
PRL 94, 065002 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
18 FEBRUARY 2005
Localization of Intense Electromagnetic Waves in a Relativistically Hot Plasma
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We consider nonlinear interactions between intense short electromagnetic waves (EMWs) and a rela-
tivistically hot electron plasma that supports relativistic electron holes (REHs). It is shown that such
EMW-REH interactions are governed by a coupled nonlinear system of equations composed of a
nonlinear Schrödinger equation describing the dynamics of the EMWs and the Poisson-relativistic
Vlasov system describing the dynamics of driven REHs. The present nonlinear system of equations
admits both a linearly trapped discrete number of eigenmodes of the EMWs in a quasistationary REH and
a modification of the REH by large-amplitude trapped EMWs. Computer simulations of the relativistic
Vlasov and Maxwell-Poisson system of equations show complex interactions between REHs loaded with
localized EMWs.
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The nonlinear interaction of high-intensity ultrashort
electromagnetic waves with plasmas is of primary inter-
est for the fast ignitor concept of the inertial confine-
ment fusion and for the development of high power sources
of hard electromagnetic (EM) radiation, as well as for
laser-plasma particle and photon accelerators, and com-
pact astrophysical objects containing intense electro-
magnetic bursts. Recent progress in the development of
superstrong electromagnetic pulses with intensities I �
1021–1023 W=cm2 has also made it possible to create
relativistic plasmas in the laboratory by a number of ex-
perimental techniques. At the focus of an ultraintense short
electromagnetic pulse, the electrons can acquire velocities
close to the speed of light, opening the possibility of
simulating in the laboratory conditions and phenomena
that, usually, belong to the astrophysical realm. In fact,
nonlinear interactions between intense short electromag-
netic pulses and a background plasma give rise to a number
of nonlinear effects [1,2] associated with relativistic elec-
tron mass increase in the electromagnetic fields and the
plasma density modification due to relativistic radiation
ponderomotive force. In the past, several authors [3–8]
presented theoretical [3–6] and particle-in-cell simulation
[7,8] studies of intense electromagnetic envelope solitons
in a cold plasma, where the plasma slow response to the
electromagnetic waves (EMWs) is modeled by the electron
continuity and relativistic momentum equations, supple-
mented by Poisson’s equation. Assuming beamlike particle
distribution functions, relativistic electromagnetic solitons
in a warm quasineutral electron-ion plasma have been
investigated [9]. Experimental observations [10] show
bubblelike structures in proton images of laser-produced
plasmas, which are interpreted as remnants of electromag-
netic envelope solitons.

In this Letter, we present fully relativistic nonlinear
theory and computer simulations for nonlinearly coupled
intense localized EMW and relativistic electron hole
(REH) structures in a relativistically hot electron plasma
by adopting the Maxwell-Poisson-relativistic Vlasov sys-
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tem which accounts for relativistic electron mass increase
in the electromagnetic fields and relativistic radiation pon-
deromotive force [2], in addition to trapped electrons
which support the driven REHs. Such a scenario of coupled
intense EMWs and REHs is absent in any fluid treatment
[3–6] of relativistic electromagnetic solitons in a plasma.

We first present the relevant equations describing the
action of intense laser light on the electrons in a relativisti-
cally hot collisionless plasma, as well as the electromag-
netic wave equation accounting for the relativistic electron
mass increase and the electron density modification due to
the radiation relativistic ponderomotive force [1] F �
�mec

2@�=@z, where me is the electron rest mass, c is
the speed of light in vacuum, and � � �1� p2

z=m2
ec2 �

e2jAj2=m2
ec

4�1=2 is the relativistic gamma factor. Here, pz
is the z component of the electron momentum, A is the
perpendicular (to ẑ, where ẑ is the unit vector along the z
direction in a Cartesian coordinate) component of the
vector potential of the circularly polarized EMWs, and e
is the magnitude of the electron charge. The dynamics of
nonlinearly coupled EMWs and REHs is governed by
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where A is normalized by mec=e, � by Te=e, pz by meVTe,
and z by rD. We have denoted � � �1� �2p2

z � jAj2�,
VTe � �Te=me�

2, � � Vte=c, rD � VTe=!p, and !p �

�4�n0e2=me�
1=2. In Eq. (1), we have used the Coulomb

gauge r 
A � 0, and have excluded the longitudinal (z)
component @2�=@t@z � jz, where jz is the parallel cur-
rent density, by noticing that this component is equivalent
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to Poisson’s equation (3). This can be seen from
@3�=@t@z2 � @jz=@z � �@�=@t, where the last equality
follows from the electron continuity equation which relates
the charge and current densities, viz. � and jz, respectively.
Integration of the last expression with respect to t yields
@2�=@z2 � �� �

R
1
�1 fdpz � 1, which is Eq. (3) above.

Far away from the REH, where � � jAj � 0, the
electrons are assumed to obey a Jüttner-Synge distribu-

tion function [11] ~f0�pz� � a0 exp���
��������������������
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where K0 and K1 are the modified Bessel functions of
second kind. The frequency �p represents the normalized
(by !p) relativistic plasma frequency at equilibrium.

We now investigate the properties of driven REHs which
move with the constant speed v0 relative to the observer
(bulk plasma) frame. Accordingly, we use the ansatz
f�pz; �� for the relativistic electron distribution function,
and assume that � and jAj2 depend on � only, where � �
z� v0t. Then, Eqs. (2) and (3) take the form�
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respectively. The general solution of Eq. (5) is f � f0�E�,
where f0 is some function of one variable and E �
�v0pz � �1=�2���� 1=�0� �� is the energy integral.

Here, we have denoted �0 � 1=
��������������������
1� �2v2

0

q
. We note that

trapped electrons have negative energy while untrapped
(free) electrons have positive energy.

In the slowly varying envelope (WKB) approximation,
viz. A � �1=2�A�z; t��x̂� iŷ� exp��i!0t� ik0z�� com-
plex conjugate, Eq. (1) can be written as
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where !0���2
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2�1=2 is the EMW frequency, vg�
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Introducing A � W��� exp��i#t� iKz� into Eq. (7),
where W is a real-valued normalized (by mec=e) function,
we obtain K � �2!0�v0 � vg� and

d2W

d�2
� $W � �2��2 ��2

p�W � 0; (8)
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where $ � �2!0�
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g� represents a non-
linear frequency shift, and the gamma factor becomes � ����������������������������������
1� �2p2

z �W2
q

. Here, �2 �
R
1
�1�f=��dpz represents

the square of the local electron plasma frequency that
accounts for the relativistic electron mass increase.

A condition for the untrapped electron is that far away
from the REH, the electron distribution function should
smoothly connect to the Jüttner-Synge distribution func-
tion. In order to impose this condition for the free elec-
trons, we will use the solution

ff � f0�E� � ~f0�~p�E�; (9)

where ~p�E� is a function of the energy such that ~p�E� ! p
when W ! 0 and � ! 0. Such a function can be found

with the help of the energy integral by setting �v0 ~p�E� �
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where ~p��E� and ~p��E� correspond to a modified momen-
tum for free electrons on each side of the trapped elec-
tron population in momentum space. Using ~p�E� � ~p��E�
and ~p�E� � ~p��E� in Eq. (9), we obtain the distribution
function for free electrons. In the limit of vanishing en-
ergy, E � 0, we have ~p��0� � �0v0, and the value of
the distribution function is ff jE�0 � f0�0� � ~f0��0v0� �
a0 exp����0 � 1�=�2, which should be matched with the
distribution function for the trapped electrons with E � 0
in order to obtain a continuous distribution function. For
the trapped electrons, we choose a relativistic Maxwell-
Boltzmann distribution with a negative ‘‘temperature,’’ viz.
ft � a0 exp���2�1� �0� � %E, where % is a trapping pa-
rameter, leading to a vortex distribution [12] for %< 0.
Clearly, the separatrix between the free and trapped elec-
tron distributions is found where the energy integral E � 0.
Solving for p in E � 0, we have
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where p� and p� constitute the limits between the trapped
and free electron distributions in momentum space. Using
these limits, we can then write

f�
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Integrating the distribution function (12) over the momen-
tum space, we obtain the total electron number density as a
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function of � and W, which are calculated self-
consistently by means of the Poisson and Schrödinger
equations, respectively.

Figure 1 exhibits the influence of intense EMWs on
REHs, described by the coupled system of Eqs. (6) and
(8). In the Schrödinger equation (8), $ represents the
eigenvalue, and the square of the local electron plasma
frequency, �2, enters as a ‘‘potential.’’ We see that for
larger electromagnetic fields W, the REH potential �
becomes larger and the REH wider, admitting larger ei-
genvalues $. This can be explained in that the relativistic
ponderomotive force of localized EMWs pushes the elec-
trons away from the center of the REH, leading to an
increase of the electrostatic potential and a widening of
the REH. We see that the depletion of the electron den-
sity in the REH is only minimal, while the local elec-
tron plasma frequency � is strongly reduced owing to
the increased mass of the electrons that are accelerated
by the REH potential; the maximum potential �max � 15
in Fig. 1 corresponds in physical units to a potential
�2�max � 0:5� 106 � 1:2� 106 V, accelerating the
electrons to gamma factors of � 6. The linear trapping of
EMWs in REHs is displayed in Fig. 2, where we have
assumed a zero electromagnetic field �W � 0� in the ex-
pression for � used in Eq. (8) and in the energy integral.
The eigenvalue problem admits a discrete set of localized
eigenfunctions with positive eigenvalues, and in this case
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FIG. 1. Large-amplitude trapped EMW envelope (upper
panel), the potential (second panel), the electron number density
(third panel), and the square of the local electron plasma fre-
quency (lower panel) for large-amplitude EMWs with a maxi-
mum amplitude of Wmax � 1:5 (solid lines) and Wmax � 1:0
(dashed lines), and as a comparison a REH with small-amplitude
EMWs which have Wmax � 1 (dotted lines). The nonlinear
frequency shift for the Wmax � 1:5 case is $ � 0:099 and for
the Wmax � 1:0 case it is $ � 0:095, to be compared with the
small-amplitude case which has $ � 0:088. Parameters are:
v0 � 0:7, � � 0:4, and % � �0:5. The selected values of %
are related to the maximum REH potential according to a
specific relation similar to one in Ref. [12], which will be
presented in a separate paper.
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we found two even and one odd eigenfunctions corre-
sponding to three different eigenvalues. The numerical
method used to solve the boundary value problem (6),
where � was set to zero at the boundaries and for a given
W, was a slightly modified Newton’s method. Equation (8)
has been solved as a linear eigenvalue problem for W,
where the amplitude Wmax of the EMW was kept fixed to
obtain new values on W and $. Then, the procedure of
solving for � and W was repeated until convergence. The
second derivatives were approximated with a second-order
centered scheme with the function values set to zero at the
boundaries.

In order to study the dynamics of interacting solitary
structures composed of localized REHs loaded with
trapped EMWs, we have numerically solved the time-
dependent, relativistic Vlasov equation (2) together with
the Schrödinger equation (7). The results are displayed in
Figs. 3 and 4. As an initial condition to our simulations, we
used solutions to the quasistationary equations described
above, where the left REH initially has the speed v0 � 0:7
and is loaded with EMWs with Wmax � 1:5, while the right
REH has the speed v0 � �0:3, and is loaded with EMWs
with Wmax � 2:5. Further, we used k0 � vg � 0 in the
initial condition for A and in the solution of Eq. (7). In
Fig. 3 we display the phase space distribution of the
electrons and the electromagnetic field amplitude at differ-
ent times. We see that the REHs loaded with trapped
EMWs collide, merge, and then split into two REHs, while
there are two strongly peaked EMW envelopes at z � 30
and z � 70 remaining after the splitting of the REH. A
population of electrons has also been accelerated to large
energies, seen at z � 100 in the lower left panel of Fig. 3.
The time development of the EMW amplitudes, REH
potential, the squared local plasma frequency, and the
electron number density is shown in Fig. 4. We observe
collision and splitting of the REHs and creation of the two
localized EM envelopes at z � 70, clearly visible in the left
two panels at t > 150. The EM solitary waves are created
by the combined action of relativistic electron mass in-
crease and relativistic ponderomotive force of localized
EMWs, which have been further intensified due to non-
linear interactions where collapsing REH has deposited its
EM energy into the plasma. The interacting REHs also
excite large-amplitude electrostatic waves, seen as oscil-
lations in the REH potential for t > 100. In our numerical
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FIG. 2. Small-amplitude trapped EMWs (in arbitrary units) in
a REH. Three eigenstates of trapped EMWs exist, corresponding
to the eigenvalues $1 � 0:088 (solid line), $2 � 0:053 (dashed
line), and $2 � 0:013 (dash-dotted line). The parameters used
are the same as for the dotted lines in Fig. 1.
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FIG. 4 (color online). The electromagnetic field (upper left
panel), potential (upper right panel), squared local plasma fre-
quency (lower left panel), and electron density (lower right
panel) for two colliding REHs.

FIG. 3 (color online). Phase space plots of the electron distri-
bution function (left panels) and the modulus of the electromag-
netic field (right panels) for t � 0, t � 50, t � 125, and t � 162.
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simulations, we used a compact Padé scheme [13] to
approximate the px derivatives and a pseudospectral
method to approximate the x derivative and to solve
Poisson’s equation, while we used the standard fourth-
order Runge-Kutta scheme for the time-stepping.

To summarize, we have presented the first theoretical
and simulation studies of intense electromagnetic wave
interactions with REHs in a relativistically hot plasma.
Our plasma slow response to intense EMWs is unique in
that it accounts for nonisothermal relativistic electron dis-
tribution including trapped electrons. The results of our
analytical theory and numerical analysis reveal that local-
ized EMWs, which are trapped in the REH, push electrons
away from the center of the REH, leading to an increase of
the electrostatic REH potential and a widening of the REH.
Physically, this happens due to the relativistic electron
mass increase in the intense EM fields and the relativistic
ponderomotive force which pushes the electrons away
from the REH. We have also carried out simulations of
the dynamics of two interacting REHs loaded with trapped
EMWs. We find that due to complex nonlinear interactions
EMWs are further intensified, and that the radiation pres-
sure of localized light expels electrons locally, creating
electron density cavities which trap intensified light out-
side the REHs. The interaction has thus given rise to pure
EMW solitary waves, while some EMW energy remains
trapped in the REHs. In the interaction, energy is also
released into a strong acceleration of electrons. Hence,
our results add a new dimension to nonlinear interactions
between arbitrary large amplitudes, intense electromag-
netic waves, and radiation driven intense REHs, which
are uncovered by the fluid or nonrelativistic plasma slow
response [3–7,9] involved in the description of relativistic
06500
electromagnetic solitons in plasmas. In conclusion, we
stress that intense localized light driven huge electric fields
(several tens of MV=cm) associated with the REH can
accelerate electrons to extremely high energies. In fact,
our results should be useful in understanding nonlinear
collective effects appearing in the present generation iner-
tial confinement fusion schemes, in laboratory astrophysics
using intense short laser pulses, as well as in compact
astrophysical objects (like radio galaxies, quasars or ra-
dio pulsars, supernova remnants, in the vicinity of black
holes, etc.) containing high-intensity short electromagnetic
bursts.
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