follows. In Section 2, we derive a set of local basis
functions and define the corresponding multiscale finite element method. The error
analysis is done in Section 3. Section 4 is devoted to the discretization of the local
problems. Section 5 presents numerical experiments, and Section 6 discusses the
application of this theory to state-of-the-art multiscale methods.
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2. Local basis

In this section, we design a set of local basis functions for the multiscale problem
under consideration. The construction is based on a regular (in the sense of [10])
finite element mesh TH of Ω into closed triangles (d = 2) or tetrahedra (d = 3).
Subsection 2.1 recalls the classical nodal basis with respect to TH and demonstrates
its lack of approximation properties. Subsection 2.2 introduces a quasi-interpolation
operator used in the construction of the new basis. Subsection 2.3 defines a modified
(coefficient dependent) nodal basis and analyzes its approximation properties. This
basis is then localized in Subsection 2.4.

2.1. Classical nodal basis. Let H : Ω → R>0 denote the TH -piecewise constant
mesh size function with H|T = diam(T ) =: HT for all T ∈ TH . The mesh size may
vary in space. In practical applications, the mesh TH (resp., its size H) shall be
determined by the accuracy which is desired or the computational capacity that is
available but not by the scales of the coefficient.

The classical (conforming) P1 finite element space is given by

(2.1) SH := {v ∈ C0(Ω̄) | ∀T ∈ TH , v|T is a polynomial of total degree ≤ 1}.

Let VH := SH ∩ V denote the space of finite element functions that match the ho-
mogeneous Dirichlet boundary conditions. Let N denote the set of interior vertices
of TH . For every vertex x ∈ N , let λx ∈ SH denote the corresponding nodal basis
function (tent function), i.e.,

λx(x) = 1 and λx(y) = 0 for all y �= x ∈ N .

These nodal basis functions form a basis of VH . The availability of such a local
basis is a key property of any finite element method and ensures that the resulting
system of linear algebraic equations is sparse.

The (unique) Galerkin approximation uH ∈ VH satisfies

(2.2) a(uH , v) = G(v) for all v ∈ VH .

The above method (2.2) is optimal with respect to the energy norm |||·||| :=
|||·|||Ω := ‖A1/2∇ · ‖L2(Ω) on V which is induced by a,

(2.3) |||u− uH ||| = min
vH∈VH

|||u− vH ||| .

Assuming that the solution u is smooth, the combination of (2.3) and standard
interpolation error estimates yields the standard a priori error estimate

|||u− uH ||| ≤ C‖H‖L∞(Ω)‖∇2u‖L2(Ω).

This estimate states linear convergence of the classical finite element method (2.2)
as the maximal mesh width tends to zero. However, the regularity assumption is not
realistic for the problem class under consideration. Moreover, even if the coefficient
is smooth, it may oscillate rapidly, say at frequency ε−1 for some small parameter ε.
In this case, the asymptotic result is useless because ∇2u may oscillate at the same
scale, a fact that is hidden in the constant ‖∇2u‖L2(Ω) ≈ ε−1. Unless H � ε, the
above finite element space is unable to capture the behavior of the solution neither
on the microscopic nor on the macroscopic level. In what follows, we present a new
method that resolves this issue.
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2.2. Quasi-interpolation. The key tool in our construction will be some bounded
linear surjective (quasi-) interpolation operator IH : V → VH . The choice of this
operator is not unique and a different choice might lead to a different multiscale
method. We have in mind the following modification of Clément’s interpolation
[11] which is presented and analyzed in [9, Section 6]. Given v ∈ V , IHv :=∑

x∈N (IHv)(x)λx defines a (weighted) Clément interpolant with nodal values

(2.4) (IHv)(x) :=
(∫

Ω
vλx

) /(∫
Ω
λx

)
for x ∈ N . The nodal values are weighted averages of the function over nodal
patches ωx := suppλx. Since the summation is taken only with respect to interior
vertices N , this operator matches homogeneous Dirichlet boundary conditions.

Recall the (local) approximation and stability properties of the interpolation
operator IH [9, Section 6]: There exists a generic constant CIH

such that for all
v ∈ V and for all T ∈ TH it holds that

(2.5.a) H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH

‖∇v‖L2(ωT ),

where ωT :=
⋃
{K ∈ TH | T ∩K �= ∅}. The constant CIH

depends on the shape
regularity parameter ρ of the finite element mesh TH (see (3.1) below) but not on
HT .

Note that the above interpolation operator is not a projection, i.e., vH ∈ VH

does not equal its interpolation IHvH in general. However, the particular choice
gives rise to the following lemma.

Lemma 2.1. There exists a generic constant C ′
IH

which only depends on ρ but not
on the local mesh size H, such that for all vH ∈ VH there exists v ∈ V with the
properties

(2.5.b) IH(v) = vH , ‖∇v‖ ≤ C ′
IH

‖∇vH‖, and supp v ⊂ supp vH .

Proof. For every nodal basis function λx, x ∈ N , there is some bx ∈ H1
0 (ωx) such

that IH(bx) = λx and ‖∇bx‖ ≤ C ′′
IH

‖∇λx‖ with some constant C ′′
IH

that does not
depend on x and H. For example, bx may be chosen as a standard cubic element
bubble on an arbitrary element T ⊂ ωx or a quadratic edge/face bubble related
to an arbitrary edge/face of TH interior to ωx. One might as well choose bx to be
nodal interpolation of those bubbles in a finite element space that correponds to
some uniform refinement of TH .

Given vH =
∑

x∈N vH(x)λx ∈ VH , v := vH+
∑

x∈N (vH(x)− (IHvH)(x)) bx ∈ V
has the desired properties (for suitably chosen bx). The interpolation and support
properties are obvious. The stability follows from

‖∇v‖2 ≤ C

(
‖∇vH‖2 +

∑
x∈N

|vH(x)− (IHvH)(x)|2 ‖∇bx‖2
)

≤ C

(
‖∇vH‖2 + C ′′2

IH

∑
x∈N

|vH(x)− (IHvH)(x)|2 ‖∇λx‖2
)

≤ C

(
‖∇vH‖2 + C ′C ′′2

IH

∑
T∈TH

‖vH − IHvH‖2L2(T )H
−2
T

)

≤ C

(
‖∇vH‖2 + C ′C2

IH
C ′′2

IH

∑
T∈TH

‖∇vH‖2L2(ωT )

)

≤ C ′2
IH

‖∇vH‖2,
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where we use ‖∇λx‖2 ≈ | suppλx|(d−2), the inverse inequality ‖vH−IHvH‖2L∞(T ) �
H−d

T ‖vH − IHvH‖2L2(T ), and (2.5.a). �

In the forthcoming derivation of our method, the interpolation operator (2.4)
may be replaced by any linear bounded surjective operator that satisfies (2.5.a)–
(2.5.b). Hereby, (2.5.b) may be relaxed in the sense that supp v is not necessarily a
subset of supp vH but that supp v \ supp vH covers at most a fixed (small) number
of element layers about supp vH .

2.3. Multiscale splitting and modified nodal basis. Let IH : V → VH be a
quasi-interpolation operator according to the previous subsection. Then the kernel
of IH ,

V f := {v ∈ V | IHv = 0},

represents the microscopic features of V , i.e., all features that are not captured by
VH . Given v ∈ VH , define Fv ∈ V f by

a(Fv, w) = a(v, w) for all w ∈ V f .

The finescale projection operator F : VH → V f leads to an orthogonal splitting with
respect to the scalar product a:

V = V ms
H ⊕ V f where V ms

H := (VH − FVH).

Hence, any function u ∈ V can be decomposed into ums
H ∈ V ms

H and uf ∈ V f ,
u = ums

H + uf , with a(ums
H , uf) = 0. Since dimV ms

H = dimVH , the space V ms
H

can be regarded as a modified coarse space. The superscript “ms” abbreviates
“multiscale” and indicates that V ms

H , in addition, contains fine scale information.
The corresponding Galerkin approximation ums

H ∈ V ms
H satisfies

(2.6) a(ums
H , v) = G(v) for all v ∈ V ms

H .

The error (u− ums
H ) of the above method (2.6) is analyzed in Section 3.1.

Finally, we shall introduce a basis of V ms
H . The image of the nodal basis function

λx under the fine scale projection F is denoted by φx = Fλx ∈ V f , i.e., φx satisfies
the corrector problem

(2.7) a(φx, w) = a(λx, w) for all w ∈ V f .

We emphasize that the corrector problem is posed in the fine scale space V f , i.e.,
test and trial functions satisfy the constraint that their interpolation with respect
to the coarse mesh vanishes.

A basis of V ms
H is then given by the modified nodal basis

(2.8) {λx − φx | x ∈ N}.

In general, the corrections φx of nodal basis functions λx, x ∈ N , have global
support, a fact which limits the practical use of the modified basis (2.8) and the
corresponding method (2.6).
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2.4. Localization. In Section 3.2, we will show that the correction φx decays ex-
ponentially fast away from x. Hence, simple truncation of the corrector problems
to local patches of coarse elements yields localized basis functions with good ap-
proximation properties.

Let k ∈ N. Define nodal patches of k-th order ωx,k about x ∈ N by

(2.9)
ωx,1 := suppλx = int

(⋃
{T ∈ TH | x ∈ T}

)
,

ωx,k := int
(⋃

{T ∈ TH | T ∩ ωx,k−1 �= ∅}
)
, k = 2, 3, 4 . . . .

Define localized finescale spaces V f(ωx,k) := {v ∈ V f | v|Ω\ωx,k
= 0}, x ∈ N ,

by intersecting V f with those functions that vanish outside the patch ωx,k. The
solutions φx,k ∈ V f(ωx,k) of

(2.10) a(φx,k, w) = a(λx, w) for all w ∈ V f(ωx,k),

are approximations of φx from (2.7) with local support.
We define localized multiscale finite element spaces

(2.11.a) V ms
H,k = span{λx − φx,k | x ∈ N} ⊂ V.

The corresponding multiscale approximation of (1.2) reads: find ums
H,k ∈ V ms

H,k such
that

(2.11.b) a(ums
H,k, v) = G(v) for all v ∈ V ms

H,k.

Note that dimV ms
H,k = |N | = dimVH , i.e., the number of degrees of freedom of the

proposed method (2.11) is the same as for the classical method (2.2). The basis
functions of the multiscale method have local support. The overlap is proportional
to the parameter k. The error analysis of Section 3.2 suggests to choose k ≈ log 1

H .

Remark 2.2. The localized modified basis functions could be localized further to
vertex patches ωx, x ∈ N , by simply multiplying them with the classical nodal
basis functions; for any x ∈ N and any y ∈ N ∩ ωx,k, define φy

x := λyφx,k. The

generalized finite element space which is spanned by those O
(
(log(1/H))d

)
local

basis functions per vertex has similar approximation properties as V ms
H,k (see [5]).

3. Error analysis

This section analyzes the proposed multiscale method in two steps. First, Sub-
section 3.1 presents an error bound for the idealized method (2.6). Then, Subsection
3.2 bounds the error of truncation to local patches and proves the main result, that
is, an error bound for the multiscale method (2.11).

As usual, the error analysis depends on the constant ρ > 0 which represents
shape regularity of the finite element mesh TH ;

(3.1) ρ := max
T∈TH

ρT with ρT :=
diamBT

diamT
for T ∈ TH ,

where BT denotes the largest ball contained in T .
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3.1. Discretization error.

Lemma 3.1. Let u ∈ V solve (1.2) and ums
H ∈ V ms

H solve (2.6). Then it holds that

|||u− ums
H ||| ≤ C

1/2
ol CIH

α−1/2‖Hg‖L2(Ω)

with constants Col and CIH
that only depend on ρ.

Proof. Recall the (local) approximation and stability properties (2.5.a) of the in-
terpolation operator IH . Due to the splitting from Section 2.3, it holds that
u − ums

H = uf . Since IHuf = 0, the application of (2.5.a) and Young’s inequal-
ity yield ∣∣∣∣∣∣uf

∣∣∣∣∣∣2 = G(uf) ≤
∑

T∈TH

‖g‖L2(T )‖uf − IHuf‖L2(T )

≤
C2

IH

2εα
‖Hg‖2L2(Ω) +

ε

2

∑
T∈TH

‖A1/2∇uf‖2L2(ωT )

for any ε > 0. Note that there exists a constant Col > 0 that only depends on ρ
such that the number of elements covered by ωT is uniformly (w.r.t. T ) bounded
by Col. The choice ε = C−1

ol concludes the proof. �
Remark 3.2. Substituting IH by the modified Clément interpolation operator pre-
sented in [8] allows one to improve the error estimate in Lemma (3.1). The term
‖Hg‖L2(Ω) can be replaced by data oscillations (

∑
x∈N ‖H(g− gx)‖2L2(ωx)

)1/2 with

some weighted averages gx of g on ωx, x ∈ N ; we refer to [8, Section 2] for details.
Additional smoothness of the right-hand side g ∈ H1(Ω) then leads to quadratic
convergence of the idealized method without localization.

3.2. Error of localized multiscale FEM. First, we estimate the error due to
truncation to local patches. We will frequently make use of cut-off functions on
element patches.

Definition 3.3. For x ∈ N and m < M ∈ N, let ηm,M
x : Ω → [0, 1] be a continuous

and weakly differentiable function such that

(ηm,M
x )|ωx,m

= 0,(3.2.a)

(ηm,M
x )|Ω\ωx,M

= 1, and(3.2.b)

∀T ∈ TH , ‖∇ηm,M
x ‖L∞(T ) ≤ Cco(M −m)−1H−1

T(3.2.c)

with some constant Cco that only depends on ρ. For example, one may choose
ηm,M
x ∈ SH with nodal values

(3.3)

ηm,M
x (x) = 0 for all x ∈ N ∩ ωm,

ηm,M
x (x) = 1 for all x ∈ N ∩ (Ω \ ωx,M ) , and

ηm,M
x (x) = j(M −m)−1 for all x ∈ N ∩ ∂ωx,m+j , j = 0, 1, 2, . . . ,M −m.

We prove the essential decay property of the corrector functions by some iterative
Caccioppoli-type argument. Recall the notation |||·|||ω := ‖A1/2∇ · ‖L2(ω).

Lemma 3.4. For all x ∈ N , k, � ≥ 2 ∈ N, the estimate

|||φx − φx,�k||| ≤ C2

(
C1

�

) k−2
2

|||φx|||ωx,�

holds with constants C1, C2 that only depend on ρ and β/α but not on x, k, �, or H.
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Proof. Let x ∈ N and �, k ≥ 2 ∈ N. Observe that

(3.4) |||φx − φx,�k|||2 ≤ |||φx − v|||2 = |||φx − v|||2ωx,�k
+ |||φx|||2Ω\ωx,�k

,

holds for all v ∈ V f(ωx,�k) using Galerkin orthogonality.

Let ζx := 1 − η
�(k−1)+1,�k−1
x with a cutoff function η

�(k−1)+1,�k−1
x as in Defini-

tion 3.3. According to (2.5.b), there exists bx ∈ V such that IH(bx) = IH(ζxφx),
|||bx||| ≤ C ′

IH
|||IH(ζxφx)|||, and supp(bx) ⊂ ωx,�k. Hence, v := ζxφx − bx ∈

V f(ωx,�k) and

|||φx − v|||ωx,�k
≤ |||φx − ζxφx|||ωx,�k\ωx,�(k−1)+1

+ |||bx|||ωx,�k\ωx,�(k−1)

≤ C ′
IH

CIH

(
|||φx|||ωx,�k\ωx,�(k−1)+1

+
√
β‖∇(ζxφx)‖L2(ωx,�k\ωx,�(k−1))

)
.

Since IHφx = 0, the upper bound of the interpolation error (2.5.a) and (3.2.c) yield

‖∇(ζxφx)‖2L2(ωx,�k\ωx,�(k−1))

≤ C ′′′
2

∑
T∈TH : T⊂ωx,�k\ωx,�(k−1)+1

(
H2

T ‖∇ζk‖2L∞(T ) + ‖ζk‖2L∞(T )

)
‖∇φx‖2L2(T )

≤ C ′′
2α

−1 |||φx|||2ωx,�k\ωx,�(k−1)+1

with C ′′
2 := 1 + ColC

2
coC

2
IH

. This leads to

(3.5) |||φx − v|||ωx,�k
≤ C ′

2 |||φx|||ωx,k�\ωx,(k−1)�
,

where C ′
2 depends only on ρ and

√
β/α. The combination of (3.4), with v =

ζxφx − bx, and (3.5) yields

(3.6) |||φx − φx,�k||| ≤ C2 |||φx|||Ω\ωx,�(k−1)
.

Further estimation of the right-hand side in (3.6) is possible using cut-off func-

tions ηj := η
�(j−1)+1,�j
x (cf. Definition 3.3), j = 2, 3, . . . , k − 1. Observe that

(3.7)

‖A1/2∇φx‖2L2(Ω\ωx,�(k−1))
≤ ‖A1/2ηk−1∇φx‖2L2(Ω)

=

∫
Ω

(A∇φx) · ∇(η2k−1φx) − 2

∫
Ω

ηk−1φx(A∇φx) · ∇ηk−1.

Let, according to Lemma 2.1, bx,(k−1) be chosen such that IHbx,(k−1)=IH(η2k−1φx).

Then η2k−1φx−bx,(k−1) ∈ V f . Since | supp(∇λx)∩supp(ηk−1)| = 0 and supp(∇ηk−1)
= ωx,(k−1)� \ ωx,(k−2)�+1, the first term on the right-hand side of (3.7) can be
rewritten as
(3.8)∫

Ω

(A∇φx) · ∇(η2k−1φx)

=

∫
Ω

(A∇φx) · ∇(η2k−1φx − bx,(k−1)) +

∫
Ω

(A∇φx) · ∇bx,(k−1)

=

∫
Ω

(A∇φx) · ∇bx,(k−1)

≤ C ′
IH

√
β |||φx|||ωx,(k−1)�\ωx,(k−2)�+1

‖∇IH(η2k−1φx)‖L2(ωx,(k−1)�\ωx,(k−2)�+1).
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With η2T := |T |−1
∫
T
η2k−1 we have

‖∇IH(η2k−1φx)‖L2(T ) = ‖∇IH((η2k−1 − η2T )φx)‖L2(T )

≤ CIH
‖∇((η2k−1 − η2T )φx)‖L2(T )

≤ CIH

(
‖η2k−1 − η2T ‖L∞(T )‖∇φx‖L2(T ) + ‖∇(η2k−1)‖L∞(T )‖φx‖L2(T )

)
≤ 2CIH

‖∇(ηk−1)‖L∞(T )

(
α−1/2 diam(T ) |||φx|||T + ‖φx − IH(φx)‖L2(T )

)
.

Thus, the property (3.2.c) of the cutoff function and the upper bound of the inter-
polation error (2.5.a) yield∣∣∣∣∣∣IH(η2k−1φx)

∣∣∣∣∣∣
ωx,(k−1)�\ωx,(k−2)�+1

≤ C ′
1�

−1‖A1/2∇φx‖L2(Ω\ωx,(k−2)�),(3.9)

where C ′
1 only depends on CIH

, Cco, Col, and
√
β/α. The same arguments allow

one to bound the second term on the right-hand side in (3.7),
(3.10)

2

∫
Ω

ηk−1φx(A∇φx) · ∇ηk−1

≤ 2
∑

T∈TH : T⊂ωx,(k−1)�\ωx,(k−2)�+1

‖∇ηk−1‖L∞(T )‖A1/2∇φx‖L2(T )‖A1/2φx‖L2(T )

≤ C ′′
1 �

−1‖A1/2∇φx‖2L2(Ω\ωx,(k−2)�)
,

where C ′′
1 only depends on CIH

, Cco, and
√
β/α. The combination of (3.7)–(3.10)

yields

(3.11) |||φx|||2Ω\ωx,(k−1)�
≤ C1�

−1 |||φx|||2Ω\ωx,(k−2)�
,

where C1 := C ′
1+C ′′

1 . For j = k− 2, . . . , 2, a similar argument (with ηk−1 replaced
by ηj) yields

|||φx|||2Ω\ωx,j�
≤ C1�

−1 |||φx|||2Ω\ωx,(j−1)�
.(3.12)

Starting from (3.11), the successive application of (3.12) for j = k − 2, k − 3, . . . , 2
proves

(3.13) |||φx|||2Ω\ωx,(k−1)�
≤ (C1�

−1)k−2 |||φx|||2ωx,�
.

Combining (3.6) and (3.13), we finally obtain the assertion. �

Lemma 3.5. There is a constant C3 that depends only on ρ and β/α, but not on
|N |, k, or � such that∣∣∣∣

∣∣∣∣
∣∣∣∣∑
x∈N

v(x)(φx − φx,�k)

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ C3(�k)
d

∑
x∈N

v2(x) |||φx − φx,�k|||2 .

Proof. For x ∈ N , let ζx = 1− η�k+1,�k+2
x (cf. Definition 3.3). By Lemma 2.1 there

exists a function bx ∈ V such that for any w ∈ V f it holds that

IHbx = IH((1− ζx)w), supp(bx) ⊂ supp(IH((1− ζx)w)) ⊂ ωx,�k+3 \ ωx,�k,

and

|||bx|||ωx,�k+3\ωx,�k
≤ C ′

IH
|||IH((1− ζx)w)|||ωx,�k+3\ωx,�k

.
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We note that w − ζxw − bx ∈ V f with support outside ωx,�k , i.e., a(φx, w −
ζxw − bx) = a(λx, w − ζxw − bx) = 0 and a(φx,�k, w − ζxw − bx) = 0. With
w =

∑
x∈N v(x)(φx − φx,�k) ∈ V f we have

|||w|||2 =
∑
x∈N

v(x) a(φx − φx,�k, ζxw + bx)

≤
√
β

∑
x∈N

|v(x)| |||φx − φx,�k||| · ‖∇(ζxw)‖L2(Ω)

+
√
β

∑
x∈N

|v(x)| |||φx − φx,�k||| · C ′
IH

‖∇(IH((1− ζx)w))‖L2(ωx,�k+3)

≤ 2
√
βC ′

IH
CIH

∑
x∈N

|v(x)| |||φx − φx,�k||| · ‖∇(ζxw)‖L2(Ω)

+ 2
√
βC ′

IH
CIH

∑
x∈N

|v(x)| |||φx − φx,�k||| · ‖∇w‖L2(ωx,�k+4)

≤ 2
√
βC ′

IH
CIH

∑
x∈N

|v(x)| |||φx − φx,�k||| · ‖(∇ζx)(1− IH)w)‖L2(ωx,�k+2)

+ 2
√

β
αC

′
IH

CIH

∑
x∈N

|v(x)| |||φx − φx,�k||| · |||w|||ωx,�k+4

≤ 4
√

β
αC

′
IH

C2
IH

Cco

∑
x∈N

|v(x)| |||φx − φx,�k||| · |||w|||ωx,�k+4

≤ 4
√

β
αC

′
IH

C2
IH

CcoCov(�k)
d/2

(∑
x∈N

v2(x) |||φx − φx,�k|||2
)1/2

|||w||| ,

where Cov(�k)
d represents an upper bound on the number of patches ωx,�k that

overlap a single element in the mesh. The result follows by dividing by |||w||| on
both sides. �

Theorem 3.6. Let u ∈ V solve (1.2) and, given �, k ≥ 2 ∈ N, let ums
H,�k ∈ V ms

H,�k

solve (2.11). Then

∣∣∣∣∣∣u− ums
H,�k

∣∣∣∣∣∣ ≤C4‖H−1
T ‖L∞(Ω) (�k)

d/2
(C1/�)

k−2
2 ‖g‖H−1(Ω)

+ C
1/2
ol CIH

α−1/2‖Hg‖L2(Ω)

holds with C1 from Lemma 3.4 and a constant C4 that depends on α, β and ρ but
not on H, k, �, g, or u.

Proof. Let ũms
H,�k :=

∑
x∈N ums

H (x) (λx − φx,�k), where ums
H (x), x ∈ N , are the coef-

ficients in the basis representation of ums
H . Due to Galerkin orthogonality, Lemma

3.1, Lemma 3.5, and the triangle inequality,

(3.14)

∣∣∣∣∣∣u− ums
H,�k

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣u− ũms
H,�k

∣∣∣∣∣∣ = ∣∣∣∣∣∣u− ums
H + ums

H − ũms
H,�k

∣∣∣∣∣∣
≤ C

1/2
ol CIH

α−1/2‖Hg‖L2(Ω) +
∣∣∣∣∣∣ums

H − ũms
H,�k

∣∣∣∣∣∣ .
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The application of Lemma 3.4 yields∣∣∣∣∣∣ums
H − ũms

H,�k

∣∣∣∣∣∣2 ≤ C3(�k)
d

∑
x∈N

ums
H (x)2 |||φx − φx,�k|||2

≤ C3(�k)
dC2

2 (C1/�)
k−2

∑
x∈N

ums
H (x)2 |||φx|||2ωx,�

.

Furthermore, we have∑
x∈N

ums
H (x)2 |||φx|||2ωx,l

≤ βCinv

∑
T∈T

H−2
T

∑
x∈T∩N

ums
H (x)2‖λx‖2L2(T )

≤ βC ′
inv

∑
T∈T

H−2
T

∥∥∥∥ ∑
x∈T∩N

ums
H (x)λx

∥∥∥∥
2

L2(T )

= βC ′
inv

∥∥∥∥H−2
∑
x∈N

ums
H (x)λx

∥∥∥∥
2

L2(Ω)

≤ βC ′
inv

(
‖H−2ums

H ‖2L2(Ω) +

∥∥∥∥H−2
∑
x∈N

ums
H (x)(φx − IHφx)

∥∥∥∥
2

L2(Ω)

)

≤ β
αC

′
inv(CF‖H−2

T ‖L∞(Ω) + CIH
) |||ums

H |||2 ,
where Cinv and C ′

inv depend on ρ and CF = CF(Ω) is the constant from Friedrichs’
inequality. This yields

(3.15)

∣∣∣∣∣∣ums
H − ũms

H,�k

∣∣∣∣∣∣ ≤ C ′
4‖H−1

T ‖L∞(Ω)(�k)
d/2(C1/�)

(k−2)/2 |||ums
H |||

≤ C4‖H−1
T ‖L∞(Ω)(�k)

d/2(C1/�)
(k−2)/2‖g‖H−1(Ω),

where C4 only depends on C2, C3, C
′
inv, CF, CIH

, and
√
β/α. The assertion follows

readily by combining (3.14) and (3.15). �

Remark 3.7. The error estimate in Theorem 3.6 contains a factor ‖H−1‖L∞(Ω).
However, its influence on the total error can be controlled by choosing the localiza-
tion parameter k proportional to log(1/‖H−1‖L∞(Ω)). For non-uniform meshes, it
is recommended to vary the choice of the localization parameter in space according
to k ≈ log 1

H . We neglect this opportunity to avoid overloading the paper.

4. Discretization of the fine scale computations

In this section, we focus on how to compute numerical approximations to the
local basis functions λx − φx,�k and thereby to the multiscale solution ums

H,�k. In
order to do this, we need to extend the error analysis of Section 3 to a fully discrete
setting. There is a lot of freedom in choosing different finite elements and different
refinement strategies; see e.g. [16, 17]. We will focus on a very simple and natural
approach. We assume that the local basis functions are computed using subgrids of
a fine scale reference mesh, which is a (possibly space adaptive) refinement of the
coarse grid TH .

More precisely, let Th be the result of one uniform refinement and several con-
forming but possibly non-uniform refinements of the coarse mesh TH . We in-
troduce h : Ω → R>0 as the Th-piecewise constant mesh width function with
ht := h|t = diam(t) for all t ∈ Th. We construct the finite element space

Sh := {v ∈ C0(Ω) | ∀t ∈ Th(Ω), v|t is a polynomial of total degree ≤ 1}.
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We let uh ∈ Vh := Sh ∩H1
0 (Ω) be the reference solution that satisfies

(4.1) a(uh, v) = G(v) for all v ∈ Vh.

Locally on each patch we let

(4.2) V f
h(ωx,k) := V f(ωx,k) ∩ Vh = {v ∈ Vh | IHv = 0 and v|Ω\ωx,k

= 0}.

The numerical approximation φh
x,k ∈ V f

h(ωx,k) of the corrector φh
x,k is determined

by

a(φh
x,k, w) = a(λx, w) for all w ∈ V f

h(ωx,k).

We denote the discrete multiscale finite element space

V ms,h
H,k = span{λx − φh

x,k | x ∈ N}.

The corresponding discrete multiscale approximation ums,h
H,k ∈ V ms,h

H,k fulfills

(4.3) a(ums,h
H,k , v) = G(v) for all v ∈ V ms,h

H,k .

Theorem 4.1. Let u ∈ V solve (1.2) and let ums,h
H,�k ∈ V ms,h

H,k solve (4.3). Then∣∣∣∣∣∣∣∣∣u− ums,h
H,�k

∣∣∣∣∣∣∣∣∣ ≤ C̃4‖H−1
T ‖L∞(Ω) (�k)

d/2
(C̃1/�)

k−2
2 ‖g‖H−1(Ω)

+ C
1/2
ol CIH

α−1/2‖Hg‖L2(Ω) + |||u− uh||| ,

where C̃4 only depends on ρ, α and β.

Remark 4.2 (Multiscale splitting by nodal interpolation). Having discretized the
fine scale computation, i.e., having replaced the infinite dimensional space V by
some finite element space Vh ⊂ C0(Ω) we are allowed to replace the Clément-type
interpolation by classical nodal interpolation. This leads to the variational multi-
scale method in [18], which is a modification of the method first presented in [17].
Because nodal interpolation satisfies the conditions (2.5.a)–(2.5.b), Theorem 4.1
establishes an a priori error bound for the multiscale method [18]. However, the
constant CIH

in (2.5.a) depends on the ratio H/h of the discretization scales if
d > 1 (CIH

≈ log(H/h) in 2d and CIH
≈ (H/h)−1 in 3d, cf. [21]). Hence, for nodal

interpolation, the constants C̃1, C̃4 in Theorem 4.1 depend on H/h in a similar
fashion. In 2d this can still be acceptable because the dependence on H/h is only
logarithmic.

Remark 4.3 (Estimates for the fine scale error). The finite element space Vh may be
replaced by any finite element space that contains Vh, e.g., by piecewise polynomials
of higher order. The third part in the error bound in Theorem 4.1 can be bounded
in terms of data, mesh parameter h, and polynomial degree using standard a pri-
ori error estimates. For example, if A ∈ W 1,∞(Ω) (bounded with bounded weak
derivative) and ε is the smallest present scale, i.e., ‖∇A‖L∞(Ω) � ε−1, the third
term in the error bound in Theorem 4.1 may be replaced by the worst case bound
Chε−1 for a first-order ansatz space Vh (see [20]). It is shown in [20] that for highly
varying but smooth coefficient A, higher order ansatz spaces are superior.

Remark 4.4 (Periodic coefficient). Let Ω be some square or cube, g ∈ L2(Ω), let A
be smooth and periodic, A(x) = A(x/ε), with some small scale parameter ε > 0,
and let uε denote the corresponding solution of (1.2). Choose uniform meshes TH
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and Th with H > ε > h and k ≈ log(H−1). With regard to the previous comment,
Theorem 4.1 yields the error bound∣∣∣∣∣∣∣∣∣uε − ums,h

H,�k

∣∣∣∣∣∣∣∣∣ ≤ Cg(H + h
ε ).

With h ∼ εH the error in the approximation becomes independent of the fine
scale oscillations without any so-called resonance effects as they are observed, e.g.,
in [13]. We emphasize that periodicity can be exploited to reduce the number
corrector problems to be solved significantly.

Remark 4.5 (Solution of the local problems). The local problems need to be solved
in the spaces V f

h(ωx,k). This is a standard finite element space with the additional
constraint that the trial and test functions should have no component in VH . In
practice this constraint is realized using Lagrange multipliers.

The resulting coarse scale system of equations is of the same size as the original

problem, dim(V ms,h
H,k ) = dimVH and it is still sparse. The number of non-zero entries

will be larger and depend on k. Note, however, that the non-zero entries in the
stiffness matrix decay exponentially away from the diagonal.

Proof of Theorem 4.1. We use the triangle inequality∣∣∣∣∣∣∣∣∣u− ums,h
H,�k

∣∣∣∣∣∣∣∣∣ ≤ |||u− uh|||+
∣∣∣∣∣∣∣∣∣uh − ums,h

H

∣∣∣∣∣∣∣∣∣ + ∣∣∣∣∣∣∣∣∣ums,h
H − ums,h

H,�k

∣∣∣∣∣∣∣∣∣
and follow the arguments from the proof of Theorem 3.6 simply replacing V by Vh

and using Lemmas 4.6, 4.8, and 4.9 below (discrete versions of Lemmas 3.1, 3.4,
and 3.5) to bound the last two terms. �

Lemma 4.6 (Discrete version of Lemma 3.1). Let uh ∈ Vh solve (4.1) and ums,h
H ∈

V ms,h
H solve (4.3) with k large enough so that ωx,k = Ω for all x ∈ N . Then∣∣∣∣∣∣∣∣∣uh − ums,h

H

∣∣∣∣∣∣∣∣∣ ≤ C
1/2
ol CIH

α−1/2‖Hg‖L2(Ω)

holds with constants Col and CIH
that only depend on ρ.

Proof. Note that uf
h := uh−ums,h

H is the unique element of V f
h := V f ∩Vh such that

a(uf
h, v) = G(v) for all v ∈ V f

h . The lemma follows from the same arguments in the
proof of Lemma 3.1. �

In the remaining part of this Section, A � B abbreviates an inequality A ≤ C B
with some generic constant 0 ≤ C < ∞ that does not depend on the mesh sizes H,
h and the localization parameters. The constant may depend on the contrast β/α
but not on the geometrical or topological structure of the coefficient A.

To establish discrete versions of Lemmas 3.4 and 3.5 we are facing the technical
difficulty that the product of v ∈ Vh and some cut-off function η from Definition 3.3
is not necessarily an element of Vh. However, the subsequent lemma shows that the
product ηv can be approximated sufficiently well by elements from Vh.

Lemma 4.7. For all x ∈ N , M > m ∈ N, and corresponding cut-off function
ηm,M
x defined in (3.3) there exists some v ∈ V f

h(ωx,M+1) such that∣∣∣∣∣∣ηm,M
x φh

x − v
∣∣∣∣∣∣ � 1

M −m

∣∣∣∣∣∣φh
x

∣∣∣∣∣∣
ωx,M+1\ωx,m−1

.

Furthermore, the statement also holds if ηm,M
x is replaced by 1 − ηm,M

x and v ∈
V f
h(Ω \ ωx,m−1).
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Proof. Let x ∈ N , M > m ∈ N be fixed and define η := ηm,M
x . Let Ih : V ∩

C(Ω̄) → V h be the nodal interpolant with respect to the mesh Th. Recall its (local)
approximation and stability properties

‖∇(v − Ihv)‖L2(t) � ht‖∇2v‖L2(t) and ‖Ihv‖L2(t) � ‖v‖L2(t)

for all polynomials v. According to Lemma 2.1, there exists some bx ∈ V h such
that IH(bx) = IH(Ih(ηφ

h
x)), |||bx||| �

∣∣∣∣∣∣IH(Ih(ηφ
h
x))

∣∣∣∣∣∣, and supp(bx) ⊂ ωx,M+1 \
ωx,m−1. Hence, v := Ih(ηφ

h
x)− bx ∈ V f

h(ωx,M+1). Since IHIhη̄Tφ
h
x = η̄TIHφh

x = 0
for η̄T = |T |−1

∫
T
η, we get∣∣∣∣∣∣ηφh

x − v
∣∣∣∣∣∣2 =

∣∣∣∣∣∣ηφh
x − Ih(ηφ

h
x) + bx

∣∣∣∣∣∣2
�

∑
t∈Th:t⊂ω̄x,M\ωx,m

‖∇(ηφh
x − Ih(ηφ

h
x))‖2L2(t) +

∣∣∣∣∣∣IH(Ih((η − η̄T )φ
h
x))

∣∣∣∣∣∣2
�

∑
t∈Th:t⊂ω̄x,M\ωx,m

h2
t‖∇2(ηφh

x)‖2L2(t) +
∑

T∈TH :T⊂ω̄x,M+1\ωx,m−1

H−2
T ‖Ih((η − η̄T )φ

h
x)‖2L2(T )

�
∑

t∈Th:t⊂ω̄x,M\ωx,m

h2
t

(
‖∇2η‖2L∞(t)‖φh

x‖2L2(t) + ‖∇η‖2L∞(t)‖∇φh
x‖2L2(t)

)

+
∑

T∈TH :T⊂ω̄x,M+1\ωx,m−1

H−2
T ‖η − η̄T ‖2L∞(T )‖φh

x‖2L2(T )

� (M −m)−1
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣2
ωx,M+1\ωx,m−1

using the property (3.2.c) of η and Poincaré’s inequality. This proves the first part
of the lemma.

The second part concerning 1 − η follows using the same argument but with
v ∈ V f

h(Ω \ ωx,m−1). �

Lemma 4.8 (Discrete version of Lemma 3.4). For all x ∈ N , k, � ≥ 2 ∈ N the
estimate

∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣ ≤ C̃2

(
C̃1

�

) k−2
2 ∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
ωx,�

holds with constants C̃1, C̃2 that only depend on ρ and β/α but not on x, k, �, h,
or H.

Proof. Let ζx := 1 − η
�(k−1)+1,�k−1
x with η

�(k−1)+1,�k−1
x as in equation (3.3) in

Definition 3.3. Then there exists a v ∈ V f
h(ωx,�k) such that∣∣∣∣∣∣φh

x − v
∣∣∣∣∣∣

ωx,�k
≤

∣∣∣∣∣∣φh
x − ζxφ

h
x

∣∣∣∣∣∣
ωx,�k

+
∣∣∣∣∣∣ζxφh

x − v
∣∣∣∣∣∣

ωx,�k

�
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
ωx,�k\ωx,�(k−1)+1

+
∣∣∣∣∣∣ζxφh

x

∣∣∣∣∣∣
ωx,�k−1\ωx,�(k−1)+1

.

Furthermore, using the same argument as in Lemma 3.4,∣∣∣∣∣∣ζxφh
x

∣∣∣∣∣∣
ωx,�k−1\ωx,�(k−1)+1

�
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
ωx,�k\ωx,�(k−1)+1

which yields∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣φh
x − v

∣∣∣∣∣∣2
ωx,�k

+
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
Ω\ωx,�k

�
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
Ω\ωx,�(k−1)+1

.
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Now let ηj := η
�(j−1)+1,�j
x (cf. Definition 3.3), j = 2, 3, . . . , k − 1 and note that

‖A1/2∇φh
x‖2L2(Ω\ωx,�(k−1))

≤ a(φh
x, η

2
k−1φ

h
x)− 2

∫
Ω

ηk−1φ
h
x(A∇φh

x) · ∇ηk−1.

The second term can be treated exactly as in Lemma 3.4 and, hence, bounded by

�−2
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣2
Ω\ωx,�(k−2)

. We make use of Lemma 4.7 to bound the first term. There

exists v ∈ V f
h(Ω \ ωx,�(k−1)+1) such that

a(φh
x, η

2
k−1φ

h
x) ≤

∣∣∣∣∣∣φh
x

∣∣∣∣∣∣
ω�(k−1)\ω�(k−2)+1

∣∣∣∣∣∣η2k−1φ
h
x − v

∣∣∣∣∣∣ � �−2
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣2
Ω\ωx,�(k−2)

.

The final assertion follows by similar arguments as in the proof of Lemma 3.4. �

Lemma 4.9 (Discrete version of Lemma 3.5). There is a constant C̃3 depending
only on ρ and β/α, but not on |N |, k, or � such that

∥∥∥∥
∣∣∣∣∑
x∈N

v(x)(φh
x − φh

x,�k)

∣∣∣∣
∥∥∥∥
2

≤ C̃3(�k)
d

∑
x∈N

v2(x)
∣∣∣∣∣∣φh

x − φh
x,�k

∣∣∣∣∣∣2 .
Proof. For x ∈ N , let ζx = 1 − η�k+1,�k+2

x (cf. Definition 3.3) and let z =∑
x∈N v(x) (φx − φx,�k). We have,

∥∥∥∥
∣∣∣∣∑
x∈N

v(x) (φx − φx,�k)

∣∣∣∣
∥∥∥∥
2

=
∑
x∈N

v(x) a(φh
x − φh

x,�k, ζxz + (1− ζx)z) = I + II.

The first term I :=
∑

x∈N v(x) a(φh
x−φh

x,�k, ζxz) can be treated in exactly the same
way as in the proof of Lemma 3.5. We focus on the second term. Due to Lemma 4.7
there exists a w ∈ V f

h(Ω \ ω�k) such that

II :=
∑
x∈N

v(x) a(φh
x − φh

x,�k, (1− ζx)z − w)

�
(∑

x∈N
|v(x)|2

∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣2)1/2 (∑
x∈N

|||(1− ζx)z − w|||2
)1/2

�
(∑

x∈N
|v(x)|2

∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣2)1/2 (∑
x∈N

|||z|||2ωx,�k+2\ω�k+1

)1/2

� (�k)d/2

(∑
x∈N

|v(x)|2
∣∣∣∣∣∣φh

x − φh
x,�k

∣∣∣∣∣∣2)1/2

|||z||| .

The result follows immediately. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Figure 1. Scalar coefficient used in the numerical experiment: A1

(left), A2 (middle), A3 (right).

Figure 2. Uniform triangulations of the unit square.

5. Numerical experiments

Numerical experiments shall validate our theoretical results from the previous
sections.

5.1. Experimental setup. Let Ω be the unit square and the outer force g ≡ 1
in Ω. Consider three different choices for the scalar coefficient A1, A2, A3 with
increasing difficulty as depicted in Figure 1. The coefficient A1 = 1 is constant.
The coefficient A2 is piecewise constant with respect to a uniform Cartesian grid
of width 2−6. The values in each grid cell are chosen in the range [1/20, 2]; the
contrast β(A2)/α(A2) ≤ 40 is moderate. The coefficient A3 is piecewise constant
with respect to the same uniform Cartesian grid of width 2−6. Its values are taken
from the data of the SPE10 benchmark; see http://www.spe.org/web/csp/. The
contrast for A3 is large, β(A3)/α(A3) ≈ 4 · 106. Consider uniform coarse meshes of
size H = 2−1, 2−2, . . . , 2−6 of Ω as depicted in Figure 2. Note that none of these
meshes resolves the rough coefficients A2 and A3 appropriately.

The reference mesh Th has width h = 2−9. Since no analytical solutions are
available, the standard finite element approximation uh ∈ Vh on the reference mesh
Th serves as the reference solution. All fine scale computations are performed on
subsets of Th.

The approximations are compared with this reference solution only. Doing this,
we assume that uh is sufficiently accurate. True errors would behave similar in the
beginning but level off at some point when the reference error |||u− uh||| dominates
the upscaling error.

5.2. Results for the energy error. Figure 3 depicts the energy errors of the
new multiscale method and the classical P1FEM (see (2.2)) with respect to the
same coarse mesh. Depending on the coarse discretization scale H, the localization
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Figure 3. Relative energy errors |||uh−ums,h
H,k /|||uh||| (� solid) with

localization parameter k = �2 log(1/H)� and |||uh − uH ||| / |||uh|||
(♦ dotted) vs. number of degrees of freedom Ndof ≈ H−2 for
different coefficients: A1 (top left), A2 (top right), A3 (bottom).

The dashed black line is N
−1/2
dof .

parameter k is chosen to be �2 log(1/H)�. The logarithmic dependence on 1/H
is motivated by our a priori analysis. The choice of the constant 2 is based on
numerical tests. It turns out that, in all experiments, this choice leads to the
desired linear textbook convergence (rate −1/2) of the energy error (w.r.t. to the
number of degrees of freedom Ndof = |N | ≈ H−2) related to the sequence of
multiscale approximations. Pre-asymptotic effects are not observed. In particular,
the performance of our method does not seem to be affected by the high contrast
present in A3. Whether our estimates on the decay of the corrector functions are
sub-optimal or have worst-case character with respect to contrast is an issue of
present research.

Observe that the classical P1FEM suffers from the lacks of approximability and
regularity and converges only poorly for the rough coefficients A2 and A3.

5.3. Results for the L2 error. Figure 4 shows L2 errors of the new multiscale
method and the classical P1FEM. Again, the choice of the localization parameter
k = �2 log(1/H)� yields the optimal convergence rate −1 for our method in all
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Figure 4. Relative L2 errors ‖uh − ums,h
H,k ‖/‖uh‖ (� solid),

‖uh − IHums,h
H,k ‖/‖uh‖ (∗ solid) with localization parameter k =

�2 log(1/H)� and ‖uh − uH‖/‖uh‖ (♦ dotted) vs. number of de-
grees of freedom Ndof ≈ H−2 for different coefficients: A1 (top
left), A2 (top right), A3 (bottom). The dashed black line is N−1

dof .

experiments (w.r.t. to the number of degrees of freedom Ndof = |N | ≈ H−2)
without any pre-asymptotic behavior. This observation is justified by a standard

Aubin-Nitsche duality argument. Define e := uh − ums,h
H,k ∈ L2(Ω) and let zh ∈ Vh

solve

a(zh, vh) =

∫
Ω

evh for all vh ∈ Vh.

Galerkin orthogonality leads to

‖uh − ums,h
H,k ‖2L2(Ω) = a(ze − zms,h

H,k , e) ≤
∣∣∣∣∣∣∣∣∣zh − zms,h

H,k

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣uh − ums,h
H,k

∣∣∣∣∣∣∣∣∣ ,
where zms,h

H,k ∈ V ms,h
H,k is the Galerkin projection of zh onto the discrete multiscale

finite element space V ms,h
H,k . The estimates for the energy error (see Section 4) and

the present choice of k yield the L2 estimate

‖uh − ums,h
H,k ‖L2(Ω) � H2‖g‖L2(Ω).
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More importantly, we observe that the L2 error between uh and IHums,h
H,k con-

verges nicely at a rate close to −3/4 without pre-asymptotic effects. This is re-

markable because IHums,h
H,k is a truly coarse approximation. IHums,h

H,k is an element
of the coarse P1 finite element space. Hence, it cannot capture microscopic features
of the solution. The rate of convergence (with respect to the number of degrees
of freedom) is limited by 1+s

2 for some s ∈ [0, 1] which is related to the regularity

of the solution (u ∈ H1+s for some s ∈ [0, 1]). However, IHums,h
H,k approximates

the macroscopic behavior of the solution accurately with only very few degrees
of freedom. Note that the storage complexity of the modified basis is of order
O(h−2 log 1/H) whereas its interpolation can be stored in O(H−2 log 1/H). Once

the coarse system matrix of the multiscale method is assembled, IHums,h
H,k can be

computed without using any fine scale information from the modified basis whereas

this would be required to represent the full multiscale approximation ums,h
H,k .

6. Application to multiscale methods

In this section we discuss three multiscale methods and how the presented anal-
ysis relates to each of them.

6.1. The variational multiscale method. The variational multiscale method
was first introduced in [14]. The function space V is here split into a coarse part
(standard finite element space on a coarse mesh), in our case VH , and a fine part,
in our case V f . The weak form is also decoupled into a coarse and a fine part. The
method reads: find ū ∈ VH and u′ ∈ V f such that

a(ū, v̄) + a(u′, v̄) = G(v̄) for all v̄ ∈ VH ,

a(u′, v′) = G(v′)− a(ū, v′) for all v′ ∈ V f .

The fine scale solution is further decoupled over the coarse elements T ∈ TH and
approximated using analytical techniques. Note that the fine scale solution u′ is an
affine map of the coarse scale solution ū. If we let u′ ≈ Mū +m and plug this in
to the first equation we get a coarse stiffness matrix of the form a(v̄+Mv̄, w̄), i.e.,
a non-symmetric bilinear form for a symmetric problem.

6.2. The multiscale finite element method. In [13] the multiscale finite ele-
ment method was first introduced. Here modified multiscale basis functions are
computed numerically on sub-grids on each coarse element individually. The cor-
rector functions fulfill: find φx,T ∈ H1

0 (T ),

a(λx − φx,T , v) = 0 for all v ∈ H1
0 (T ) and for all T ∈ TH .

Here homogeneous Dirichlet boundary conditions are used on the boundary of each
element T , i.e., the local problems are totally decoupled. To get a more accurate
method one can improve the boundary conditions using information from the data
A. A larger domain can also be considered (this procedure is referred to as over-
sampling); see [13]. Note that since the coarse scale basis functions are modified
(both trial and test space) the resulting method is symmetric.
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6.3. The adaptive variational multiscale method. The modified basis func-
tion construction given by equation (2.7) and (2.8) was first introduced in a vari-
ational multiscale framework in [15, 16]. In these papers the Scott-Zhang inter-
polation was used in the analysis and nodal interpolation in the discrete setting
for the numerical examples. The modified basis functions where only used for the
trial functions but not for the test functions. A fine scale correction based on the
right-hand side data was also included. In [18] the modified basis functions were
used for both trial and test functions. The exponential decay of the modified basis
functions, with respect to the number of coarse layers of elements in the vertex
patches, has been demonstrated numerically in all these works; see [17, 18].

The adaptive variational multiscale method has been extended to convection
dominated problems and problems in mixed form [18]. A posteriori error bounds
have been derived and adaptive algorithms designed where the local mesh and patch
size are chosen automatically in order to reduce the error.

6.4. Application of the presented analysis. The convergence proof in this pa-
per gives a valid bound also as h → 0 independent of the patch size and coarse
mesh size. The proof does not rely on regularity of the solution and gives a very
explicit expression for the rate of convergence. The present analysis confirms the
numerical results in [17, 18] and gives the symmetric version of the method, where
both trial and test space are modified, the solid theoretical foundation it has previ-
ously been missing. The analysis also justifies the use of a posteriori error bounds
for adaptivity [16, 18] because we can now prove that the quantities measured on
the patch boundary decays exponentially in the number of coarse layers.

For the variational multiscale method this result says that it is important to al-
low larger subgrid patches than just one coarse element. This will result in overlap
but the local problems are totally decoupled and we have in previous works demon-
strated how adaptivity can be used to only solve local problems where it is needed,
see for instance [16, 18]. For the multiscale finite element method the analysis is
not directly applicable since the fine scale space V f is not used. It is the decay
in this space which we have proven to be exponential (in number of coarse layers
of elements in the subgrid). If this decay is not present, inhomogeneous boundary
conditions are instead needed for the subgrid problems. To the best of our knowl-
edge, such constructions have only been proved to be accurate in special settings,
e.g., periodic coefficients.
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