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Knowledge, once generated, spills only imperfectly among firms and nations. We posit
that since institutions and labor networks vary by region, there should be regional

variations in the localization of spillovers. We investigate the relationship between the
mobility of major patent holders and the localization of technological knowledge through the
analysis of patent citations of important semiconductor innovations. We find that knowledge
localization is specific to only certain regions (particularly Silicon Valley) and that the degree
of localization varies across regions. By analyzing data on the interfirm mobility of patent
holders, we empirically show that the interfirm mobility of engineers influences the local
transfer of knowledge. The flow of knowledge is embedded in regional labor networks.
(Knowledge; Spillovers; Mobility; Regions; Networks)

Ideas, because they have no material content, should
be the least spatially-bounded of all economic activi-
ties. Being weightless, their transport is limited only
by the quality and availability of communication.
Since ideas serve both as the inputs and outputs in
their own production, their location need be con-
strained neither by the happenstance of the spatial
distribution of raw materials, energy, and labor, nor
by that of demand and markets.

Yet, there is good reason to believe that the produc-
tion of ideas may be, contrary to its economics, pre-
scribed within spatial boundaries. In his comparative
analysis of nations published in Industry and Trade
(1920), Alfred Marshall noted that economic activity
was drawn to regions rich in the “atmosphere” of
ideas. Vibrant regions are those that produce knowl-
edge externalities that denote the spillover of ideas
from innovating firms to other firms.1 The existence of

these stable regions implies that these externalities are
also localized; that is, they do not spill perfectly over
spatial borders.

Yet, the economic treatment of externalities largely
assumes them to be “there”—such as embodied in
capital goods—rather than a property that itself de-
serves to be explained. Knowledge externalities, how-
ever, are not simply generated by a given technology.
The relationship among firms, universities, star scien-
tists, and engineers strongly conditions the extent by
which knowledge spills over.2

The importance of regions in economic develop-
ment has been a persistent, though often lost, theme in
economic sociology. Jane Jacobs (1969) put forth an
argument that the growth of cities is based on a
positive cycle of linkages among industries; the social
and economic linkages among diverse activities gen-

1 We use externalities and knowledge spillovers interchangeably to
denote the benefit of knowledge to people, or to firms, not respon-
sible for the original investment in the creation of this knowledge.

2 See Allison and Long (1987) for evidence that institutional affilia-
tion provides a significant spur to productivity; also Crane (1965) on
invisible colleges, and Brown and Deguid (1991) on communities of
practice.
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erate and sustain growth. In a seminal study, Annalee
Saxenian (1994) carried out an ethnography of engi-
neers in Silicon Valley (south of San Francisco) and
Route 128 (which rings Boston), and attributed the
success of the former to a more robust exchange of
ideas among firms.

The relationship between social networks and the
spatial localization of knowledge is usually neglected
in economic studies on externalities. In an important
exception, Jaffe et al. (1993) analyzed patent citation
data pertaining to domestic university and corporate
patents to test the extent of localization of knowledge
spillovers. At three different geographic levels (coun-
try, state, and SMSA), they found evidence that pat-
ents citations tend to belong to the same geographic
area as the originating patent (the patent they cite),
even after controlling for the existing concentration of
patenting activity. Their findings indicated that
knowledge localization exists in the aggregate. Be-
cause they did not analyze the variation of localization
by region or technology, they left open the issue of
whether the properties of technology and institutions
determine knowledge externalities.

We hypothesize that variations in regions influence
the spatial character of knowledge externalities. This
study applies the methodology of Jaffe et al. (1993) to
investigate if and why a particular kind of knowledge
(i.e., the design of semiconductor devices) is localized
to particular geographic communities and not to oth-
ers. A consideration of the sociology of localization
addresses two questions previously left on the table,
namely: Is there variation across economic regions?
Does this variation occur because of differences in the
sociology of the local labor networks and relations
among firms?

Our analysis consists of two stages. In the first stage,
we find that the localization of patentable knowledge
varies across regions. Semiconductor knowledge in
the Silicon Valley and, less so, New York triangle and
Southern California tends to be localized but this is not
true for other regions. We show through several
diagnostic tests that these results are robust.

The second stage of research seeks to show how
ideas are transferred through labor markets. By an
examination of the mobility paths of patent-holders,

we trace the effect of inter-firm mobility on the pattern
of patent citations. We show that ideas are spread, in
part, by the mobility of patent-holders. This pattern
suggests, along the lines of Jacob’s (1969) argument,
that localized knowledge builds upon cumulative
ideas within regional boundaries. We offer the specu-
lation that a driving force for local externalities in
semiconductor design is the mobility of people.

1. Research Setting
The interdependence of technological accumulation
and regions has marked the development of the
semiconductor industry from its origins. The industry
originated from the invention of the first solid state
transistor at the laboratories of AT&T (Bell Labs) in
New Jersey in 1947. Over the next five decades process
and product technology in the semiconductor indus-
try has advanced at a rapid pace while the industry
has grown increasingly international.

Within the United States, interfirm linkages be-
tween domestic companies are common. Most firms,
including Intel, Advanced Micro Devices, National
Semiconductors, and Texas Instruments, have a his-
tory of alliances of various types with other semicon-
ductor firms. Of the over 1800 recorded alliances in the
industry between 1961 and 1989, nearly 1200 involved
U.S. firms (Kogut and Kim 1992). Formal technology
transfer arrangements have also helped to diffuse
technology internationally. Japanese and European
firms have both benefited from extensive strategic
alliances with U.S. firms.

In addition to the formal transfer of technology,
there is also impressive ethnographic evidence of the
spread of knowledge through more informal channels
that may differ by region. Since its inception, the
American semiconductor industry has been character-
ized by interfirm mobility of scientists and engineers.
Rival firms actively courted key engineers leading to
extensive interfirm mobility of personnel (Rogers and
Larsen 1984). Entrepreneurship has been another sig-
nificant characteristic of the American industry. Ever
since William Shockley left Bell Labs to start Shockley
Semiconductors in Palo Alto, California, start-ups
have played an important role in the diffusion of
knowledge and the evolution of the industry (Moore
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1986). Several of Shockley’s assistants left his firm and
formed Fairchild Semiconductors in 1957. The origins
of almost every firm in Silicon Valley can be traced
back to Fairchild. In addition to the role of the pio-
neering firms, universities played an important role.
The area boasts two frontier universities in electrical
engineering, University of California at Berkeley and
Stanford University, which proactively pursued the
diffusion of knowledge to the region (Leslie and
Kargan 1996). The significance of university research
for local diffusion is confirmed in several studies,
notably Jaffe et al. (1993) and Zucker et al. (1994).

Regional Differences
Saxenian’s (1994) study presents a compelling and yet
puzzling comparison of two of America’s best-known
regions of innovation in the electronics industry.
These regions had similar histories, yet they face
different futures—Silicon Valley is flourishing while
Route 128 has stagnated in recent years. Saxenian
argues that while Silicon Valley developed a system of
collaboration and learning among small specialist
companies, Route 128, dominated by a few large
corporations, was slow to adjust to changes in markets
and technologies. In effect, Saxenian puts forth the
argument that the higher externalities among rela-
tively smaller networked firms in the Silicon Valley
leads dynamically to higher rates of innovation and
productivity in the region. Angel (1991) conducted a
survey of personnel at 67 semiconductor firms and
found that those located in the Silicon Valley tended to
hire more labor with substantial experience, suggest-
ing a dynamic by which experience accumulates
broadly in the region.

An important difference between the Silicon Valley
and other regions, and the US and other countries, is
the role played by start-ups. Of the 176 start-ups
founded in the world semiconductor industry be-
tween 1977 and 1989, 88% were located in the United
States, and 55% percent were located in Silicon Valley
(Dataquest 1990). The study by Eisenhardt and
Schoonhoven (1990) on regions and start-ups in semi-
conductors showed that survival rates of new firms in
the Silicon Valley, despite its high density of activity,
was not significantly different from other regions. In
investigating why, they found that entrepreneurs in

Silicon Valley were more closely networked with
venture capitalists and, to a lesser but still significant
extent, with other firms.

2. Knowledge and Regional
Networks

The ethnography of Saxenian poses the important
question: Why should there be variation in the
dynamic trajectory of these two regions? The two
regions, Route 128 and Silicon Valley have the same
industry (i.e., semiconductors), the same “cluster”
(i.e., computers), and yet the dynamics by which
innovations are created differ dramatically. In fact,
by any standard economic logic, Silicon Valley
appears disadvantaged for two reasons. First, the
inability of a firm to establish property rights over
knowledge should lead to a decrease in its willing-
ness in invest in R&D. The possibility that free
riders will benefit from the investment of other
firms should lead to a vicious cycle that erodes the
innovative investment of the region. Second, if
inventive knowledge leaks across firms, it should
leak across the boundaries of a region. In short, why
should the spatial borders of a region be less per-
meable than the proprietary borders of a firm?

One obvious reason why knowledge should be
regional is that it is held tacitly by skilled engineers
who remain within the region. Studies on innovation
point clearly to the importance of their comprehensi-
bility, as Rogers (1983) and Winter (1987) argued, as a
factor in their diffusion. The degree to which knowl-
edge is not codifiable and is tacitly held by individuals
have been found to be important determinants in the
speed by which major innovations are transferred
within and among firms (Kogut and Zander 1994,
Zander and Kogut 1995).

An important aspect of diffusion is not only the
inherent qualities of knowledge (i.e., whether it is tacit
or easily imitated), but also whether there is a regional
labor market for the engineers, scientists, and workers.
Some regions appear as remarkable in this regard. In a
memorable quotation, an engineer from the Silicon
Valley observes that “people change jobs out here
without changing car pools.” Saxenian (1994) cites an
engineer who claims that:
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Here in Silicon Valley there’s far greater loyalty to one’s craft
than to one’s company. A company is just a vehicle which
allows you to work. If you’re a circuit designer, it’s most
important for you to do excellent work. If you can’t succeed
in one firm, you’ll move on to another one.

The observations that innovative knowledge is held
by individuals and that there are active labor market
networks in some locations are critical components to
explaining why the localization of ideas may vary by
region. The central engine of this argument is the
necessary conditions that the knowledge held by
design engineers has a tacit quality and that these
same engineers are mobile among firms within the
spatial boundaries of a region. Parenthetically, differ-
ences in intellectual property law do not appear to
explain differential mobility of engineers, and thereby
the creation of externalities. Neither Silicon Valley nor
other American regions differ in the common law
treatment that the firm owns an employee’s knowl-
edge (Hyde 1997).

We test the assertion that mobility influences the
creation of localized spillovers through two steps.
First, we show that there are regional variations in the
localization of knowledge. Second, we test whether
the mobility of engineers holding major patents leaves
a trace in the patent citation records and whether
mobility varies by region. By tracking individual
engineers, we link the stronger presence of externali-
ties in the Silicon Valley to the movement of individ-
ual patent holders who remain within the region.

3. Data and Methods
For the following statistical analysis, we use patent
citation analysis of important semiconductor innova-
tions and apply a case-control methodology and re-
gression analysis to test for the localization of knowl-
edge.3

Patent Data and Citations
Patent documents provide data on the inventor and
his location at the time of the invention, the owner

(assignee) of the patent (usually a firm), the time of the
invention and also the technology of the invention. In
addition, through patent citations, we are able to infer
the technological influences on a particular invention.

The patent citations contained in a patent document
have two possible sources: (a) the inventor and the
patent lawyer and (b) the patent examiner. The patent
applicant is obliged by law to specify in the applica-
tion any and all of “the prior art” of which he or she is
aware. Interviews with patent reviewers reveal that
the examiner undertakes a thorough search of files to
determine the patent’s relationship to existing patents.
In the final list, some citations represent direct tech-
nological influences on a particular innovation, while
other citations may only represent indirect technolog-
ical influences (since the patent examiner added
them). Several studies (Albert et al. 1991, Carpenter et
al. 1981, Narin et al. 1987) have shown that patent
citation counts are a good indicator of the technolog-
ical importance of an invention. Further, Trajtenberg
(1990) in his study of CT scanners, showed that the
number of citations to a patent serves as an indicator
of social and economic value of the innovation as well.
We therefore analyze only highly cited patents that
tend to be of both technological and economic impor-
tance.4

Establishing the Regions
Major regions of semiconductor activity in the United
States were identified by plotting actual plant loca-
tions of over 750 facilities and demarcating the corre-
sponding regional clusters. (See Appendix for data
sources.) The location of semiconductor plant clusters
was confirmed through the use of county level estab-
lishment and employee data from County Business
Patterns (corresponding to SIC 3674). Regions were
demarcated around contiguous counties having two
or more semiconductor establishments. The analysis
reveals 18 regional clusters. We analyzed patents
belonging to the top 12 regions. These 12 regions
accounted for more than 95% of the highly cited
patents.

3 A patent is the grant of a property right to an inventor for an
invention conferred by the government. A US patent is granted for
an invention which is “useful,” “novel,” and “nonobvious to a
person of ordinary skill in the art” (U.S. Department of Commerce
1992).

4 We later show that the use of highly cited patents (as opposed to
less cited patents) does not bias our study towards finding regional
localization.
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Identification of Major Patents
We first isolated patents related to semiconductor
design with the help of experts in the Patent and
Trademark Office. These patents belonged to two time
periods—those patents filed in 1980 and those filed in
1985. For every patent in these two panels, we counted
the total number of subsequent patents (up to 1995)
that cited them. For each region and for each time
period, we selected the top 25% most highly cited
patents. Since this method generated an extraordinar-
ily large number of patents for large regions, we took
the 20 most highly cited patents as our sample. For
some regions, the top 25% consisted of less than 20
patents. As a result, the samples for some regions had
less than 20 major patents by which to generate the
citations. To the degree that more highly cited patents
are more or less geographically localized than less
highly cited patents, this procedure potentially opens

the possibility of a sample selection bias. We show
below that our results are robust to this concern.

Descriptive Statistics of Major Patents
Table 1a displays descriptive statistics of the panels of
major patents analyzed. Since not every region had 20
highly cited patents, the total number of major patents
were 131 for the 1980 panel and 172 for the 1985 panel.
Table 1b gives the distribution of major patents and
the number of citations to these patents by U.S. region.
While the larger regions had at least 20 highly cited
patents, some regions such as Arizona and Florida had
fewer.

Citations and Controls
Localization is the use of knowledge created by others
in the same region. Operationally, it is defined by the
joint condition that the citing patent and the major
innovation belong to the same geographic region. To

Table 1 Descriptive Statistics

1a: Full Panels

Panel

Number of
Major

Patents
Number of
Citations

Mean
Citations

% Self
Citations

1980 131 2371 18.1 10.5
1985 172 2722 15.8 17.9

1b: Distribution of Major Patents by Region

Region

1980 1985

Number of
Major

Patents

Citations Number of
Major

Patents

Citations

Number Mean Number Mean

NY-NJ-PA 20 601 30.5 20 510 25.5
AZ 4 40 10 11 107 9.7
CO 7 126 18 5 47 9.4
FL 3 32 10.7 5 59 11.8
MA-CT 10 99 9.9 10 156 15.6
VT 11 145 13.2 9 109 12.1
OR-WA 4 31 7.8 12 126 10.5
NORTH CA 20 478 23.9 20 468 23.4
SOUTH CA 20 323 16.2 20 233 11.7
TX-DALLAS 20 324 16.2 20 334 16.7
TX-AUSTIN 6 64 10.7 20 280 14
TX-HOUSTON 6 108 18 20 293 14.7
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measure the frequency of localization, we geographi-
cally matched each major patent with the citing pat-
ents.

Clearly, the observed frequency of geographic coin-
cidence of the major patent and the citing patents may
also reflect the distribution of patenting activity
(rather than the localization of spillovers). Silicon
Valley has a lot of semiconductor firms, they patent a
lot, and hence they cite each other a lot because the
region dominates the overall patent count. To adjust
for any bias due to this existing distribution of tech-
nological activity, we followed Jaffe et al. (1993) in the
construction of a control sample. For each citing
patent, we identified a corresponding control patent.
This patent was identified such that the patent (tech-
nology) class was identical to that of the citing patent
and the application date was as near as possible to the
citing patent. Since the control patent does not cite the
major patent, the frequency of a geographic match
between the two reflects the existing concentration of
patenting activity for a particular region. This fre-
quency of geographic matches between the major
patent and the control patent sets the baseline against
which we compare the frequency of major patent-
citing patent matches. This research design is very
conservative. By use of controls, we isolate spillovers
“above and beyond” agglomeration effects. Certain
regions are unusually rich in their innovative activi-
ties, and this richness is itself suggestive of an exter-
nality. The controls capture this baseline agglomera-
tion effect.

Statistical Test for Localization of Spillovers
Let P cit be the probability that the major patent and
citing patent are geographically matched, and P con be
the corresponding probability for the major patent-
control patent match. Assuming binomial distribu-
tions, the null hypothesis is

Ho: Pcit � Pcon ,

and the alternate hypothesis is

Ha: Pcit � Pcon .

The t statistic is calculated as:

t � �Pcit � Pcon�/��Pcit�1 � Pcit�

� Pcon�1 � Pcon��/n� 0.5.

The “t” statistic tests the difference between two
independently drawn binomial proportions. We cal-
culated the statistic for each of the 12 regions in each
panel.

The case comparison controls for the effect of tech-
nology. By matching patents by their technological
relatedness, we control for the differential degree of
spillovers across a broad technological space. Podolny
and Shepherd (1996) show that the evidence for spill-
overs is stronger among technologically dissimilar
patents. By matching a control to the citing patent by
technology class, our method conservatively elimi-
nates the effects of technological distance and isolates
the geographic dimension to diffusion.

Differences in Regional Localization
One of the major goals of this paper is to establish that
externalities simply do not exist, but vary systemati-
cally by region. To demonstrate that these variations
are statistically significant, we also test for differences
in the extent of localization between regions.5 For
Region A, P A represents the degree of localization of
knowledge and is given by P A � P Acit � P Acon.

For Region B, P B represents the degree of localiza-
tion of knowledge. We call P B a baseline region for
comparison. We test the hypothesis H o: P A � P B

against the alternate hypothesis H a: P A � P B. The t
statistic is calculated as:

t � �PA � PB�/��PA�1 � PA�/nA � PB�1 � PB�/nB�
0.5.

4. Testing for Regional Variations
in Localization

The main results of the case-control tests for both the
samples are given in Table 2a. The “Number of
Citations” corresponds to the total number of cites for
the major patents. “A” and “B” are the percentage of
citations and controls, respectively, that belong to the

5 We would like to thank a referee and Rebecca Henderson for
encouraging us to augment our original sampling methodology by
collecting sufficient original patents from each region in order to
conduct these tests.
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same geographic region as the major patent. The
t-statistic tests the equality of the control and citing
proportions as described previously.

For the overall samples, there are significantly
higher proportions of citation matches than control
matches indicating localization effects. (Results signif-
icant at the 0.05 level or better are given in bold.)
These results confirm the principal findings of Jaffe et
al. (1993). The results indicate quite strongly that

knowledge is localized at the regional level. Silicon
Valley shows the strongest localization effects, while
the results for the Southern California, New York-
New Jersey-Pennsylvania, Vermont, and all three
Texas regions are also significant.

An examination of the underlying data reveals that
localization may often be driven by self-citations
(when the major patent and the citing patent have the
same owner). Often the citations belonged to the same

Table 2 Test of Localization of Knowledge in US Regions (Significant Results at 0.05% in Bold)

2a: Results with All Cites

Region

Number of Citations
A � Citation
Matching %

B � Control
Matching % T-statistic

1980 1985 1980 1985 1980 1985 1980 1985

NY-NJ-PA 601 510 22% 29% 13% 8% 4.51 8.81
AZ 40 107 5% 7% 0% 1% 1.45 2.19
COLORADO 126 47 6% 11% 2% 2% 1.55 1.71
FLORIDA 32 59 3% 2% 0% 0% 1.02 1.01
MA-CT 99 156 7% 12% 5% 4% 0.60 2.74
VT 145 109 13% 14% 1% 1% 3.95 3.75
OR-WA 31 126 10% 5% 0% 2% 1.82 1.02
NORTH CA 478 468 27% 45% 9% 17% 7.56 9.89
SOUTH CA 323 233 16% 16% 4% 4% 4.93 4.35
TX-DALLAS 324 334 10% 19% 5% 8% 2.84 4.19
TX-AUSTIN 64 280 11% 10% 0% 4% 2.80 2.91
TX-HOUSTON 108 293 13% 20% 3% 2% 2.83 7.08
TOTAL 2371 2722 17% 22% 7% 7% 11.31 16.32

2b: Results Without Self-cites

Region

Number of Citations
A � Citation
Matching %

B � Control
Matching % T-statistic

1980 1985 1980 1985 1980 1985 1980 1985

NY-NJ-PA 502 385 12% 12% 11% 5% 0.30 3.11
AZ 37 96 0% 3% 0% 0% 0.00 1.76
COLORADO 115 46 1% 9% 1% 2% 0.00 1.39
FLORIDA 32 54 3% 0% 0% 0% 1.02 0.00
MA-CT 92 127 1% 2% 5% 2% �1.67 �0.45
VT 103 74 0% 0% 0% 0% 0.00 0.00
OR-WA 26 112 0% 1% 0% 0% 0.00 1.00
NORTH CA 448 431 24% 43% 8% 16% 6.71 9.09
SOUTH CA 307 209 11% 8% 4% 4% 3.34 1.45
TX-DALLAS 303 235 7% 3% 3% 3% 1.88 0.00
TX-AUSTIN 57 242 4% 4% 0% 2% 1.44 0.79
TX-HOUSTON 78 166 0% 1% 0% 1% 0.00 0.00
TOTAL 2100 2177 11% 12% 6% 5% 5.96 8.36
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plant (not just firm) and thus these citations did not
represent cross-border knowledge flows. Further, sev-
eral firms (especially Texas Instruments, IBM, and
AT&T) have shown a strong propensity to cite their
own patents, contributing to a strong (but perhaps
misleading) localization effect.

We, therefore, run the analysis without including
self-cites (Table 2b).6 We find that only Silicon Valley
exhibits strong localization effects and indeed contrib-
utes significantly to the overall localization findings.
NY-NJ-PA and Southern California are each signifi-
cant in one panel. The evidence qualifies the interpre-
tation of the results of Jaffe et al. (1993). As with the
earlier study, the above analysis indicates that, in the
aggregate, patent citations tend to be localized. How-
ever, localization of knowledge is not a universal
phenomenon. Geographic regions reveal different pat-
terns in the local diffusion of knowledge externalities.

In Table 3 we test whether the degree of knowledge

localization is significantly different across regions. Be-
cause three regions (i.e., Northern California, Southern
California, and the New York-New Jersey-Pennsylvania)
evidence significant degrees of localization (see Table 2),
we use them to compare differences in localization
across regions. The results show that knowledge is
significantly more localized in Silicon Valley than in any
other region (though the other two regions also evidence
considerable localization).

Tests for Sample Bias
It is interesting to note that the three regions showing
significant localization are ones for which we have 20
patents. These three regions could be exhibiting local-
ization because highly cited patents are more localized
than less cited patents. We therefore test whether the
localization findings are an artifact of the sampling
procedure by comparing two samples of patents from
Northern California (Silicon Valley) for the 1980 time
period.

Our first sample consisted of the 20 highly cited
patents for Northern California for the 1980 panel
considered previously. We matched every patent from
our “Highly Cited” sample with another randomly
selected patent controlling for the region (Northern
California), time period (1980 panel) and technology
(same technology class). We thus had a second sample
of “Other” patents that represent less highly cited
patents. We then compared the frequency of regional
citation matches between the two samples and tested
to see whether the “Highly cited” sample was more
localized than the “Other” sample.

The results of the test, available on request, indicate
that the “Other” sample has, as expected, fewer cita-
tions but the frequency of local citation matches does
not differ significantly across the samples. The result
holds whether or not we include self-cites. These
findings indicate that highly cited patents are not
significantly more localized than less cited patents and
therefore the sampling scheme used here does not
introduce any bias.

Tracing Diffusion by Tracing Patent-Holders in the
Network
We hypothesized earlier that regions that are marked
by spatially defined labor markets should evidence
higher rates of localization. For semiconductor design

6 In order to treat the citing and control samples evenly, when the
assignee of the control patent was the same as that of the major
patent, the record was also considered a self-cite and excluded from
the final sample.

Table 3 Test of Localization of Knowledge Regional Differences

Results of t-Tests

Region B

Region A

NY-NJ-PA North CA South CA

1980 1985 1980 1985 1980 1985

NY-NJ-PA 8.75 8.39 4.35 �1.65
AZ 1.74 1.44 9.26 8.56 4.87 0.10
COLORADO 1.74 �0.07 9.26 4.83 4.87 �0.82
FLORIDA �0.82 5.06 3.67 12.60 1.19 2.69
MA-CT — 7.43 — 13.96 — 4.30
VT 1.74 5.06 9.26 12.60 4.87 2.69
OR-WA 1.74 3.52 9.26 11.25 4.87 1.61
NORTH CA �8.75 �8.39 �3.91 �9.53
SOUTH CA �4.35 1.65 3.91 9.53
TX-DALLAS �2.50 5.06 6.33 12.60 2.15 2.69
TX-AUSTIN �1.18 3.51 4.20 11.40 1.28 1.47
TX-HOUSTON 1.74 5.06 9.26 12.60 4.87 2.69

Note: All figures are t-statistics for differences in regional localization; bold
indicates significance at 0.05% or lower.
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technologies, skilled engineers, some of whom hold
major patents, hold significant knowledge. By compil-
ing deeper data on patent-holders and through inter-
views, we collected information on the importance of
individuals in the localization of knowledge. To mea-
sure the interfirm mobility patterns of semiconductor
engineers, we developed a database of the career
paths of semiconductor engineers with patenting
records. For all the 438 individuals who hold major
patents being analyzed, the career paths from 1974 to
1994 were traced through the records of their patent-
ing activity. There were a total of 174 intraregional
moves observed and 181 interregional moves. While
some information on job changes is undoubtedly
missed, the data are surprisingly revealing.

Table 4 shows the mobility patterns of these engi-
neers at the regional level. The first column, “Total
Years,” is the summation of the number of years for
which we counted moves for all the patent holders in
our sample for the particular region. (For instance, if
we observed 20 patent holders on average for 10 years
each within Region A, the “Total Years” would be
200.) Moves are defined as the number of times that a
major patent holder changes firms, as revealed in an
analysis of all semiconductor patents. Thus for NY-
NJ-PA we observed 48 moves by the patent holders.
Of these 48 moves, 17 were within the region and 31
were from NY-NJ-PA to other regions. Next, to make
comparisons across regions we standardized the

moves by calculating the “Moves per 100 Years.” The
last column provides the most important data. It
represents the net intraregional moves of all major
patent holders, standardized across regions.

The Silicon Valley is clearly unique in terms of
inter-firm mobility. The level of intraregional mobility
is very high, while extent of interregional moves is
much smaller. Only MA-CT, Southern California and
Texas-Austin show more intraregional movement
than interregional movement, though to a much lesser
extent than Silicon Valley. The table demonstrates
considerably that regions differ to a considerable
degree in the extent to which they facilitate interfirm
job transfer through mobility.

Regression Analysis
The simplicity of the means tests runs the objection
that unobserved factors influence these results. In fact,
the slight differences between the results for the two
time periods suggest that changes in structural param-
eters (e.g. regional and institutional variables) over
time influence the degree of localization. An alterna-
tive strategy is to test directly for the institutional
effects on the generation of regional externalities. We
investigate the factors influencing the localization of
knowledge through a logistic regression analysis.
(Variable definitions and data sources are given in
Appendix 1; descriptive statistics and correlation ta-
bles are available on request.)

Agglomeration and size effects are measured
through the number of establishments in the region
and the density of design establishments per square
mile in the county with the largest number of estab-
lishments.7 We also included two mobility measures,
defined to capture the intraregional turnover and the
interregional turnover among the patent holders. In
addition, a variable for the number of startups over
the period in the region was added, since startups
recruit, by definition, new engineers and managers. By
controlling for start-ups, we can observe directly the
effect of mobility independent of the opportunities for
new employment.

7 We took the density of the county with the most establishments
due to the problem of comparing regions that differ widely in size,
populated areas, etc.

Table 4 Regional Mobility of Major Patent Holders

Region
Total
Years

Moves Moves per 100 Years

Intra Inter Intra Inter Net

NY-NJ-PA 920 17 31 1.85 3.37 �1.52
AZ 181 1 5 0.55 2.76 �2.21
CO 101 5 7 4.95 6.93 �1.98
FL 82 1 4 1.22 4.88 �3.66
MA-CT 240 9 7 3.75 2.92 0.83
VT 304 2 5 0.66 1.64 �0.99
OR-WA 156 4 10 2.56 6.41 �3.85
NORTH CA 750 76 23 10.13 3.07 7.07
SOUTH CA 568 21 16 3.70 2.82 0.88
TX-DALLAS 475 13 19 2.74 4.00 �1.26
TX-AUSTIN 297 9 7 3.03 2.36 0.67
TX-HOUSTON 243 1 15 0.41 6.17 �5.76
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To sort out possible period effects, we created
dummies for the panels, plus added a time term for
years lapsed since the original major patent. We
control also for whether a university held the major or
citing patent. The logit odds are coded 1 if the citing
and major patent are from the same region; 0 if
otherwise.

In Table 5, we report the results from this logit
specification by estimating four models. The first

model gives the results for regional variables alone,
plus the control (patent) variable, plus the temporal
and university variables. (There is no change in the
results when the model is reestimated absent the
temporal and university effects.) It is important to
keep in mind that the control patent variable already
incorporates many of the unobserved variables to the
regression. In all the regressions, the control variable
is significant, as to be expected; it covaries with the

Table 5 Logistic Analysis: Localization of Knowledge

Variables

Model 1
without

self-cites

Model 2
without

self-cites

Model 3
without

self-cites
Model 4
all cites

Intercept �4.2233** �4.1801*** �4.1817*** �2.1679***
0.3983 0.3991 0.4717 0.2576

Control 0.8374*** 0.8398*** 0.8372*** 0.7692***
0.1562 0.1561 0.1563 0.1221

Regional Variables
Density of

Establishments 0.6022*** 0.5862*** 0.5969*** 0.3818***
0.0982 0.0984 0.1032 0.0543

Intraregional Mobility 0.1535*** 0.1463*** 0.1414 �0.1979***
0.0269 0.0273 0.0791 0.0427

Interregional Mobility �0.2204** �0.2298** �0.2193** �0.0044
0.0805 0.0802 0.0806 0.0409

Start-Ups �0.2160** �0.2110** �0.2151** �0.0582
0.0666 0.0667 0.0667 0.0477

North California 0.1012 1.9525***
0.6218 0.324

Temporal Variables
Lag 0.0619*** 0.0639*** 0.0619*** 0.0196

0.0181 0.0181 0.0181 0.0132
Period 1980 �0.0831 �0.1377 �0.0938 �0.3876***

0.1511 0.1539 0.1515 0.0878

Universities
Major Patent 0.3442 0.3469 0.4642

0.2617 0.2624 0.2457
Citing Patent �0.3369 �0.3357 �1.0561

0.5441 0.5441 0.5299

Individual Variable
Inventor Intraregional 0.2240*
Mobility 0.1143
Maximum Likelihood 1294.91 1293.99 1294.90 2374.96
Number of

Observations 4357 4357 4357 5093

Note: * � Significance level of 0.05, ** � 0.01, *** � 0.001. Standard errors in italics.
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localization of the dependent variable. The interesting
issue is what can be explained above and beyond the
baseline expectation for localization.

The results of the specified models in Table 5 point
quite clearly to the significant role played by agglom-
eration economies, mobility, and start-up activity. (To
check for potential multicolinearity, we also estimated
the model without start-ups; there is no change in the
significance levels of the other variables.) The most
interesting result is that the coefficient to intraregional
mobility is positive but that to interregional mobility is
negative. The institutional variables of universities
were not significant. Clearly, the degree of mobility at
the regional level is associated with the degree of
localization.

To pinpoint more concretely the relationship of
mobility to localization, we created an additional
variable called “inventor intraregional mobility.” This
variable is a dummy that indicates if the inventor of
the original patent subsequently moved within the
region. As shown in the second regression, this vari-
able is positive and significant at the 0.05 level. The
parameters to the other mobility variables remain
significant, indicating that the localization of knowl-
edge is generally related to the mobility of top inven-
tors within and between regions.

Diagnostic Tests for the Regressions
In the last two models given in Table 5, we report two
diagnostic regressions to test the robustness of the
results by including a dummy for Northern California
(principally the Silicon Valley) and using self cites.
Given the high correlation of 0.94 between the dummy
for Silicon Valley and intraregional mobility, it is not
surprising that the variables are not significant. A
common test for whether an additional collinear vari-
able adds explanatory power is to compare the likeli-
hood scores with and without this new variable.
Comparing the likelihoods of Models 1 and 2 shows
no significant improvement. This test implies that
intraregional mobility is equivalent to the Silicon
Valley effect. Interesting enough, the coefficient to
interregional mobility remains negative and signifi-
cant, indicating that this variable captures a source for
the loss of localization.

The last regression includes self-cites. Self-citing is

especially prominent among the larger firms, such as
Texas Instruments and IBM, that populate the Texas
and New York area regions. The results are very
intuitive. Interregional mobility, though still negative,
is no longer significant. We infer from this result that
the larger firms, such as Texas Instruments, Intel, and
IBM that have plants in several regions and account
for most of the self-citations, build upon their own
knowledge across regions, leading to the weaker neg-
ative coefficient result for interregional mobility. In
this expanded data set, both the Silicon Valley and
intraregional mobility variables are positive and sig-
nificant. A particularly interesting change is the loss of
significance for the time lag. In effect, large firms
appear to build more rapidly upon their knowledge,
as suggested in a shorter time to citation of their major
patents. (The mean time to citation for the sample with
self cites is 5.4 years; for a cite by another firm, the
mean is 5.9 years.) Intraregional mobility generates
local diffusion, but the process is less rapid than
intrafirm diffusion.

In results not reported here, final diagnostics split
the sample between cases in which the controls reveal
localization and those that do not. By estimating the
regressions on the split samples, we check for impor-
tant interaction effects between the specified variables
and the unobserved sources of localization embedded
in the control variable. The results do not reveal any
important interactions.

These results indicate clearly what is meant by the
“above and beyond” effect of mobility on the localiza-
tion of knowledge. Even after controlling for agglom-
eration and unobserved localization captured through
the control variable, mobility still has a significant and
positive effect on the probability that a patent will
build upon a major patent from the same region. The
implications suggest that the ability to build upon
semiconductor design knowledge is tied significantly
to the career paths of innovative individuals. The
lower intraregional mobility of engineers appears to
be related to the presence of large firms that build
upon their knowledge in-house. However, these re-
gions also show higher rates of departure of innova-
tive engineers to other locations. These observations
suggest that engineers in larger firms face a choice
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between building careers within the internal labor
markets or entering the external labor market, often by
departing for other regions and carrying their innova-
tive knowledge to new firms in new sites. A corollary
to this speculation is that the entrepreneurial and high
intraregional mobility through local labor markets is a
factor behind the localized nature of the diffusion of
innovation among firms confined to the Silicon Valley
region.

5. Conclusions
One of the most important trends in the economics of
research has been the diminishing role of the individ-
ual in patenting. This trend, long noted since
Schmookler (1966), disguises the persisting impor-
tance of individuals in research. Across the landscape
populated by laboratories and organized research,
individuals appear as active agents in the creation and
spatial diffusion of knowledge.

Ultimately, some appeal to institutions and the
structure of relations is required to explain why cer-
tain regions show a higher degree of localization and
in the ability to absorb and build upon previous
knowledge. The many studies on technology transfer
indicate the importance of social capability, prior
experience, and access to the absorption of knowledge
and its creation.8 But these observations are fairly
sterile unless understood in the context of the eco-
nomic sociology of these regions or nations.

Externalities play a central role in economic theory,
and yet are rarely studied. On examination, external-
ities are reflections of the nature of the knowledge
held by individuals or groups in the context of specific
social networks. To the mobile engineers of the Silicon
Valley, the transfer of their knowledge and abilities is
made through a partially visible network. Our results
offer the speculation that externalities are the outcome
of actions of skilled labor in spatially defined mar-
kets.9

Because these markets differ geographically, re-
gions also evince large differences in their social
structures and stimulation for innovation. The eth-
nographies of Saxenian (1994) and Rogers and
Larsen (1984), and the statistical results derived
from patent citations, indicate that externalities are
not created uniformly across all regions, nor are
they natural by-products of particular technologies.
Rather, externalities are created through the exis-
tence of broader social institutions that support a
viable flow of ideas within the spatial confines of
regional economies.10

10 The authors are grateful to Peter Farkas, Patrick Abouchalache,
Berlin Lai, and Jason Shrednick for their research assistance. They
gratefully acknowledge the contribution of Mike Albert of CHI
Research and thank Paul Allison, Tony Frost, Rebecca Henderson,
Adam Jaffe, Paul Rosenbaum, Naren Udayagiri, and Sid Winter for
comments and suggestions. Financial support for this project has
been provided by the Huntsman Center for Global Competition and
Innovation and the Reginald H. Jones Center at the Wharton School,
and the Capital Markets Research Center, at the McDonough School
of Business at Georgetown University.

Appendix 1. Variable Definitions and Data Sources
The definition and sources of data used in the logit regression are
given below:

1) Dependent variable: Regional match/no match between major
patent and citing patent.

2) Control variable: Regional match/no match between control
patent and major patent.

3) Density of establishments: Number of semiconductor plants
per square mile in the largest county (in terms of establish-
ments) in each region.

4) Intraregional Mobility: Number of intra-regional inter-firm
moves per 100 years by patent holders. Interregional Mobility:
Number of interregional, interfirm moves per 100 years by patent
holders. Inventor Intraregional Mobility: Dummy variable coded
1, if major patent holder moved across firms within the region.

5) Start-ups: Log of total number of regional start-ups between
1975 and 1990.

6) Lag: Citation lag (Filed date of citing patent—Filed date of
major patent).

7) Period 1980 and Period 1985: Dummy variables for 1980 and
1985 samples.

8) Universities: Major patent and Citing patent: Dummy for
university patents.

9) Northern California: Dummy variable, coded 1 if major patent
is from Northern California.

8 See Pack and Westphal (1986) and Rosenberg (1987).
9 However, for some kinds of technologies, mobility does not seem
to be important; see Argote et al. (1990) who found that learning by
doing among shipyard workers did not transfer by rotation to other
yards.
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Data Sources
1) Patent data were obtained through the on-line patent database

available on LEXUS-NEXUS and through CHI Research, a
private research firm.

2) Plant locations were obtained from company reports and
Dataquest (1990).

3) Establishment and employee data were obtained from County
Business Patterns (1975–1990), a US Department of Commerce
publication.

4) Data on start-up firms were obtained from Dataquest (1990).
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