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Localization of Normal Modes and Energy Transport 

in the Disordered Harmonic Chain*> 

Hirotsugu MATSUDA and Kazushige IsHII 

Research Institute for Fundamental Physics 

Kyoto University, Kyoto 

The feature of normal modes in one-dimensional isotopically disordered harmonic 

chain is investigated. It is proved for any frequency that the simultaneous difference 

equations for the displacement Un of the n-th atom, (-oo<n< oo), has a solution in 

which un grows exponentially with n with probability 1. In the low frequency limit 

the rate of exponential growth "' is explicitly calculated. A necessary and sufficient 

condition is obtained for there to exist a localized solution such that lim un=O. It 
n~±oe~ 

is proved that any infinite disordered chain, except those with measure 0, can be 

made to have an exponentially localized solution for any til by modifying the mass of 

one atom mo to a suitable real value as a function of til. From this it does not 

logically follow that almost all normal modes of any given large but finite sample 

chain are localized in such a way as occurred in the above modified infinite chain. 

However, the theoretical estimate of the nature of normal modes and energy transport 

based on the above mentioned value of "/, agrees well with the result of computer 

experiments. As a by-product of our investigation, the exact expression of the thermal 

conductivity due to the Kubo formula for the isotopically disordered harmonic chain 

is obtained in a closed form. 

§1. Introduction 

The feature of the normal frequency distribution in disordered harmonic 

systems has rather been clarified. Since Dean's pioneering work2> by the 

computer experiment revealed more or less unexpected feature of the dis

ordered harmonic systems, theoretical investigations have been successfully 

worked out for its interpretation. a>-5> Various conditions for the existence of 

band gaps in disordered systems have been proposed, which are reviewed by 

Hori in this supplement.6>-s> It is theoretically justified for the one-dimensional 

system that the coarse-grained frequency distribution can in principle be 

obtained to one's desired accuracy, for instance, by the suitable ensemble 

average of periodic systems, because of the existence of 'effective distance' 

for the coarse-grained quantity.9> Although to the authors' knowledge no 

theoretical justification exists for this procedure in higher dimensional systems, 

comparisons of various approximative calculations with the results of computer 

experiments seem to indicate that no serious fundamental difficulty exists so 

long as one is concerned with the coarse-grained frequency spectrum rather 

*l This paper includes a part of the study the outline of which was read by T. Miyata and 

the present authors at the 1968 International Conference on Statistical Mechanics held in Kyoto, 

and was published in its proceedings.1l 
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Localization of Normal Modes and Energy Transport 57 

than the exact spectrum itsel£.10'' 11' Indeed, for the physical quantity such 

as specific heat associated only with the frequency distribution, it does not 

matter whether the exact spectrum is discrete or continuous. 

On the other hand, for the transport phenomena the feature of eigen

functions is of vital importance. As Halperin has shown/' if the eigenfunction 

of the Hamiltonian for an electron is suitably localized in space, then the 

system should have no static conductivity. 

In 1958, Anderson12' pointed out the absence of spin diffusion in certain 

random lattices. This property is just the one that the disordered system 

should exhibit if its energy eigenfunction of an electron is suitably localized 

in space. In 1961, Mott and Twose13' conjectured that essentially all the 

energy eigenfunctions in an infinitely long one-dimensional random potential 

are localized in space. Makinson and Roberts14' gave some further support 

to this proposition with arguments that wave functions must be localized at 

least in the neighborhood of any energy gap. 

Borland15' considered the wave function of an electron satisfying the one

dimensional Schrodinger equation with random potential. He proved in the 

high energy limit that the envelope of the wave function grows exponentially 

with the distance from one end at which the boundary conditions for the 

wave function are given. From this he inferred that the eigenfunctions for 

such systems are localized in space in the sense that the envelope of such 

a function decays on average in an exponential manner on either side of 

some region. Here we note that his proof for the localization is still unsatis

factory, because it is restricted to high energy limit, apart from the logical 

gap between the exponential growth and the exponential localization of the 

eigenfunction of a very large but finite system. We show in this paper that 

the former restriction can utterly be removed by invoking the powerful theorem 

due to Furstenberg16' concerning the limits of products of noncommuting 

random variables. Although we have not yet succeeded to completely surmount 

the latter logical gap, we shall clarify the relation between the exponential 

growth of the wave function and the existence of the localized solution for 

the wave equation in an infinite system. The localization of eigenfunctions 

of the finite system and the existence of the localized solution in an infinite 

system still may not be equivalent, although they are supposed to be closely 

correlated. Therefore we shall refer this identification of the behavior of the 

infinite system and the finite but very large system as IF-assumption. 

The similar problem exists for the isotopically disordered harmonic chain. 

In 1962, Rosenstock and McGill17l calculated the normal modes of some iso

topic chains containing not more than 16 atoms. They inferred from it that 

the normal modes for the disordered chain may not be essentially different 

from those of the regular chain. This was soon objected by Dean and Bacon,18' 

who carried out the computation for a particular sample of isotopically dis-
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58 H. Matsuda and K. Ishii 

ordered diatomic chain of 50 atoms. They pointed out that the modes corre

sponding to the higher eigenfrequencies are localized while those corresponding 

to the lower eigenfrequencies are not localized, and this feature had been 

missed in Rosenstock and McGill's calculation, because the length of their 

chain was too short. Later the computer experiments for normal modes are 

extended to larger systems by Payton and Visscher19J (see Fig. 1). We shall 

calculate the rate of the exponential growth of the displacement for isotopically 

disordered chain in the low frequency limit. By invoking the IF-assumption 

we can infer to what extent the normal modes are localized as a function 

of frequency, mass ratio and concentration of one of the isotopes. The com

parison of this theory with the results of the computer experiments seems to 

support the IF-assumption. 

As to the transport phenomena of disordered systems Payton et al.20l 

made computer experiments on the energy transport of the isotopically dis

ordered harmonic chain in contact at its ends with heat reservoirs at tempera

ture T1 and TN. On the other hand, for the regular harmonic chain Rieder 

et al.21l and Nakazawa22J independently made a theoretical calculation for the 

heat flux by obtaining the covariance matrix for the stationary state. They 

found that the heat flux is proportional to the temperature difference ( T1- TN) 

rather than to the temperature gradient (T1- TN)/N. We shall obtain the 

--------Mode number 

II 

Position along Cho'in 

'"'~''' 

(i) (ii) 

Fig. 1. Normal modes of an isotopically disordered harmonic chain, half-heavy atoms and half· 

light with a mass ratio of three. The mode numbering is from the lowest to the highest 

frequency. (i) N=50,18l (ii) N=2Q0.19l 
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Localization of Normal Modes and Energy Transport 59 

expression for the covariance matrix in terms of normal modes of the dis

ordered harmonic chain in the limit of weak coupling with the heat reservoirs. 

Basing on the calculated rate of the exponential growth of normal modes and 

the IF-assumption, we shall show that the feature of the result of the com

puter experiment for the heat flux of the isotopically disordered harmonic 

chain can theoretically be reproduced. 

Rubin23 ' made a detailed study on the transmission properties of an iso

topically disordered harmonic chain, including the theoretical calculation of 

the upper and lower bounds of the attenuation constants. Horiu> pointed out 

that the attenuation constant is equal to the rate of the exponential growth 

of displacements. Recently, Rubin25' calculated the low frequency limit of the 

attenuation constant, which exactly coincides with the rate of the exponential 

growth which we1' obtained previously. While Rubin's theoretical estimate 

of the lower bound of the attenuation constant does not prove that the attenu

ation constant is positive throughout the whole frequency range, the use of 

Furstenberg's theorem neatly ensures this property. 

As Ziman26 ' remarked, the one-dimensional model has so different nature 

from the higher dimensional models that the former may not represent the 

feature of the wave functions of the three-dimensional systems in which many 

people are interested. However, even for the one-dimensional system we have 

not yet reached the satisfactory understanding of the nature of the eigen

functions free from assumptions. In connection with this we do not know 

whether the spectrum is truly discrete or continuous; it is the problem which 

may be relevant to the localization of eigenfunctions. 

Therefore, it will be worthwhile to try to deepen the knowledge of the 

one-dimensional system not only because there is the system like linear poly

mers where the one-dimensional character is dominant, but also for the under

standing of the fundamental difference, if any, of the one-dimensional system 

from the higher dimensional ones. Thus, the purpose of this paper is to 

present our study hitherto made in order to give a theoretical unification of 

the various separate investigations and to extend the range of their applicability. 

§2. Summary and plan of the paper 

Consider an isotopically disordered harmonic chain with infinite length as 

a simple model of random systems. The displacement u. of the n-th atom 

in the vibration with frequency m satisfies the following set of equations 

- m. OJ2 u. = K ( Un+1 + Un-1- 2u.)' (2·1) 

where K is the force constant and m. is the mass of the atom at the n-th 

site. 

We are primarily interested in the normal modes of the sufficiently long 
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60 H. Matsuda and K. Ishii 

finite chain, not the infinite chain as given in (2 ·1). However, since it is 

difficult to discuss the limiting behavior of the finite chain, we first study the 

infinite chain and then from the knowledge of the latter infer the feature of 

the former. In order to avoid the confusion caused by the complicated 

mathematics as well as for the sake of impatient reader, we summarize the 

main result of our study in this section leaving their proof and discussion to 

later sections. 

First, we discuss the asymptotic behavior of the solution of (2 ·1) when 

the set of values uo and Ut is given, where I Uo 12 + I Utl 2 =FO. Since the situ

ation is the same for u. with negative n we only consider u. with positive n. 

The solution can be written in terms of the product of the transfer matrix 

T. as 

where 

T =(2-m.al/K -1) 
• 1 0 . 

For the regular chain where m.=m, it is apparent that: 

when O<al<4K/m, 

lim N1 lnl uNI 2 =0, 
N-;.~ 

and when al>4K/m, 

lim N1 lnluNI 2 =2A 
N-;.~ 

where A=cosh-1 (mal/2K-1)>0. 

(2·2) 

(2·3) 

(2·4) 

(2·5) 

On the other hand, for the random chain where masses mt> mz · · ·, m., · · · 

are the sequence of independent real random variables with a common distri

bution function, we are concerned with the limiting property of the product 

of matrices or the limit theorem of the noncommuting random products. 

In general, we let p. be a measure on SL(m, R), which is the group of 

m-dimensional unimodular matrices transforming the real vector space Rm into 

itself. Let G denote the smallest closed subgroup of SL(m, R) containing 

the support of p.. Let Xb Xz, ···,X.,··· denote the sequence of the independent 

G-valued random variables with the common distribution p.. Then, Fursten

berg's theorem runs as follows: 

(Furstenberg's theorem) 16> Let G be a noncompact subgroup of SL(m, R) 

such that no subgroup of G of finite index is reducible. Then IIX.···X1 ull 
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Localization of Normal Modes and Energy Transport 61 

grows exponentially as n~oo with propability 1 for all u except for the zero 

vector. Here II .. ·II denotes the norm of the vector. 

In view of Furstenberg's theorem, identifying T. as X. our problem 

reduces to the study as to whether the closed subgroup G of SL(2, R) gener

ated by the transfer matrices of the form given in (2 · 3) is noncompact and 

whether no subgroup of G given here with finite index is reducible. We call 

here the above two conditions as F-conditions. 

Theorem 1 If G contains at least two transfer matrices corresponding 

to different non-zero masses, then G satisfies F-conditions. 

Therefore, for the random chain where masses m1, m 2, ... , m., ... are the 

sequence of independent non-zero real valued random variables with a common 

distribution tt, there exists r such that 

(2·6) 

with probability 1. 

The value of r, which can be determined by solving the integral equation, 

cannot be given in a closed form in general. We shall prove 

Theorem 2 In the limit of w~o, 

(2·7) 

where < .. ·) denotes the ensemble average and the suffix of the mass m is 

suppressed. 

The proof of Theorems 1 and 2 will be given in §3. So far it is the first 

stage of our study. Next, we study the bounded solution of (2 ·1) such that 

I u. I < oo for all n, which constitutes the second stage. 

For the regular chain where m.=m, we know that (2 ·1) either has no 

bounded solution (for ro2>4K/m), or has bounded solution which has no limit 

for uN as N~±oo (for ro2<4K/m). No non-trivial localized bounded solu

tion in the sense 

limuN=O (2·8) 
N-+±r:JO 

exists for the regular system. The existence of such a solution in disordered 

system was inferred by Borland; 15> we shall closely look into it. 

We prove in §4 the following theorem. 

Theorem 3 Let u.=f/J±(n) be the particular solution of (2·1) such that 

f/>±(0)=0, f/>±(±1)=-1. A necessary and sufficient condition for there to 

exist a non-trivial solution of (2 ·1) such that (2 · 8) holds is the following: 

Either lim f/J±(N) = 0 or 
N~±co 
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62 H. Matsuda and K. Ishii 

(I) There exists an infinite sequence of integers {n (11)} (n (11) <n (11 + 1), 

11=0, ±1, ±2, ···) for which 

(2·9) 

exist and 
n(•l+l 1 

lim lim t/J±(N) 2J ± ± 0 
No+±~ •-+±~ n-N fJ (n)t/J (n±1) 

(2·10) 

and 

(II) c+ and c_ satisfy 

-mooi=K(c++c_-2). (2·11) 

When the conditions (I) and (II) are satisfied, then the only bounded solu

tion of (2 ·1) is the localized solution satisfying (2 · 8). 

It is easy to show that for the regular system lim t/J±(N) does not exist 
N...:,±C)C! 

and the two conditions (I) and (II) are mutually exclusive, as it should be. 

Now for the random chain we can prove on the basis of (2 · 6) and 

Theorem 3 that: 

Theorem 4 For the random chain, where m±l, m±z, ···, m±., ··· are the 

sequence of independent non-zero real random variables with a common 

distribution p, (2 · 9) and (2 ·10) hold with probability 1. 

Let us call a set of sample chains where all the masses are specified except 

mo 'a sample chain with variable mo', since we may look upon such a set 

as if it is one sample which has a value of mo as a state variable. Then, 

any sample chain with variable mo, except those with measure 0, can have 

a localized solution by setting the value of mo such that (2 ·11) holds. This 

fact indicates that if mo can have any value including negative values, then 

we can almost always construct for any given frequency and for any sequence 

of masses m±1> m±2, · · ·, m±., · · · a completely specified sample chain for which 

(2 ·1) has a localized solution. 

It may happen, of course, that G may not contain To with mo that satis

fies (2 ·11) for any possible set of values of c+ and c_. Such a frequency 

is the one forbidden as a normal frequency. For instance, if there is the 

minimum mass !!1_ such that O<m<m. ( -oo<n<oo) then the frequency w 

with w2>4K/m corresponds to such a forbidden frequency. Thus one may 

still suspect the existence of the localized solution in the physical system, 

since here mo should be positive. 

However, we can state: 

Theorem 5 The probability that for a sample chain with variable mo 

which is positive to have a localized solution tends to 1/2 as w-----+0. 
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Localization of Normal Modes and Energy Transport 63 

Theorem 6 The localized solution has the asymptotic form for In I> 1 

such that 

lu.l <U exp[- Cr-e) In I], (2·12) 

where U is a finite positive number independent of n, r >0 and e-+0 as 

In I ~oo. r is given by (2 · 7) in the limit of w-+0. 

The third stage of our study should be the relation between the localized 

solution of the infinite system for given w and the nature of normal modes of 

a given sample chain which is a large but finite system. We have not yet 
succeeded to formulate the a priori theory for the above relation, so we shall 

only study the consequences of the IF-assumption. Invoking the IF-assump

tion to Theorem 6, let us assume that essentially all the normal modes with 

r>l!N of a finite chain of N atoms localize somewhere, say around the no-th 

site with the asymptotic form 

I u.l < U exp [- r I n-no I ] (2·13) 

for In- no I> 1, where U is a finite positive number and r is given by (2 · 7). 

In §5 we compare (2 ·13) and (2 · 7) with the result of the computer calcu

lation of normal modes, which supports the qualitative validity of (2·13). 

In §6 we shall analyze the result of Payton, Rich and Visscher's com

puter experiment20> on the thermal conductivity in a disordered harmonic 

chain. The equation of motion of the model of the experiment can be re

presented by 

mtilt=K(uz-2ut) -).m1it1 + fr(t), 

m.u.=K(u.+t+U.-t-2u.), (2<n<N-1) 

mNuN=K(uN-t-2UN) -).mNuN+fN(t). 

(2·14) 

The contact with the heat reservoirs of temperature T1 and TN, ( T 1- TN 

= Ll T>O), is represented by friction terms with constant ). together with the 

Gaussian random force f;(t), (j= 1, N), the ensemble average of which 

satisfying 

Jli)=O, 

f;(t)f;'(t') = 2k T;J.m;Ojj'O(t-t'). 
(2·15) 

By obtaining the stationary solution of the equation determining the evolution 

of the covariance matrix of displacements and momenta of atoms for such a 

system, we shall show that: 

Theorem 7 In the limit of J.--+0, in the stationary state of the system 

given by (2 ·14) we have the equation 

(2·16) 
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64 H. Matsuda and K. Ishii 

where Uv,n=Xv,n/vm; is the displacement of the n-th atom in the 11-th normal 

mode and 

(2·17) 

The energy current is equal to the energy transmitted per unit time from 

the heat reservoir to the first atom, which is given, in virtue of (2 ·14) and 

(2·15), by 

(2·18) 

For a regular chain we obtain from (2 ·16) and (2 ·17) m the limit of 

..l_,.O 

Q= (Ak/2)AT (2·19) 

in consistence with the result obtained by other authors. 21>·22> 

For a disordered chain using (2 ·16) and (2 ·13) we obtain 

(2·20) 

where c=0(1) is a constant. 

Payton et al. defined the thermal conductivity " as the energy current 

divided by the gradient of the local temperature lJT/N rather than AT/N, 

the relation between which is given from (2 ·18) by 

where Ct is a constant. Hence, " is 

given by 

fC='K/(1-ct'K/N). (2·22) 

By suitably choosing two con

stants c and Ct the concentration de

pendence of " of the computer experi

ment can be well reproduced by the 

theory as shown in Fig. 2. In par

ticular, when the concentration of 

mass m is p and that of mass 1 is 

1-p, the value of p for which " is 

minimum is given by 

1 
Pm1n= 1+m, (2·23) 

which exactly coincides with the com

puter experiment independently of the 

values of c and Ct. 

3 

(2·21) 

;:::: 
z 
ILl 
::;; 

• MASS RATI0=3:2Jffi 
M MASS RATI0=3: I ~. 
--K w 

=--=~}I THEORY; 

Il 

) 
v 

~-.-

Fig. 2. Thermal conductivity coefficient 

te or 'iii versus light atom concentration 

for the isotopically disordered har· 

monic chain. The experimental values 

are due to the computer experiment 

by Payton et al. (reference 19)). 
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Localization of Normal Modes and Energy Transport 65 

One important result of our theory, which is not yet confirmed by the 

computer experiment, is the N-dependence of the thermal conductivity JC. 

According to (2·20) and (2·22) JC is proportional to YN for large N, so 

that Fourier's law for thermal conduction does not hold. In most solids, 

except for quantum solids, at very low temperatures the amplitude of oscil

lation of atoms is very small. Therefore, the thermal conductivity is mainly 

determined by the scattering of phonons by impurities or boundaries and the 

effect of anharmonicity is not important, but it is usually presumed that 

Fourier's law does hold here, too. 

If this presumption should be correct, we should look into the discrepancy 

between this presumption and our result for one-dimensional disorderd harmonic 

chain. At least there are three possibilities: 

(1) IF-assumption is not correct for the derivation of the N-dependence of 

IC. 

(2) In one-dimensional disorderded harmonic solids Fourier's law does not 

hold, but in the higher dimensional solids the situation is different. 

(3) Even if anharmonicity is not important for determining the value of 

thermal conductivity, it is its presence that ensures the validity of Fourier's 

law. 

The question as to which is the true cause of the discrepancy and how 

Fourier's law can be derived is an interesting future problem. 

Allen and Ford27) obtained a formally exact expression for the Kubo 

thermal conductivity for an infinite, one-dimensional chain of atoms which are 

connected by nearest-neighbor, harmonic springs of equal strength, and which 

are of equal mass m except within a finite section of the chain which contains 

disordered isotopic impurities of mass M. The thermal conductivity they 

obtained is in our notation 

(2·24) 

where N is the number of atoms in the above finite section, e is the Debye 

temperature, a is the nearest-neighbor atomic distance, 

(2·25) 

x=n(J)/kT, and r is given by (2·6) or (2·7). 

They concluded from the fact r >0 that the thermal conductivity JC for 

finite N given in (2 · 24) is finite. As to the N-dependence, using the expres

sion (2 · 7) valid for small value of x, the contribution from which is dominant 

for the integral in (2·24) when N";Pl, we obtain for N";Pl 
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66 H. Matsuda and K. Ishii 

JC= 
ka I K(m) _/-

2vn V ((m-(m)) 2) v N · 
(2. 26) *l 

Apart from the validity of the Kubo formula itself, we think that (2 · 26) 

is the correct expression for the thermal conductivity based on the Kubo 

formula. This expression is valid for any concentration of random impurities 

so long as N';;Pl. It is of significance that (2·26) is derived without the 

IF-assumption; this fact may rule out the first of the above-mentioned three 

possibilities. 

However, we must be careful that the Kubo thermal conductivity (2 · 26) 

is different from (2·20) and (2·22). In particular, when the concentration 

of mass m is p and that of mass 1 is 1 - p, the value of p for which " ts 

minimum is here given instead of (2 · 23) by 

1 
Pmin= 1+vm, (2·30) 

in disagreement with the result of the computer experiment. 

Although from our result we cannot say anything about the validity of 

the Kubo formula for thermal conductivity in the system where Fourier's law 

holds, our result indicates that care must be taken to calculate the energy 

flow in the system where Fourier's law does not hold, since in the absence 

of Fourier's law the energy fiow is not necessarily determined by the tem

perature gradient alone. 

*' Allen and Ford obtained the following expression for '1 in the low concentration of impurities: 

_ 1 R [ (1-M/m) 2x"J 
'1-z N ln 1+ (8/T)"-x" ' (2·27) 

which coincides with (2·7) in the low concentration limit. Here R is the number of impurities. 

The correct use of (2·27) in (2·25) and (2·24) leads to the thermal conductivity which is prop

ortional to liN for N~oo for fixed value of R/N, too. They also proposed the alternative 
expression for '1 which they supposed to be valid for large R: 

'f=+ ~ (1-M/m)• (T/fJ)x, (2·28) 

where b is a constant. They obtained using (2·28) in (2·24) and (2·25) the finite thermal 

conductivity in the limit of N ~oo. However, the linear dependence of '1 on x, which is vital 

for obtaining the :finite tc, is not considered to be valid in view of our result (2·7). 

Woll••l also calculated using propagater formalism the Kubo formula for the thermal conduc
tivity for a disordered harmonic chain in a slightly different model. In his model the impurities 

are randomly distributed throughout the entire chain. His result for the conductivity is, in the 

limit of R/N <!;.), 

kVK/m ( N) 
tc 4..:2(1-M/m)" R Na, (2·29) 

which is proportional toN for :fixed value of the impurity concentration R/N. Because of subtlety 

of treatments inherent in the propagater formalism it is difficult to assess the validity of (2·29). 

However, if (2·29) is valid, then the energy flow should be determined by the temperature 

difference of both ends of the chain independently of the length of the chain as occurred in a 

regular chain, and the energy flow diverges in the limit of R/N ~o. This property, however, 

seems to be at variance with the result of computer experiments.""' 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.4

5
.5

6
/1

8
4
3
4
9
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Localization of Normal Modes and Energy Transport 67 

§3. Proof of Theorems 1 and 2 

Theorem 1 First we show that F-conditions are satisfied if G contains 

two noncommuting matrices T1 and T2 whose traces are greater than 2 in 

the absolute value. Then one of the eigenvalues of T1 (i= 1, 2) is greater 

than 1 in the absolute value. Therefore the matrix elements of T," become 

arbitrarily large if we choose a sufficiently large integer n. As G contains 

such T,", it cannot be compact. Next, let Go be a subgroup of G of finite 

index. Then for some integers n1 , Tt' EGo (i = 1, 2) ; otherwise, there exist 

infinitely many cosets T,"G0 (n= 1, 2, 3, ···) of G in contradiction with the 

finiteness of the index of G0 • T,"' have the same non-degenerate eigenstates 

as T,, and T1 and T2 are noncommuting, so that Ti' and T2• 2 are also non

commuting. Therefore, Go is irreducible. 

To prove Theorem 1, we show that we can construct the above mentioned 

two matrices from two arbitrary transfer matrices T, T' corresponding to 

different non-zero masses. If the absolute values of the traces of T and T' 

are both greater than 2, there is no problem. So we assume that !Tr Tl <2. 

It is easily shown that in the representation which diagonalizes T, T' is a 

matrix of the following type 

(~* !*)' (3·1) 

where a and b are complex numbers and * denotes the complex conjugate. 

We mention that the product of two matrices of this type is also of this type. 

A unimodular matrix of this type must satisfy a condition I a 12 -I b 12 = 1, and 

is generally expressed using three real parameters. When the absolute value 

of its trace is smaller than 2, it is expressed as 

a=cosO+i sinO cosh2x, 

b = e18 sin() sinh 2X, 

where O<o<2:n:, O<x<=, 0<8<2:n:. A transformation which diagonalizes 

this matrix is given by 

S= ( . ~~sh_x ie18 sinhx), 
- ze '8 sinh X cosh X 

s-1 = (. c~sh_X - ie18 sinh X). 
ze -.s sinh X cosh X 

(3·2) 

Note that Sand s-1 are also of the type of (3·1). When the absolute value 

of the trace of a unimodular matrix is greater than 2, it is expressed as 

a= ±cosh61+i sinh61 sinh2x, 

b = e18 sinh e cosh 2x, 
(3·3) 
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68 H. Matsuda and K. Ishii 

where - oo<@<oo, o<x<oo, 0<8<2n. 
Now the construction runs as follows. In the first stage of construction 

we show how to obtain a composite transfer matrix T whose trace is greater 

than 2 in the absolute value and which is noncommuting with T'. Let 

T1(n) = T•T'. If we assume that T and T' are expressed by the parameters 

(0, 0, 0) and (o', x', 8') respectively, then 

where 

Tr T1(n) =2(coso' cos nO-sinO' cosh2x' sin nO) 

=21 a' I cos(nO+q{), 

a'==coso' +i sinO' cosh2x' 

Here we must treat the two cases separately according as 0 /n IS rational or 

irrational. 

Case 1) The case when 0/n is irrational 

In this case we can make I nD+c/1 arbitrarily small with mode 2n by 

choosing n suitably. Since I d I > 1, we can choose a n1 and make Tr T1 (n1) 

>2. T= T1Cn1) and T' are noncommuting. This T is a desired matrix, 

and the first stage ends here. 

Case 2) The case when 0/n is rational 

Let 0= (q/p )n, where p and q are prime to each other. In this case nO 

takes only 2p discrete values 0, n/p, 2n/p, ···, (2p-1)x/p with mode 2n. 

This time T" can become the unit matrix. So we make a condition that T• 

should not become the unit matrix and choose the integer n so as to make 

I nO+(/ I as small as possible with mode 2n. Let n1 be such a number and 

T1== T1Cn1). Then, as I n10+ll <n/p, following inequality holds for p>2. 

TrT1>2Ia'l cos~. 
p 

(3·4) 

It is easily seen that T1 and T' are noncommuting. If Tr T1>2, then the 

first stage ends here. But if Tr T1<2, we repeat the similar construction using 

T1 instead of T. That is, let T2 (n) == Tt T' and choose the integer n so as 

to make Tr T2(n) as large as possible. Let (01, X1, 81) be the parameters to 

express T1 and let S1 and S11 be the corresponding transformation matrix 

given in (3·2). Now we change the representation and diagonalize T1 • In 

this representation 

T '-s-1T'S -(a~ b~ ) 
1 = 1 1 = b~* a~* , 
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Localization of Normal Modes and Energy Transport 69 

and 

If Ot/1r is irrational, we can choose a nz and make Tr Tz(nz)>2 and the first 

stage ends here as before. But, if Ot/1r is rational (01 = (qtf P1)n, where PI and 

q1 are prime to each other), we can say only that 

TrTz>2!a~! cos~. 
P1 

(3·5) 

From (3 · 4), we have the following inequalities. 

cos~n>la'! cos~>cos~, 
p1 p p 

(3·6) 

i.e. p1>p. 

If Tr T2>2, then the first stage ends here. But if Tr Tz<2, we must repeat 

the similar construction. 

In the worst case, we may construct an infinite sequence of matrices 

T1, T2, ···, T., ··· whose traces are all smaller than 2 in the absolute value and 

0;/1r are all rational (0,= (q;/p,)1r, p, and q1 are prime to each other). But 

we can show that such case does not hold and we can make the first stage 

end after a finite times of repetition of the construction. If we assume the 

existence of such an infinite sequence, then in the same way as we obtained 

(3·5) and (3·6), we have 

(3·7) 

and 

Tr Tl+1>21 a~! cos~, (i= 1, 2, ···) p, (3·8) 

where a~ is the (1, 1) element of T' in the representation which diagonalizes 

T,. We will show in the following that there exists a number A.(>1) such 

that if I a~ I <A., there appears I a~ I> A. within a finite times of repetition of 

the construction. Now let N be an integer such that cos(n/pN)>A;;1. Such 

N exists because of (3·7). If !a;,.j>A., we have TrTN+1>2 by (3·8) 

contrary to the first assumption. Even if I a~ I <A., within a finite times of 

repetition of the construction there appears !a~+II>A. and from (3·7) and 

(3 · 8) we have 

contrary to the first assumption. 

We must now examine the sequence {I a~ I} and show the above mentioned 
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70 H. Matsuda and K. Ishii 

property. Let (01, 0, 0), (Oi+t, X;+l> ai+t) and (0~, X~, a;) be respectively the param

eters to express T,, Ti+t and T' in the representation which diagonalizes 

T,. There is a relation Ti+t = Tr T' for some integer m. Expressing the 

(1, 2) elements of both hand sides by parameters, we have 

i.e. 

e•sf., sinOi+t sinh2Xi+t = e•<me,+Sf) sinO~ sinh2x~, 

I sinoi+,l sinh2x,+l = I sinO~ I sinh2x~. (3·9) 

Let Si+t be the transformation matrix which diagonalizes Ti+t· Then 

and expressing the both sides by parameters, we have 

coso;+, +i sino;+l coshzx;+l =coso;+i sinO~ 

x {cosh 2Xi+t cosh 2x~- sinh 2xi+l sinh zx; cos ( ai+l- a~) } . 

As cosh2x,+l cosh2x~-sinh2xi+l sinh2x~ cos(a,+~-aD>cosh2(X,+t-X~)>O, we 

obtain o;+l=O~= ···=o' and 

cosh zx;+l = cosh 2x,+l cosh 2x~- sinh 2xi+l sinh zx; cos ( ai+1 - a~) 

>cosh2(x,+~-x;). 

Now as 0~=0 1 , (3·9) becomes 

. I sino' I . , stnh 2Xi+t = . smh 2x, . 
stnOi+t 

Because n/Pi+t<O•+t<n/p,, there ex

ists an integer M, such that for i>M 

I sino' /sinO,+ll>4 

and the relation between X;+l and x; 
is plotted in Fig. 3. Let x= x.>O, 
and y = 3x. be a solution of the simul

taneous equations 

{
sinh2y= 4 sinh2x 

y=3x. 

(3·10) 

Then, for x:<x., Xi+t>3x; as can be 

seen from Fig. 3. Substituting this 

inequality into (3 ·10), we have Fig. 3. Schematic relation between X;., 

and Xt (arbitrary scale). 

sinh 2X;., =m sinh 2Xt 

Therefore for x~<x. we have 
l···m=4 2···m=m•>4 

3···m=ma>m, 
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Localization of Normal Modes and Energy Transport 71 

As I a; I is expressed by parameters as 

(3·12) 

the above mentioned property of {I a; I } follows from (3 ·11) if we put 

Ac== Y cos2o' +sin2 0' cosh2 Xc • 

In the first stage of the construction, a matrix Twas constructed by finite 

times of multiplication of matrices T and T' whose traces are both smaller 

than 2 in the absolute value. Of course, T is contained in G and T and T' 

are noncommuting and Tr T>2. Now we construct a matrix T' in the 

similar way as we constructed T. This time, we use T' and T respectively 

instead of T and T'. As TrT>2, we must use (3·3) to express T by 

parameters. The argument is essentially the same as before except for some 

modifications. For example, (3 ·7), (3 ·8) hold also this time, but I a1l 1s 

given not by (3 ·12) but by 

I a1l =~cosh 2 B+sinh 2 B cosh2 X1 >coshe>l. 

Therefore, it is easier this time to show that the second stage ends within a 

finite times of repetition of the construction. If the given matrices are such 

that ITrTI<2, ITrT'I>2, then we need only the second stage of construc

tion mentioned above. Thus the proof of Theorem 1 is now complete. 

Theorem 2 In this theorem, the rate r of the exponential growth of 

vectors in Theorem 1 is calculated in the limiting case of w~O. First, we 

quote a theorem due to Furstenberg16 l and show the procedure one should 

follow to obtain r in the general case. Let p. be a measure on SL(m, R), 

and let G denote the smallest subgroup of SL(m, R) containing the support 

of 1-l· 1-l need not be absolutely continuous. {X.} denotes the G-valued vari

ables with distribution 1-l· We are interested in the action of G on R"'. The 

real (m-1) dimensional projective space P"'-1 is obtained from R'"- {0} by 

identifying two vectors if each is a scalar multiple of the other. G acts on 

P"'-1 as well as on R"'. Let v be a distribution on P"'-1, and let gv denote 

the distribution which gx has if x has distribution v. We define the convo

lution P.*v of 1-l and v as a weak integral by 

1-l*v= ~gvd!-l(g). 

If p.*v=v, we call v a stationary measure for 1-l on P"'-1• Consider a function 

on Gx (R"'- {0}) defined by 

a(g, u) = lloull/llull, 
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72 H. Matsuda and K. Ishii 

where 11···11 denotes the norm of vector. o(g, u) depends only on g and 

uEP"'-\ We set lh=logo. Then, we have the following theorem (Theorem 

8·5 in the Furstenberg's paper). 

(Theorem) If G is irreducible and ~llulld.u(g)<=, the expression 

~~p1(g, ~)d,u(g)dv(~) 

for a stationary measure v for .u is independent of the stationary measure v. 

Denoting the common value by a,.(pl), we have, with probability 1, 

for all nonzero vectors u E R"'. 

Now we turn to the calculation of r for a particular case. In this case, 

G is a group of 2X2 transfer matrices given in (2·3). If we define state 

vectors by the transpose of ( Un+l• un), they are transfered as in ( 2 · 2). If we 

define the state ratios by z.==u./un-1> they satisfy the following equation, as 

is seen from (2 ·1). 

(3·13) 

where, the masses m. are the random variables with a common probability 

density p(m.). pm-l in the above therorem is identical with the space of 

state ratio. In order to calculate r we must find a stationary distribution of 

state ratio z. But, it is more convenient to make a variable transformation 

from z to ,P as 

z- cos(,P+A) =cosA-sinA tan,P, 
cos,P 

(3·14) 

where 2 cosA==2- (M/K)al, M==(m), and ,P is defined in the interval 

-n/2<,P<n/2. In terms of this new variable ,p, (3 ·13) becomes 

From this equation tP•+l is determined as a function of ,P.. We write this 

relation as tP•+l=(J)(,P.; m.) and its inverse relation as ,P.=(J)(,P.+l; m.). Then 

the stationary distribution F(,p) of ,P which we seek, satisfies the following 

equation. 

F(,p) = ~F(~(,P; m)) d~~~ m) p(m)dm. (3·15) 

As we are interested in the limit w--,>0, we expand ~(,P; m) as a power series 

of w and obtain 
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Localization of Normal Modes and Energy Transport 73 

where iJm==m-M and ··· denotes the higher order terms of ro than the 

retained terms. Though strictly speaking, (3 ·16) only holds with mode n, 

we neglect this remark for a while and try to find a solution of (3 ·15). 

Further, we assume that F(,p) can be expanded as a power series of ro as 

(3·17) 

If we substitute (3 ·16) and (3 ·17) into (3 ·15) and make a Taylor expansion 

of F; (W(,P; m)) about r/J, (i = 0, 1, 2, · · ·), we obtain the following equations 

for Fo(,P) and F1(,p) by comparing the first three order terms of the both 

hand sides of (3 ·15). 

dFo =O 
d,p ' 

dF1 =-F. (,p) ((iJm) 2
) (cos4¢J+cos2,P). 

d,p o 2MYMK 
(3·18) 

We notice that the solutions of these equations have the period n. Normaliz

ing the solution in the interval -n/2<,p<n/2 we can think it as a stationary 

solution of (3 ·15) where ¢ is confined in the interval -n/2<,P<n/2. Now, 

the rate r is given in terms of F(,p) as 

r= f,.'2 F(,p) logl cos(,P+l) ld,p, 
J-w/2 COSr/J 

and is calculated to the order of ro2 as follows. First, by rearranging the terms 

we obtain 

rw/2 

r= J_.,.12 {F(,p-l) -F(,p)}loglcos,pld,p. 

As l is of the first order of ro, we next make a Taylor expansion of F(,P-l) 

about r/J and obtain 

Substituting (3 ·17) and (3 ·18) into the above equation, we have the final 

result 

( (iJm) 2) ~w/2 
r= ro2 (cos4¢J+cos2,P)logl cos¢! d¢+ ··· 

2MKn -1r12 

= ( (iJm) 2
) ro2 + ... 

8MK . 
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7 4 H. Matsuda and K. Ishii 

§4. Proof of Theorems 3, 4, 5 and 6 

Theorem 3 Let ,p.±(n) be the particular solution of (2 ·1) such that 

,p.±(O) =1, ,p.±(±1) =0. Then it is easily seen from (2·1) that q,+(n) and 

,p.+(n) satisfy the following relation. 

q,+(n),p.+(n+ 1) -q,+(n+ 1),p.+(n) =q,+(n-1),p.+(n) -q,+(n),p.+(n-1) 

= ... =q,+(o),p.+(1) -q,+(1),p.+(o) = 1. c 4 ·1) 

Any solution of (2 ·1) is generally expressed in terms of two independent 

solutions q,+(n) and ,p.+(n) as 

(4·2) 

First we assume that u. is a non-trivial solution such that 

lim u.=O, (4·3) 
H~±oo 

and examine the property which q,+(n) should have in this case. We consider 

two cases separately according as limq,+(n) exists or not. 
·~00 

Case 1) The case when limq,+(n) exists 
·~ 

Let limq,+(n)=ID. If uo=I=O, we have from (4·2) 

and lim,p.+(n)=u1 1D/u0 also exists. Then, taking the limit of n~oo of (4·1), 
·~00 

we have a contradictory relation O=ID·u11D/uo-ID·u11D/uo=l. Therefore, uo=O 

and as u.= -ulq,+(n), we have 

limq,+(n) =0. (4·4) 

Case 2) The case when limq,+(n) does not exist 
·~00 

In this case there exist a positive number e: and an infinite sequence of 

integers {n(v); v=1, 2, 3, ... } such that lq,+(n(v)) l>e:; otherwise, limq,+(n) =0 

would exist contrary to the assumption. And this time uo =I= 0; otherwise 

u.= -u1q,+(n) and limu. would not exist contrary to (4·3). From (4·2) 
..... 00 

we now have the following relation for the sequence {n(v)}. 

I !:~t?? - ::I= I UofJ:C~Cv)) 1<1 ::<;)I· 
As limu•<•)=O by (4·3), lim,p.+(n(v))jq,+(n(v)) =uduo exists. Dividing the 

v...;r..co v~oo 

both sides of (4·1) by q,+(n)q,+(n+1), we have 
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Localization of Normal Modes and Energy Transport 75 

1 

Taking sum over n from 1 to l-1, we have 

where, if ~+(n)=O for some integer n, we must do the following replacement. 

1 + 1 ~ 2-m.oNK . (4 5) 
~+(n-1)~+(n) ~+(n)~+(n+1) ~+(n-1)~+(n+1) · 

This replacement, which is also an identity for n such that ~+(n) :#:0, is justi

fied by taking into account (2·1). Though we do not mention explicitly, such 

replacement should be done also in the similar situation which will appear in 

the following. In this way 

•<•l-l 1 Ut 

lim 2J +c ) +c ) .~~ •-1 ~ n ~ n + 1 uo 
(4·6) 

exists and 

~} 
Uo 

where, if ~+(n) =0, this relation should be replaced by the following as is 

seen from (4·1). 

u.= -uo· ~+(n+ 1 ) . 
1 

(4·8) 

In terms of ~+(n), (4·3) is expressed as 

(4·9) 

So far we considered the right half part Cn>O) of the chain. For the 

left half part Cn<O) of the chain, we can do essentially the same argument 

as above. For example, we can express the general solution as 

We should consider two cases according as lim~-(n) exists or not. Here we 
n~-oo 

mention only that for the existence of lim ~-(n) the same case holds as for 
n~-oo 
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76 H. Matsuda and K. Ishii 

the existence of lim~+ ( n). 

Finally to obtain a complete solution of ( 2 ·1), we must adjust the three 

displacements u11 uo, u-1 as to satisfy the following equation. 

Dividing the both sides by uo, we can express this condition in terms of 

,p±(n) if we use (4·6). 

Thus we have obtained a necessary condition in terms of ~±(n) for the 

existence of a non-trivial solution of (2 ·1) such that lim u. = 0: 
n--31-±oo 

Either lim ~±(n) =0 or 
·~±oet 

(I) There exists an infinite sequence of integers {n(v)} (n(v)<n(v+1), 

v=O, ±1, ±2, ···) for which 

n(v)+l 1 

c± == lim ~ ( ) ( ) v~±- 1~±1 ~± l ~± [±1 
(2·9) 

exists and 

(2·10) 

and 

(II) c+ and c_ satisfy 

-mooi=K(c++c_-2). (2·11) 

It is easily seen that the above condition is also sufficient for the existence 

of a non-trivial solution u. of (2·1) such that limu.=O. 
n~±oo 

Theorem 4 In this theorem we show that the two conditions (2·9) 

and (2 ·10) are satisfied with probability 1 for the random chain, where m±t, 

m±z, ••• are the sequence of independent non-zero real random variables with 

a common distribution p.. Here we consider only the conditions for the right 

half part (n>O) of the chain. We prove the theorem by examining a majorant 

series for the series in (2 · 9) and a majorant sequence for the sequence in 

(2·10). 

As ~+(n) is a particular solution of (2·1) with a given set of values of 

uo=O and Ut= -1, the relation in (2·6) applies to ~+(n). Thus for any 

sufficiently small positive number e>O there exists an integer N such that 

for n>N 

(4·10) 

From (4·10) we cannot have any lower bounds for l~+(l)l Cl>N) and 

they may become very small including the case of becoming zero. As they 

appear in (2·9) and (2·10) as products of their inverse, small l~+(l) I may 
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Localization of Normal Modes and Energy Transport 77 

contribute significantly to the series in (2·9) and (2·10). So we consider 

two cases separately according as ,p+(l) satisfies an inequality 

(4·11) 

or not. 

Case 1) The case when ,p+(l) does not satisfy (4·11) 

In this case we have the following lower bounds for ,p+(l±1) by (4·10). 

,p+(t-1) 2>! exp [2(r-e)l], 

,p+(l + 1) 2 >~ exp [2(r -e) (l + 1)]. 
(4·12) 

Therefore this case never holds for the consecutive sites, and we can have 

an upper bound for the combined two consecutive terms containing ,p+(l) by 

virtue of ( 4 ·12) and the identity ( 4 · 5). 

I ,p+(t-i),p+(l) + ,p+(t),p;(l+1) I= I ,p+(~='Dl::{[~H) I 
<2M exp[- Cr-e) (2l+ 1)] 

<M{exp[ -Cr-e)(2l-1)] +exp[ -Cr-e)(2l+1)]}, (4·13) 

where M==Max 12 -m1ol /Kl. 
I 

Case 2) The case when ,p+(l) satisfies ( 4 ·11) 

If ,p+(l+1)(,p+(l-1)) does not satisfy (4·11), then the contribution of 

1/,p+(t),p+(l+1)(1j,p+(l-1),p+(l)) is already estimated in (4·13). So we need 

only to estimate the contribution from the remaining terms for which both 

,p+(l) and ,p+(l±1) satisfy (4·11). Then it is easily seen that 

I ,p+(t),p;(l ± 1) I <2 exp [- Cr-e) (2l ± 1)]. (4·14) 

Thus we have the following majorant series by (4·13) and (4·14). 

n(v)-1 1 n(v)-1 

~N ,p+(l),p+(l+ 1) <M ~N exp [- Cr-e) (2l+ 1)] 

< M exp[- Cr-e) (2N+ 1)] 
~ 1-exp[-(r-e)] ' 

where M=Max(2, M), and for n>N 

I + )ncvl-1 1 I< +( ) exp[ -2(r-e)n] 
r/J (n ~ ,p+(l),p+(l+1) ~M,p n 1-exp[ -2(r-e)] 

<M exp[ -(r-3e)n] 
1-exp[ -2(r-e)]' 

(4·15) 

where we used an inequality of I ,p+(n) I <exp [ (r+e)n] obtained from ( 4 ·10). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.4

5
.5

6
/1

8
4
3
4
9
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



78 H. Matsuda and K. Ishii 

From these inequalities it is easily seen that (2 · 9) and (2 ·10) hold with 

probability 1 for this case. 

Theorem 5 In this theorem we examine the possibility to satisfy the 

condition (2 ·11) 

in the limiting case of w~o. To satisfy this condition by choosing a positive 

mass m0 , it is necessary and sufficient for c., to satisfy the following inequality. 

(4·16) 

Now c., are random variables which are defined in terms of rt>"(n). Their 

values are determined by the sequence of masses m±l, m.,z, · · • and as is shown 

in (4·6) they are also expressed as c.,=u.,duo, where Un is a non-trivial 

solution of (2·1) such that limun=O. We now wish to find the probability 
n-+±co 

distribution of c.,. We will show that this probability distribution is the same 

as the stationary distribution of Zn considered in the proof of Theorem 2. It 

is convenient to use the notation which we used in the proof of Theorem 2. 

Then c.,=z:t. and using (3·13) we have 

1 

1 
a1-----------

az-

1 
an---

Zn+1 

where a.=2-m.w2/K. By Theorem 4, the existence of the limit of n~oo 

of this continued fraction is guaranteed, and its value is determined by the 

sequence ml> m 2, ma, .... In ,the same way zz is also expressed as a continued 

fraction which is determined by the sequence mz, ma, m4, · · ·. z1 and Zz are 

related by 

(4·17) 

As mn are independent random variables, 1t 1s easily seen that the distribution 

F(z1) of c+=z1 is stationary with respect to the transformation (4·17) where 

m 1 is a random variable with distribution p.. Such a stationary distribution 

is exactly what we have obtained in the proof of Theorem 2, and is given 

by (3·14), (3·17) and (3·18). 

c+=cosA-sinA tan¢>+, 

F(¢>+) =_!_+ ···, 
1t 
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Localization of Normal Modes and Energy Transport 79 

where 2 cos).= 2- (m )ro2 / K and · · · denotes the higher order terms of ro. It is 
easily seen that c+ and c_ are mutually independent and have the common 
distribution. The condition ( 4 ·16) is 

expressed in terms of tP± in the limit 

of ro~O as 

i.e. 

tant/J+ +tan<P->0, 

sin(<P+ +<P-)>0. 
(4·18) 

-7l/2 

-7l/2 

X/2 
¢_ The region in (tfJ+, tfJ_) plane satisfying 

(4·18) is shown in Fig. 4 as the 

dashed region, and the limit of ro~O 

the point (tfJ+, <P-) is uniformly distri

buted in the square -n:/2<<P+ <n:/2, 

-n:/2<</J-<n:/2. Therefore, the proba

bility to find sample chains with such 

c± as to satisfy ( 4 ·16) tends to 1/2 

as ro~o. 

Fig. 4. The region in (c/1+, </>-) plane satis

fying (4·18). 

Theorem 6 In this theorem we examine the asymptotic form of u •. 
By (4·7) and (4·8), u. is expressed in terms of <P+(n) as 

o(v) -1 1 
u.=-u0</J+(n)lim ::E +(l) +(l+ 1) if <P+(n)=I=O 

v~oo l~n t/J t/J 

1 
= -uo· <P+(n+ 1) if <P+(n) =0. 

Then by ( 4 ·13) and ( 4 ·15) we have for any sufficiently small positive num

ber e: and an appropriate integer N, 

!u.! <U exp[- Cr-e:)n] 

for n>N, where U is a finite positive number independent of n. We can 
make e: arbitrarily small, though we must then take large N accordingly. 

§5. Comparison of (2 ·13) and (2 · 7) with numerically 
calculated normal modes 

According to (2·13), the normal mode is spacially well localized if and 
only if rN/2'>1, or by virtue of (2·7) if and only if 

(5·1) 

where N is the number of atoms in the chain. 
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80 H. Matsuda and K. Ishii 

Let us call the right side of (5 ·1) demarcation frequency between locali

zation and non-localization of normal modes. The demarcation frequency 

tends to zero as N tends to infinity, so that almost all the normal modes in 

any frequency range should be localized if the number of atoms is sufficiently 

large. 

In the low frequency range where (2 · 7) is valid, the normal frequency 

1s approximately given by 

(5·2) 

where n is the mode number labelled in the increasing order of normal 

frequency. Then, the demarcation mode number nd corresponding to the 

demarcation frequency is given by 

(5·3) 

Thus if IF-assumption is valid, (5·3) gives the order of magnitude of 

the number of normal modes which are not well localized. We use the term 

'the order of magnitude', because the notion of 'well-localized' cannot be sharply 

defined. However, we can clearly assert that among N normal modes all 

the normal modes except for low frequency modes, the number of which is 

of the order of YN, are well localized. 

Equation (5 · 3) is valid for any isotopically disordered harmonic chain where 

the probability of the occupation of isotopes at different sites is uniform and 

uncorrelated. We can get the dependence of the number of non-well-localized 

modes on the concentration and mass ratio r through (5·3). 

In Table I we give some nu-

merical examples of the demarcation 

mode number of the isotopically dis

ordered diatomic chain where the 

concentration of the two isotopes is 

the same. 

The numerical calculation of 

normal modes were carried out for 

r=3 by Dean and Bacon18> (N=50), 

and by Payton and Visscher19> (N 

= 200), and for r = 2 by Rosenstock 

and McGil117> (N= 16). Some of 

Table I. Demarcation mode number, n4, 

that is, the number of non-well

localized modes in the isotopically 

disordered diatomic chain. 

~ 16 50 200 
s 

r 

2 15 27 54 

3 10 18 36 

5 8 14 27 

their results are illustrated in Fig. 1, which can be favorably compared with 

Table I. Incidentally, it is interesting to imagine that Rosenstock and McGill, 

who suggested that the nature of normal modes of a disordered chain would 

be similar to that of a regular chain, would have concluded differently if 
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Localization of Normal Modes and Energy Transport 81 

their calculation were made for r2:3 even though the chain length was as 

short as N=16. 

We may go into the details of comparison by introducing the notion of 

the probable number of localized sites s. for the 11-th mode, which is defined 

by 

[ 
N ( 1 )2]-1 

s.= ~ :i';,,.-N ' (5·4) 

where x •.• = -vm; u •. • , u •.• being the displacement of the n-th atom in the 11-th 

normal mode normalized as 

N 

~x! .• =l. 
n=l 

If the normal mode essentially localizes over s lattice sites, then for N';;Ps";;t> 1, 

x! .• =0(1/s) for the s lattice sites and the contribution to the sum in the 

right side of (5·4) from these s sites is 0(1/s). On the other hand the 

contribution from all the other sites is 0(1/N), so that the right side of 

(5·4) is O(s), which justifies the nomenclature. 

The notion of the probable number of localized sites has the merit that it 

can be used for any dimensional system. However, because of the lack of 

the detailed data of the numerical calculations available to the authors, we 

conclude this section without utilizing this notion, only saying that (2 ·13) 

and (2 · 7) is in good qualitative agreement with numerical calculations. 

§6. Thermal conductivity in the disordered harmonic chain 

--Proof of Theorem 7--

In general the Hamiltonian of our chain can be written in the form 

where 

2N N 

H=! ~ ~+i ~ Q);jX;Xj' 
i=N+l i,i=l 

(i=1, 2, ... , N) 

(i=N+ 1, ···, 2N) 

(6·1) 

When the chain has contacts with heat reservoirs as represented by 
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82 H. Matsuda and K. Ishii 

(2 ·14) and (2 ·15), the time development of the covariance matrix b = {b;;}, 

(b;;=X;X;) is given by21> 

ft b(t) =d-ab(t) -b(t)ii, (6·2) 

where ii is the transpose of a; 

(0 -1) 
a= 0 .!R ' (6·3) 

Here 0, .!R, e are the NxN matrices whose (ij)-element is ({),;, 

(6·4) 

and e1; = 2k T; .!R1;, respectively. 

In order to introduce dimensionless quantities we put 

0=tiiG, ai=K/(m), G=G, 

.!R=J.R, (6·5) 

e=2kTJ.(R+7JE), 

where 

(6 ·6) 

and 

Writing the 2Nx 2N covariance matrix b in the partitioned form 

b= (~ ;), 

and introducing X, Y and Z by 

x= (kT/ii:J2) [G-1 +7JX], 

y=kT[1+7JY], 

z=J..-1kT7JZ, 

(6·7) 

(6·8) 

one obtains from (6·2) the following equations in the stationary state. 

X= X, Y= Y, Z= -z, 

Y=XG+ZR, 

1[2E- YR-RY] =GZ-ZG. 

(6·9) 

(6·10) 

(6·11) 

The quantity lin (6·11) is X=J.2 /ii:J2• Now, our problem is to solve (6·9) 

........ ( 6 ·11) for Y in the limit of A-+0. 
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Localization of Normal Modes and Energy Transport 83 

Writing as 

Z=z<o>+'iz(l>, (6·12) 

and substituting it into (6·11), we find that the zeroth order termini satis

fies 

Gz<o>-z<o>G=O. (6·13) 

Let us take the representation m which G IS diagonal: 

(6·14) 

Hereafter we use Greek letter for the suffix in this new representation and 

Latin letter for the former representation. Since 0 is the dynamical matrix 

for the harmonic chain, p., v is the label of normal modes and 

where w,. is the normal frequency of the p.-th mode. 

Using (6·14) in (6·13) we have 

Z~llJ=O for p.=l=v, 

since there is no degeneracy in the normal frequency in our chain.*> By 

virtue of (6·9), the diagonal element of z<o) also vanishes, so that 

z<o>=O. 

Then, from (6·10), (6·9) and (6·5) we have up to the zeroth order 

Y=XG=GX, 

so that 

Substituting (6 ·16) into (6 ·11) we have 

2E,.v- (X,.G,.+XvGv)R,.v= (G,.-Gv)Z~~. 

from which we obtain 

(6·15) 

(6·16) 

(6·17) 

*' In our chain each atom is coupled only with its nearest neighbors, so that, the state ratio 

ZN is a function of m and z,, by (3·13). The boundary condition specifies the value of z, and 

ZN and thereby the normal frequency m for given chain. This means, in tum, that z, is a (one

valued) function of m. Since the atomic displacement un is uniquely determined by (2·2) by z1 

up to the multiplicative constant as a function m, we have only one linearly independent solution 

for any m. 
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84 H. Matsuda and K. Ishii 

X,.G,.=E,.,./Rp.,., (6·18) 

Z~IJ= (1-Bp.,v) [2E,..- (Ep.p./Rp.p.-Evv/Rw)R,..] /(Gp.-G.). (6·19) 

Noting that the matrix element of the transformation matrix which makes 

G diagonal is nothing but the normal coordinate Xp. .• , we obtain from (6 ·16) 

Y • .,= ~x,.,.Y,..x .... = ~Xp.,nXp.,mXp.Gp.. 
/L,V f..£ 

Here, Xp.,n satisfies: 

~Xp.,.X,.,.,=B.,, and ~Xp.,nXv,.=8p.,v. p. 

From (6·6) and (6·4) we get 

E,.p.=x!.1-x!.N, Rp.,.=x!.1+x!.N, 

so that by virtue of (6 ·18) we obtain 

Therefore, 

""'2 1 --
u.=--.x!+N 

m. 

1 
=--y •• 

m. 

Thus, Theorem 7 is proved. 

(6·20) 

(6·21) 

(2·16) 

In virtue of (2·16), (2·18) and (6·20) the energy current can be written 

as 

(6·22) 

Incidentally, it is to be noted that in the weak coupling limit of I-o, 
by virtue of (6·18) and (6·19), other elements of the covariance matrix 

( 6 · 7) can also be written down in terms of the normal coordinates and 

normal frequency. 

Now, we estimate the value of Q using (6·22) and (2·13). We have 

shown in §5 that among N normal modes the low frequency modes the 

number of which is of the order of nd are not well localized, whereas other 

modes are exponentially localized. We may thus assume that 
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(6·23) 

where c is the numerical factor of the order of magnitude of 1. 

Therefore, we obtain 

Q=AkAT{ ~~ +o( 1 )}· (6·24) 

Substituting (5·3) into (6·24) we get for N">l 

Q=AkAT 2-c (m) l 
n v'((m-(m)) 2 ) YN 

Finally, putting c= (2/n)c, we obtain (2·20). Here, we note that only the 

low frequency modes the number of which is of the order of -r/N contribute 

to the energy current. 

As mentioned in §2, the theoretical expression (2 · 22) of the thermal 

conductivity agrees well with the result of the computer experiments as shown 

in Fig. 2. This also seems to support a posteriori the IF-assumption. 

Acknowledgements 

The authors are indebted to Professors E. Teramoto, ]. Hori and T. Asahi 

for their interests and discussions. They are grateful to Professor M. Fuku

shima for informing them of Furstenberg's work and to Professor M. Moto-o 

for suggestions made in relation with the proof of Theorem 1. 

References 

1) H. Matsuda, T. Miyata and K. Ishii, Proceedings of the Inter-national Conference on 

Statistical Mechanics, Kyoto 1968 [Suppl. to ]. Phys. Soc. Japan 26 (1969), 40]. 

2) P. Dean, Proc. Roy. Soc. 254 (1960), 507. 

3) J. Hori, Spectral Properties of Disordered Chains and Lattices (Pergamon Press, Oxford, 

1968). 

4) B. I. Halperin, Adv. in Chern. Phys. 13 (1967), 123. 

5) E. H. Lieb and D. C. Mattis, Mathematical Physics in One-Dimension (Academic Press, 

New York, 1966), Chaps. 2 and 3. 

6) H. Matsuda and K. Okada, Prog_ Theor. Phys. M (1965), 539. 

7) H. Matsuda and T. Miyata, Prog. Theor. Phys. Suppl. Extra Number (1968), 450. 

8) J. Hori, Prog. Theor. Phys. Suppl. No. 46 (1970). 

9) H. Matsuda, Prog. Theor. Phys. Suppl. No. 36 (1966), 97. 

10) H. Matsuda and N. Ogita, Prog. Theor. Phys. 38 (1967), 81. 

11) K. Okada and H. Matsuda, Prog. Theor. Phys. 39 (1968), 1153. 

12) P. W. Anderson, Phys. Rev. 109 (1958), 1492. 

13) N. F. Mott and W. D. Twose, Adv. in Phys. 10 (1961), 107. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.4

5
.5

6
/1

8
4
3
4
9
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



86 H. Matsuda and K. Ishii 

14) R. Makinson and A. Roberts, Proc. Phys. Soc. 79 (1962), 222. 
15) R. E. Borland, Proc. Roy. Soc. A234 (1963), 529. 

16) H. Furstenberg, Trans. Amer. Math. Soc. 108 (.1963), 3. 

17) H. B. Rosenstock and R. E. McGill, ]. Math. Phys. 3 (1962), 200. 

18) P. Dean and M. D. Bacon, Proc. Phys. Soc. 81 (1963), 642. 

19) D. N. Payton, III and W. M. Visscher, Phys. Rev. 156 (1967), 1032. 

20) D. N. Payton, III, M. Rich and W. M. Visscher, Phys. Rev. 160 (1967), 706. 

21) Z. Rieder, ]. L. Lebowitz and E. Lieb, ]. Math. Phys. 8 (1967), 1073. 

22) H. Nakazawa, Prog. Theor. Phys. 39 (1968), 236. 

23) R. ]. Rubin, ]. Math. Phys. 9 (1968), 2252. 

24) ]. Hori, Prog. Theor. Phys. Suppl. No. 46 (1970). 

25) R. ]. Rubin, ]. Math. Phys. 11 (1970), 1857. 

26) ]. M. Ziman, ]. Phys. (London) C2 (1968), 1532. 

27) K. R. Allen and ]. Ford, Phys. Rev. 176 (1968), 1046 

28) E. J. Woll, Jr., Phys. Rev. 137 (.1965), A95. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.4

5
.5

6
/1

8
4
3
4
9
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2


