
 

Instructions for use

Title Localization of plus-one generated arrangements

Author(s) Palezzato, Elisa; Torielli, Michele

Citation Communications in algebra, 49(1), 301-309
https://doi.org/10.1080/00927872.2020.1798976

Issue Date 2020-07-31

Doc URL http://hdl.handle.net/2115/82340

Rights This is an Accepted Manuscript of an article published by Taylor & Francis in Communications in Algebra on 31 Jul
2020, available online: http://www.tandfonline.com/10.1080/00927872.2020.1798976.

Type article (author version)

File Information Localization of POG.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


LOCALIZATION OF PLUS-ONE GENERATED
ARRANGEMENTS

ELISA PALEZZATO AND MICHELE TORIELLI

ABSTRACT. We study the classes of free and plus-one generated hyper-
plane arrangements. Specifically, we describe how to compute the as-
sociated prime ideals of the Jacobian ideal of such an arrangement from
its lattice of intersection. Moreover, we prove that the localization of a
plus-one generated arrangement is free or plus-one generated.

Keywords: Hyperplane arrangements, Freeness, Plus-one generated ar-
rangement, Associated prime ideal, Localization of arrangements.
MSC10: 52C35, 32S22.

1. INTRODUCTION

Let V be a vector space of dimension l over a field K. Fix a system of co-
ordinates (x1, . . . , xl) of V ∗. We denote by S = S(V ∗) = K[x1, . . . , xl] the
symmetric algebra of V ∗. A hyperplane arrangementA = {H1, . . . , Hn} is
a finite collection of hyperplanes in V . We refer to [6] as main reference on
the theory of arrangements.

In the theory of hyperplane arrangements, the freeness is a very impor-
tant algebraic property. In fact, freeness implies several interesting geo-
metric and combinatorial properties of the arrangement itself, see [6]. By
definition, an arrangement is free if and only if its module of logarithmic
derivations is a free module. A lot is known about free arrangements, how-
ever there is still some mystery around the notion of freeness. For example,
Terao’s conjecture asserting the dependence of freeness only on the combi-
natorics is the longstanding open problem in this area.

In order to study this conjecture, in [1] Abe introduced the notion of plus-
one generated arrangement, where an arrangement is plus-one generated if
and only if its module of logarithmic derivations is generated by l + 1 el-
ements and we can “control” their first syzygy. Moreover, Abe described
how free and plus-one generated arrangements are connected. In particu-
lar, he proved that the deletion of a free arrangement is free or plus-one
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2 ELISA PALEZZATO AND MICHELE TORIELLI

generated and vice versa, under certain additional hypothesis, if the dele-
tion is plus-one generated then the original arrangement is free or plus-one
generated.

The goal of this article is to study more in depth these two classes of
arrangements. Specifically, given an arrangement A, we describe how to
compute the associated prime ideals of the module S/J(A) from its lattice
of intersection L(A), where J(A) is the Jacobian ideal ofA. Moreover, we
prove that the localization of a plus-one generated arrangement is free or
plus-one generated. Finally, we describe an example which demonstrates
that the deletion of a plus-one generated arrangement is not necessarily free
or plus-one generated.

All the computations in this article have been performed using the soft-
ware CoCoA, see [9].

2. PRELIMINARES ON HYPERPLANE ARRANGEMENTS

In this section, we recall the terminology, the basic notations and some
fundamental results related to hyperplane arrangements.

Let K be a field of characteristic zero. A finite set of affine hyperplanes
A = {H1, . . . , Hn} in Kl is called a hyperplane arrangement. For each
hyperplane Hi we fix a defining polynomial αi ∈ S = K[x1, . . . , xl] such
that Hi = α−1i (0), and let Q(A) =

∏n
i=1 αi. An arrangement A is called

central if each Hi contains the origin of Kl. In this case, each αi ∈ S is
a linear homogeneous polynomial, and hence Q(A) is homogeneous of de-
gree n. The operation of coning allows one to transform any arrangement
A in Kl with n hyperplanes into a central arrangement cA with n+1 hyper-
planes in Kl+1, see [6]. Unless otherwise specified, we will only consider
central hyperplane arrangements. For this reason every time we will study
A a central hyperplane arrangement, we will omit the word central.

Let L(A) = {
⋂
H∈BH | B ⊆ A} be the lattice of intersection of A,

ordered by reverse inclusion, i.e. X ≤ Y if and only if Y ⊆ X , for X, Y ∈
L(A). Define a rank function on L(A) by rk(X) = codim(X). L(A)
plays a fundamental role in the study of hyperplane arrangements, in fact
it determines the combinatorics of the arrangement. Let L(A)p = {X ∈
L(A) | rk(X) = p}. We call A essential if L(A)l 6= ∅.

For any flat X ∈ L(A) define the localization of A to X as the subar-
rangement AX of A by

AX = {H ∈ A | X ⊆ H}.

The restriction of A to H ∈ A is the arrangement AH in H ∼= Kl−1

defined by

AH = {H ∩H ′ | H ′ ∈ A \ {H} and H ∩H ′ 6= ∅}.
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We denote by DerKl = {
∑l

i=1 fi∂xi | fi ∈ S} the S-module of polyno-
mial vector fields on Kl (or S-derivations). Let δ =

∑l
i=1 fi∂xi ∈ DerKl .

Then δ is said to be homogeneous of polynomial degree d if f1, . . . , fl
are homogeneous polynomials of degree d in S. In this case, we write
pdeg(δ) = d.

Definition 2.1. LetA be an arrangement in Kl. Define the module of vector
fields logarithmic tangent to A (or logarithmic vector fields) by

D(A) = {δ ∈ DerKl | δ(αi) ∈ 〈αi〉S,∀i}.

The module D(A) is obviously a graded S-module and we have that

D(A) = {δ ∈ DerKl | δ(Q(A)) ∈ 〈Q(A)〉S}.
In particular, since the arrangement A is central, then the Euler vector

field δE =
∑l

i=1 xi∂xi belongs to D(A), in fact δE(Q(A)) = nQ(A). In
this case, we can write D(A) ∼= S·δE ⊕D0(A), where

D0(A) = {δ ∈ DerKl | δ(Q(A)) = 0}.

Definition 2.2. An arrangement A in Kl is said to be free with expo-
nents (e1, . . . , el) if and only if D(A) is a free S-module and there ex-
ists a basis δ1, . . . , δl ∈ D(A) such that pdeg(δi) = ei, or equivalently
D(A) ∼=

⊕l
i=1 S(−ei).

In the rest of the paper, given a tuple of integers (e1, . . . , el), we will write
(e1, . . . , el)≤, if we assume that e1 ≤ e2 ≤ · · · ≤ el.

One of the most famous characterizations of freeness is due to Saito [10]
and it uses the determinant of the coefficient matrix of δ1, . . . , δl to check if
the arrangement A is free or not.

Theorem 2.3 (Saito’s criterion). LetA be an arrangement in Kl and δ1, . . . , δl ∈
D(A). Then the following facts are equivalent

(1) D(A) is free with basis δ1, . . . , δl, i. e. D(A) = S · δ1⊕ · · ·⊕S · δl.
(2) det(δi(xj))i,j = cQ(A), where c ∈ K \ {0}.
(3) δ1, . . . , δl are linearly independent over S and

∑l
i=1 pdeg(δi) = n.

Using Saito’s criterion one can prove the following result that will play
an important role in Sections 4 and 5. Moreover, we will generalize it in
Theorem 5.6 to the case of plus-one generated arrangements.

Theorem 2.4 ([6, Theorem 4.37]). If A is free, then AX is free for any
X ∈ L(A).

Given an arrangement A in Kl, the Jacobian ideal of A is the ideal of S
generated by Q(A) and all its partial derivatives, and it is denoted by J(A).
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D0(A) can be identified with the first syzygies of J(A). In particular we
have the following exact sequence

0→ D0(A)→ S(−n+ 1)l → J(A)→ 0.

The Jacobian ideal has a central role in the study of free arrangements,
see [6], [2] and [8] for more details. In fact, we can also characterize free-
ness by looking at J(A) via the Terao’s criterion. Notice that Terao de-
scribed this result for characteristic 0, but the statement holds true for any
characteristic as shown in [7].

Theorem 2.5 ([11]). An arrangement A in Kl is free if and only if S/J(A)
is 0 or (l − 2)-dimensional Cohen–Macaulay.

3. PLUS-ONE GENERATED ARRANGEMENTS

In [1], the author generalized the notions of free and nearly free (see
[4]) to central and essential arrangements in any dimension. However, the
definition can be given also for non-essential arrangements.

Definition 3.1. Let A = {H1, . . . , Hn} be an arrangement in Kl. We say
that A is plus-one generated with exponents POexp(A) = (d1, . . . , dl)
and level d if D(A) has a minimal free resolution of the following form

0 // S(−d− 1)
(α,f1,...,fl) // S(−d)⊕(

⊕l
i=1 S(−di)) // D(A) // 0

(1)

Remark 3.2. Let A be a plus-one generated arrangement in Kl with ex-
ponents POexp(A) = (d1, . . . , dl)≤ and level d. Since A is central, then
there exists k ≥ 2 such that (d1, . . . , dl)≤ = (0, . . . , 0, 1, dk, . . . , dl)≤. If A
is essential, then k = 2. If A is non-essential, then k ≥ 3.

Directly from the definition, we can show the following

Lemma 3.3. Let A = {H1, . . . , Hn} be an arrangement in Kl. A is plus-
one generated with exponents POexp(A) = (d1, . . . , dl)≤ and level d if and
only if S/J(A) has a minimal free resolution of the form

0→S(−n−d)→S(−n−d+1)⊕(
l⊕

i=k

S(−n−di+1))→S(−n+1)l−k+2→S.

(2)
Moreover, the map

∂3 : S(−n− d)→ S(−n− d+ 1)⊕ (
l⊕

i=k

S(−n− di + 1))
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is defined by a matrix of the form (α, fi1 , . . . , fil−k+1
), where 1 ≤ i1 <

· · · < il−k+1 ≤ l. Notice that l − k + 2 coincides with the codimension of
the center of A or, equivalently, the rank of A.

Proof. This equivalence follows from the fact thatD(A) ∼= S ·δE⊕D0(A),
and the fact that if δ1, . . . , δl ∈ D0(A) and there is a relation of the form
g0δE +

∑l
i=1 giδi = 0, with gi ∈ S, then g0 = 0. �

Example 3.4. Consider the arrangementA in C4 with defining polynomial
x(x− y)(x− t)(y − z)(z − t). It is plus-one generated with POexp(A) =
(1, 1, 2, 2) and level 2. In fact D(A) has a minimal resolution of the form

0→ S(−3)→ S(−1)2 ⊕ S(−2)3 → D(A).
On the other hand, the minimal resolution of S/J(A) is

0→ S(−7)→ S(−5)⊕ S(−6)3 → S(−4)4 → S.

Example 3.5. Consider the arrangementA in C4 with defining polynomial
(x+ y)(x− z)(x+ z)(y− z)(y+ z)(x− y− t)(x+ y− t)(x− z− t)(x+
z − t)(y − z − t)(y + z − t)t. This arrangement is plus-one generated
with POexp(A) = (1, 4, 4, 4) and level 5 since the minimal resolution of
S/J(A) is

0→ S(−17)→ S(−15)3 ⊕ S(−16)→ S(−11)4 → S.

Notice that for an arrangementA to be plus-one generated it is not enough
that D(A) has projective dimension 1 or equivalently that S/J(A) has pro-
jective dimension 3.

Example 3.6. Consider the arrangementA in C4 with defining polynomial
xyzt(x+ y− 2z)(x− 3y+ z)(−5x+ y+ z)(x+ y+ z). It is not a plus-one
generated arrangement since the minimal resolution of S/J(A) is

0→ S(−13)→ S(−8)⊕ S(−11)3 → S(−7)4 → S.

In [1], Abe also described how free and plus-one generated arrangements
are connected.

Theorem 3.7 ([1, Theorem 1.4]). Let A be an essential free hyperplane
arrangement with exponents (e1, . . . , el) and H ∈ A. ThenA\{H} is free,
or plus-one generated with exponents (e1, . . . , el) and level |A \ {H}| −
|AH |.

Theorem 3.8 ([1, Theorem 1.9]). Let A be an essential arrangement and
H ∈ A. Assume that A \ {H} is free with exponents (e1, . . . , el)≤. If
|A \ {H}| − |AH | ≥ el−2, then A is free, or plus-one generated with
POexp(A) = (e1, . . . , el−2, el−1 + 1, el + 1) and level el−1 + el − |A| +
|AH |+ 1.
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4. ASSOCIATED PRIME IDEALS OF S/J(A)

Let A be an arrangement in Kl and k ≥ 2. To each X ∈ L(A)k
corresponds a prime ideal I(X) = 〈αi1 , . . . , αik〉 of codimension k of
S = K[x1, . . . , xl] that contains J(A), where X = Hi1 ∩ · · · ∩Hik .

Remark 4.1. Let A be an arrangement in Kl. There is a bijection between
L(A)2 and the set of associated prime ideals of S/J(A) of codimension 2.
This is because each associated prime ideal of S/J(A) of codimension 2
corresponds to an irreducible component of the singular locus of A. More-
over, any associated prime ideal of S/J(A) of codimention k corresponds
to an element of L(A)k. (For details see Section 3.8 of [5]). This gives us
the following inclusions

{I(X) | X ∈ L(A)2} ⊆ AssS(S/J(A)) ⊆ {I(X) | X ∈ L(A)≥2}.

Theorem 4.2. LetA be an arrangement in Kl, and X, Y ∈ L(A) such that
X ⊆ Y .

I(Y ) ∈ AssS(S/J(A))⇐⇒ I(Y ) ∈ AssS(S/J(AX)).

Proof. Consider SI(X) the localization of the ring S by the ideal I(X). We
have that J(A)SI(X) = J(AX)SI(X). Since the ideals of SI(X) are in bijec-
tion with the ideal of S contained in I(X), by [5, Theorem 3.1], I(Y ) ∈
AssS(S/J(A)) if and only if I(Y )SI(X) ∈ AssSI(X)

(SI(X)/J(A)SI(X)) =

AssSI(X)
(SI(X)/J(AX)SI(X)) if and only if I(Y ) ∈ AssS(S/J(AX)). �

Corollary 4.3. Let A be an arrangement in Kl. Then

AssS(S/J(A))⊆{I(X) |X∈L(A)2}∪{I(X) |X∈L(A)≥3,AX non-free}.

Proof. From Remark 4.1, every ideal in AssS(S/J(A)) is of the form I(X)
for some X ∈ L(A)≥2. If X ∈ L(A)≥3, then by Theorem 4.2 I(X) ∈
AssS(S/J(AX)). This implies that S/J(AX) is not Cohen–Macaulay and
hence AX is non-free. �

The previous inclusion might not be an equality in general.

Example 4.4 (c.f. [3, Example 8.5]). Consider the arrangement A in C4

with defining polynomial Q(A) =
∏

a=(a0,a1,a2,a3)
(a0x0 + a1x1 + a2x2 +

a3x3), where a ∈ {0, 1}4 and a 6= (0, 0, 0, 0). This is plus-one generated
with POexp(A) = (1, 5, 5, 5) and level 5. In fact, S/J(A) has minimal
resolution

0→ S(−20)→ S(−19)4 → S(−14)4 → S.

A direct computation shows that AssS(S/J(A)) = {I(X) | X ∈ L(A)2}.
However, if we consider X ∈ L(A)4 the intersection of the hyperplanes
x1 = 0, x2 = 0, x3 = 0, x4 = 0, then AX = A, and hence AX is not free.
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Since it is known by Theorem 2.4 that ifA is a free arrangement then the
localizationAX is free for anyX ∈ L(A), by Theorem 4.2 and Remark 4.1,
we have the following.

Corollary 4.5. Let A be a free arrangement. Then

AssS(S/J(A)) = {I(X) | X ∈ L(A)2}.

Remark 4.6. By Example 4.4, the statement of Corollary 4.5 is not an
equivalence.

We are now ready to state the main result of this section.

Theorem 4.7. Let A be an arrangement in Kl such that S/J(A) has pro-
jective dimension 3. Then

AssS(S/J(A)) = {I(X) |X∈L(A)2}∪{I(X) |X∈L(A)3,AX non-free}.

In particular, this holds if A is a plus-one generated arrangement.

Proof. By Auslander–Buchsbaum formula ([5, Theorem 19.9]), we have
that depth(S/J(A)) = l − 3. Since the depth of a module is bounded
above by the dimension of its associated prime ideals, we have that S/J(A)
cannot have associated prime ideals of codimension k with k ≥ 4. From
Corollary 4.3, we have the inclusion “⊆”. Let X ∈ L(A)3 be such that
AX is non-free. Since AX is an arrangement of rank 3, J(AX) coincides
with its saturation with respect to the ideal I(X) if and only if AX is free,
as described in the introduction of [4]. Since we assume that AX is non-
free, this implies that I(X) is an associated prime ideal of S/J(AX). By
Theorem 4.2, I(X) ∈ AssS(S/J(A)). �

Example 4.8. Consider the hyperplane arrangement in Example 3.4. Then
the associated prime ideals of S/J(A) correspond to all rank 2 flats in
L(A) and the rank 3 flat corresponding to the intersection of the hyper-
planes with equation y = z, x = t and z = t.

Example 4.9. Consider the hyperplane arrangement in Example 3.5. Then
the associated prime ideals of S/J(A) correspond to all rank 2 flats in
L(A) and the ideals 〈y+ z, x+ z, t〉, 〈y− z, x− z, t〉, and 〈y− t, x− t, z〉.

Example 4.10. Consider the arrangementA in C4 with defining polynomial
t(x+y+z)(2x+4y+5z)(x+4y−5z)(−3x+5y+z)(2x+7y+2z)(3x−
4y + 9z). This is not plus-one generated because S/J(A) has a minimal
free resolution

0→ S(−11)3 → S(−7)⊕ S(−10)5 → S(−6)4 → S.

However, S/J(A) has only 〈x, y, z〉 as embedded prime ideal.
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5. LOCALIZATION OF PLUS-ONE GENERATED ARRANGEMENTS

The goal of this section is to describe the localization of plus-one gener-
ated arrangements. The first step is to relate the algebraic total Betti num-
bers of an arrangement and the ones of its localization.

Proposition 5.1. Let A be an arrangement in Kl and X ∈ L(A). Then for
all i ≥ 0, we have

bi(S/J(AX)) ≤ bi(S/J(A)) and

bi(D(AX)) ≤ bi(D(A)),
where bi(−) are the algebraic total Betti numbers.

Proof. If X ∈ L(A) is such that A = AX , the statement is obviously true.
Assume AX ( A. Without loss of generalities, we can make a change
of coordinates and assume that I(X) = (x1, . . . , xs) for some 1 ≤ s ≤
l − 1. Consider FA a minimal free resolution of S/J(A). As in the proof
of Theorem 4.2, J(A)SI(X) = J(AX)SI(X), and hence (S/J(A))I(X)

∼=
SI(X)/J(A)SI(X)

∼= SI(X)/J(AX)SI(X). Since the localization preserves
freeness, if we localize FA at the prime ideal I(X) we obtain the exact se-
quence (FA)I(X). In general, (FA)I(X) is a free resolution of SI(X)/J(AX)SI(X),
but it is not minimal. This implies that for all i ≥ 0

bi(SI(X)/J(AX)SI(X)) ≤ bi(S/J(A)).
Let FAX

be a minimal free resolution of S/J(AX). Similarly to the case
of S/J(A), we have that (FAX

)I(X) is a free resolution of SI(X)/J(AX)SI(X).
Since I(X) = (x1 . . . , xs), we have that Q(AX) ∈ K[x1 . . . , xs]. This
implies that all of the matrix entries of FAX

belong to the ideal I(X) =
(x1 . . . , xs), and hence (FAX

)I(X) is also minimal. This implies that for all
i ≥ 0

bi(S/J(AX)) = bi(SI(X)/J(AX)SI(X)) ≤ bi(S/J(A)).
The second inequality follows directly from the first one and Lemma 3.3.

�

As a direct consequence of Proposition 5.1, we have the following result

Corollary 5.2. Let A be an arrangement in Kl and X ∈ L(A). Then

projdim(S/J(AX)) ≤ projdim(S/J(A)).
This is equivalent to

projdim(D(AX)) ≤ projdim(D(A)).
Remark 5.3. Corollary 5.2 gives a different proof of Theorem 2.4, i.e. the
fact that if A is free, then AX is free for any X ∈ L(A), with respect to the
one that appears in [6].
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If we also assume that A is a plus-one generated arrangement, Proposi-
tion 5.1 gives us the following result

Corollary 5.4. Let A be a plus-one generated arrangement in Kl and X ∈
L(A). Then AX is free or D(AX) is generated by l + 1 vector fields.

Proof. If rk(X) = 1, then AX = {H}, for some H ∈ A, and hence
it is free. Assume rk(X) ≥ 2. Since dim(S/J(AX)) = 2, this im-
plies that projdim(S/J(AX)) ≥ 2. On the other hand, by Corollary 5.2,
projdim(S/J(AX)) ≤ projdim(S/J(A)) = 3. This implies that, 2 ≤
projdim(S/J(AX)) ≤ 3. If projdim(S/J(AX)) = 2, then AX is free. As-
sume that projdim(S/J(AX)) = 3. By Proposition 5.1, 1 ≤ b3(S/J(AX)) ≤
b3(S/J(A)) = 1. Moreover, by [5, Corollary 20.13], the alternating sum of
the Betti numbers of S/J(AX) is zero, and hence S/J(AX) has a minimal
free resolution of the form

0→ S → Sβ → Sβ → S → S/J(AX)→ 0,

where β = codim(S/I(X)). Similarly to Lemma 3.3, this implies that
D(AX) has a minimal free resolution of the form

0→ S → Sl+1 → D(AX)→ 0,

and hence, D(AX) is generated by l + 1 vector fields. �

Lemma 5.5. LetA be a plus-one generated arrangement in Kl, X ∈ L(A)
and α ∈ S the linear form in the resolution (1). If α /∈ I(X), then AX is
free.

Proof. Let FD(A) be a minimal free resolution of D(A) of the form (1).
Since the localization preserves freeness, if we localize FD(A) at the prime
ideal I(X) we obtain (FD(A))I(X) a resolution of D(A)I(X). This implies
that b0(D(A)I(X)) ≤ l + 1 and hence D(A)I(X) can be generated by l + 1
elements. Since α /∈ I(X), the localization of the map (α, f1, . . . , fl) con-
tains an invertible element (i.e. the localization of α), and hence D(A)I(X)

can be generated by l elements. This implies that b0(D(A)I(X)) = l.
By the proof of Proposition 5.1, bi(SI(X)/J(A)SI(X)) = bi(S/J(AX)).

This implies that bi(D(A)I(X)) = bi(D(AX)). In particular, if we consider
i = 0, we obtain that b0(D(AX)) = l, and hence AX is free. �

We are now ready to prove the main result of this section.

Theorem 5.6. Let A be a plus-one generated arrangement in Kl and X ∈
L(A). Then AX is free or plus-one generated.

Proof. Let FA be a minimal free resolution of S/J(A) of the form (2).
If X ∈ L(A) is such that A = AX or if AX is free, the statement is ob-

viously true. Assume AX ( A and that AX is non-free. By Corollary 5.2,
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projdim(S/J(AX)) = 3. In this situation, similarly to the proof of Corol-
lary 5.4, we have that S/J(AX) has a minimal graded free resolution FAX

of the form

0→S(−m−e)→S(−m−d′+1)⊕(
l⊕
i=r

S(−m−d′i+1))→S(−m+1)l−r+2→S,

where m = |AX |, d′ ≤ e and k ≤ r. To conclude we need to show that
d′ = e. Notice that this is equivalent to prove that the map

∂′3 : S(−m− e)→ S(−m− d′ + 1)⊕ (
l⊕
i=r

S(−m− d′i + 1))

is defined by a matrix of the form (α′, f ′1, . . . , f
′
l−r+1), where α′, f ′i ∈ S and

α′ is zero or a homogenous polynomial of degree 1.
By the proof of Proposition 5.1, bi(SI(X)/J(AX)SI(X)) = bi(S/J(AX)).

Hence,

projdim(S/J(A)) = projdim(S/J(AX)) = projdim(SI(X)/J(AX)SI(X)).

This implies that the localization of the map ∂3 in FA is not the zero map
and it is defined by the localization of the matrix (α, fi1 , . . . , fil−k+1

).
By Lemma 5.5, we can assume that α ∈ I(X). The localization of the

map ∂3 is defined by a matrix of the form (α̃, f̃i1 , . . . , f̃il−k+1
), with α̃ not

invertible. This implies that the localization of the map ∂′3 is represented by
a matrix of the form (α̃, f̃j1 , . . . , f̃jl−r+1

), that is a submatrix of the matrix
(α̃, f̃i1 , . . . , f̃il−k+1

) obtained by deleting some invertible entries. As de-
scribed in the proof of Proposition 5.1, we can assume that all of the matrix
entries of FAX

belong to the ideal I(X). This implies that the map ∂′3 is
defined by a matrix of the form (α′, f ′1, . . . , f

′
l−r+1), where α′, f ′i ∈ S and

α′ is zero or a homogenous polynomial of degree 1. �

One of the possible next step in this study would be to understand if
we can generalize Theorem 3.7 to plus-one generated arrangements. At
the moment this is still an open problem. The next example shows that in
general the deletion of a plus-one generated arrangement can be free, plus-
one generated or none of them.

Example 5.7. Consider the arrangementA in C5 defined by xyztw(x+y+
z)(x−w)(y + 2t). A is plus-one generated, in fact S/J(A) has resolution

0→ S(−10)→ S(−9)5 → S(−7)5 → S.

Consider A1 = A\ {x+ y + z = 0}. Then A1 is free, in fact S/J(A1) has
resolution

0→ S(−8)2 ⊕ S(−7)2 → S(−6)5 → S.
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Consider A2 = A \ {y + 2t = 0}. Then A2 is plus-one generated, in fact
S/J(A2) has resolution

0→ S(−9)→ S(−8)4 ⊕ S(−7)→ S(−6)5 → S.

Consider A3 = A \ {x = 0}. Then A3 is not free nor plus-one generated,
in fact S/J(A3) has resolution

0→ S(−10)→ S(−9)4 → S(−8)7 → S(−6)5 → S.
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