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Abstract—Achieving accurate, cost-efficient, and fast anomaly
localization is a highly desired feature in computer networks.
Prior works, examining the problem of single link-level anomaly
localization, have shown that resources that enable the moni-
toring of a set of paths distinguishing between all links of the
network pairwise must be deployed for unambiguous anomaly
localization. In this paper, we show that the number of pair
of links that are to be distinguished can be cut down drasti-
cally using an already established anomaly detection solution.
This results in reducing the localization overhead and cost
significantly. Furthermore, we show that all potential anomaly
scenarios can be derived offline from the anomaly detection
solution. Therefore, we compute full localization solutions, i.e.

monitors that are to be activated and paths that are to be
monitored, for all potential anomaly scenarios offline. This results
in a significant minimization of localization delay. We devise an
anomaly localization technique that selects monitor locations and
monitoring paths jointly; thereby enabling a trade-off between
the number and locations of monitoring devices and the quality
of monitoring paths. The problem is formulated as an integer
linear program (ILP), and is shown to be NP-hard through a
polynomial-time reduction from the NP-hard facility location
problem. The effectiveness and the correctness of the proposed
anomaly localization scheme are verified through theoretical
analysis and extensive simulations.

Index Terms—Network monitoring, anomaly localization,
anomaly detection, link-level anomalies.

I. INTRODUCTION

Anomaly localization aims at identifying unambiguously

the link that causes an anomalous behavior of the network

(e.g. excessive delay, high packet loss rate, etc.). It has long

been combined with anomaly detection (e.g. [1]-[5]). How-

ever, several research works argued that continuous anomaly

localization can result in high overhead on the underlying

network, and therefore, can interfere with the network ser-

vices leading to service troubles. Recent works on network

monitoring consider anomaly localization as a reaction to

anomaly detection and perform two-phase monitoring (e.g. [6]-

[12]). The first phase, the anomaly detection phase, uses as

few network resources as possible to only detect anomalies.

A necessary and sufficient condition to detect all link-level

anomalies is to cover all the network links. Upon detecting

an anomaly, the detection phase returns a set of suspect links.
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Here comes the localization phase that aims at reducing the

set of suspect links to the anomalous link(s). Clearly, this

reactive anomaly localization approach reduces significantly

the monitoring overhead compared to continuous anomaly

localization. However it presents a serious challenge: the

localization must be as fast as possible, in order to enable

a fast recovery of the network.

Argawal et al. [7] proposed an accurate link-level anomaly

localization scheme that can localize all potential single link-

level anomalies in a given network. The key idea is to

deploy resources that enable the monitoring of a set of paths

distinguishing all links of the network pairwise. Whenever an

anomaly is detected, this set of paths is monitored in order

to pinpoint the anomalous link. More recently, Barford et

al. [8] proposed another scheme that selects paths that are

to be monitored during the localization phase. Although this

technique minimizes the localization overhead, because the

monitored paths distinguish only between the suspect link, it

suffers from two imperfections. The first is the non-negligible

time of computing the set of paths that are to be monitored

upon detecting an anomaly, which increases the localization

delay (i.e. time elapsed between the moment when an anomaly

is detected and the moment when the anomalous link is

pinpointed). The second is that there is no guarantee to localize

all potential anomalies, because deployed monitors ensure only

the coverage of links. In this paper, we demonstrate that 1) not

all links of the network need to be distinguishable pairwise

towards localizing all potential anomalies, 2) all potential

anomaly scenarios can be derived offline from any detection

solution that covers all the network links. Thus, we compute

full low-cost localization solutions, i.e. monitors that are to be

activated and paths that are to be monitored, for all potential

anomalies offline. Subsequently, we achieve an important gain

in localization delay and overhead.

Furthermore, most existing works consider only one crite-

rion for monitoring path selection that is the minimization

of the number of monitored paths, and only one criterion

for monitor location selection that is the minimization of

the number of deployed monitoring devices. However, these

criteria do not reflect the localization cost properly. Indeed,

to reduce localization delay and overhead, monitoring of

links that do not provide extra localization information during



the localization phase must be avoided. Moreover, monitor

locations must be selected carefully towards minimizing the

delay of communications between the Network Operation

Center (NOC) and the deployed monitors. A novel anomaly

localization cost model that considers the infrastructure cost,

the localization overhead and the localization delays is, there-

fore, proposed in this paper. Besides, our anomaly localization

scheme selects monitor locations and monitoring paths jointly,

thereby enabling a trade-off between the number and locations

of deployed monitoring devices and the quality of selected

monitoring paths. We formulate our scheme as an ILP, and

we show that the problem is NP-hard through a polynomial-

time reduction from the facility location problem.

We verify the effectiveness of our anomaly localization

scheme by comparing it with existing anomaly localization

schemes through extensive simulations

II. NETWORK MODEL AND PROBLEM STATEMENT

We model the network as a undirected graph G = (N , E)
comprising a set of nodes N connected by a set of undirected

links in E . Let P be the set of all non-looping paths of

the network. Unless otherwise mentioned, without loss of

generality, we assume that all the network paths are candidate

to be monitored and all the network nodes are candidate to

hold monitoring devices. We use the term monitoring paths to

designate paths that are monitored during the detection phase,

also referred to as detection paths, or during the localization

phase, also referred to as localization paths. We denote the

anomaly detection solution by (Dm,Dp). Dm is the set of

monitor locations where to deploy monitoring devices. Dp is a

set of monitoring paths traveling between the selected monitor

locations and covering all the network links, ∪p∈Dp
p = E .

We assume that an anomaly on link e ∈ E affects all the

monitoring paths that cross e. Two links are said to be

distinguishable from each other if we are able to decide which

one is anomalous when an anomaly occurs on one of them.

We address the problem of single-link level anomaly lo-

calization. The objective is to enable the localization of all

potential link-level anomalies accurately; while minimizing

the cost of acquiring and deploying monitoring devices, the

localization overhead and the localization delay. Our localiza-

tion scheme infers all potential anomaly scenarios from any

detection solution that covers all links of the network. This

has two major benefits. The first is that we pre-compute full

localization solutions for all anomaly scenarios offline, thereby

accelerating the localization process. The second is that we

do not need to deploy resources that can distinguish every

single pair of the network links. This is because, as it will be

demonstrated in the next sections, only links that belong to the

same anomaly scenario need to be distinguishable pairwise.

The inputs into our localization problem are an instance of

the graph G = (N , E) and a set of detection paths Dp

that can cover all links in E , and the outputs are a set of

monitor locations whose monitors are to be activated and

a set of paths that are to be monitored for each potential

anomaly. The localization solution must achieve a good trade-

off between the monitor deployment cost, the localization

overhead and the localization delay. To this end, a novel cost

model that measures these three metrics is proposed. Also, our

localization scheme selects monitor locations and localization

paths jointly; as opposed to existing schemes that apply a

two-step selection procedure, therefore omitting the trade-off

between the number and locations of monitors and the quality

of localization paths.

III. NOT ALL LINK PAIRS NEED TO BE DISTINGUISHABLE

FOR LOCALIZING ALL SINGLE LINK-LEVEL ANOMALIES

In this section, we first establish a necessary and sufficient

condition to distinguish between two links; and then, we prove

that we do not need to distinguish between all links of the

network pairwise in order to ensure accurate localization of

all potential single link-level anomalies. This excludes a pre-

established condition claiming that all links of the network

need to be distinguishable pairwise in order to localize all

potential single links level anomalies [7][8].

Theorem 1: The necessary and sufficient condition for two

links e1 and e2 to be distinguishable from each other is the

existence of a monitoring path that crosses either e1 or e2,

but not both.

Proof: We first demonstrate the sufficiency condition.

Assume that either e1 or e2 is anomalous. Let p be a path

that crosses e1 (interchangeably e2) but not e2. If p exhibits

an anomaly, then the anomalous link must be crossed by p.

We conclude that e1 is the anomalous link. If, p does not

exhibit an anomaly, then all links that are crossed by p are

not anomalous. It follows that the anomalous link is e2. Thus,

p is sufficient to distinguish between e1 and e2.

The necessary condition can be proved as follows. Assume

that it does not exist any path that crosses only one of the two

links. Then, the monitoring path set can be divided into two

types of paths: paths that cross both e1 and e2, and paths that

neither cross e1 nor e2. An anomaly on a given link affects all

the monitoring paths that cross that link. Therefore, the latter

type of paths is not affected by the anomalies on the two links,

whereas the former type of paths is affected by the anomalies

on the two links. Thus, the set of monitoring paths that are

affected by an anomaly on e1 is exactly the same set of paths

that is affected by an anomaly on e2. This means that e1 and

e2 cannot be distinguished from each other.

Existing localization schemes (e.g. [7], [8]) claim that all

links of the network must be distinguished pairwise in order

to localize all potential anomalies. According to Theorem

1, this means that ∀e1, e2 ∈ E there exists a monitoring

path that crosses either e2 or e2, but not both. However, we

will demonstrate that this is a sufficient but not necessary

condition for localizing all potential anomalies, and we show

how to infer the minimal set of pair of links that are to be

distinguished from a given detection solution that covers all

the network links.



Consider a network link e ∈ E . We denote by De+
and De−

the set of detection paths that cross e and the set of detection

paths that do not cross e, respectively. The set of suspect links

for an anomaly e is the set of potential anomalous links that is

returned by the detection process when an anomaly occurs on

link e, i.e. all links that the detection paths cannot distinguish

from e.

Theorem 2: The set of suspect links for an anomaly on a

given link e ∈ E equals ∩p∈De+
p − ∪p∈De

−

p.

Proof: We prove this theorem by construction. The set of

detection paths can be divided into two sets:

• De+
: paths that cross link e.

• De−
: paths that do not cross link e.

An anomaly on link e affects only paths that cross this

link. Subsequently, paths in De−
do not exhibit an anomaly.

It follows that all the links that are crossed by paths in De−

are not suspect. Now, let L be the set of links that are crossed

by paths in De+
and that are not crossed by paths in De−

, L
= ∪p∈De+

p - ∪p∈De
−

p . L can be divided into two subsets of

links:

• L1: links /∈ ∩p∈De+
p − ∪p∈De

−

p
• L2: links ∈ ∩p∈De+

p − ∪p∈De
−

p

We prove by contradiction that all links in L1 are not

suspect. Assume to the contrary that a link l ∈ L1 is

suspect. This means that there does not exist any path in De+

that distinguishes between l and e. It follows that for each

p ∈ De+
, p crosses e and l. Thus l ∈ ∩p∈De+

p − ∪p∈De
−

p,

leading to a contradiction.

Likewise, we prove by contradiction that all links in L2

are suspect. Assume to the contrary that a link l ∈ L2 is

not suspect, then, there exists at least one path p ∈ De+

such that p distinguishes between e and l. Since all paths

in De+
cross e, then p does not cross l. It follows that

l /∈ ∩p∈De+
p − ∪p∈De

−

p, leading to a contradiction.

Corollary 1: A sufficient and necessary condition

to localize all potential link-level anomalies is to

distinguish each link e ∈ E from links that belong to

∩p∈De+
p − {∪p∈De

−

p ∪ {e}}.

We refer to the set of suspect links for an anomaly on link

e as S(e).

Corollary 2: e1 ∈ S(e2) ⇔ S(e1) = S(e2), ∀e1, e2 ∈ E
Corollary 3: S(e1) 6= S(e2) ⇔ S(e1) ∩ S(e2) = ∅

Let dS be the set of distinct sets of suspect links.

Corollary 4: ∪e∈ES(e) = ∪S(i)∈dSS(i) = E
Corollary 5:

∑

S(i)∈dS | S(i) | = | E |

Let AllPairs denotes the number of all the network link

pairs. Clearly, AllPairs = (| E | ∗(| E | −1))/2. Let dPairs
denotes the number of pair of links that need be distinguishable

in order to localize all potential link-level anomalies.

Corollary 6: dPairs = AllPairs -
X

S(i),S(j)∈dS:i<j

| S(i) | ∗ | S(j) |

The properties presented in the above corollaries are demon-

strated in Appendix A. Corollary 6 confirms that we do not

need to distinguish between all the network link pairs; unless

the number of detection paths equals 1, which is very unlikely.

It will demonstrated later in this paper that this reduction in

the number of links pairs that are to be distinguished achieves

great savings in resources needed to localize anomalies.

IV. DERIVATION OF POTENTIAL ANOMALY SCENARIOS

Theorem 2 states that the set of suspect links returned

at the end of the detection phase whenever an anomaly on

link e occurs is ∩p∈De+
p − ∪p∈De

−

p. Therefore, instead of

computing monitors that are to be activated and paths that

are to be monitored during the localization phase whenever

an anomaly is detected, we propose to perform these compu-

tations for all potential anomalies only once offline. Having

a set of detection paths that cover all links of the network,

we infer the set of suspect links for each link as described

in Theorem 2. Then, a single anomaly scenario is created

for all links that have the same set of suspect links, i.e. an

anomaly scenario is created for each distinct set of suspect

links. Let us denote by A the set of all anomaly scenarios,

and let Sa denotes the set of suspect links associated to the

anomaly scenario a ∈ A. dS = {Sa,∀a ∈ A}. Clearly, the

least upper bound of the number of anomaly scenarios is the

number of the network links. It is easy to show that when this

bound is reached, the set of suspect links for an anomaly on

link e, ∀e ∈ E , is reduced to the link e. In such case, the

localization of all potential anomalies is immediate from the

detection information. According to Corollary 2, we need to

deploy monitors that enable the monitoring of a set of paths

distinguishing links of each anomaly scenario pairwise in order

to ensure the localization of all potential anomalies.

To illustrate, consider the sample network topology depicted

in Fig. 1. An associated anomaly detection solution that covers

all links of the network is depicted at the bottom of the figure.

We use Theorem 2 to compute the set of suspect links for each

link of the network. The result is depicted in Table I. The sets

of suspect links associated to link (2, 3) and link (0, 7) are

unitary. In case an anomaly occurs on one of these two links,

there is no need to trigger the localization phase because the

anomalous link is immediately pinpointed by intersecting the

detection paths that exhibit the anomaly. Furthermore, four

non-unitary anomaly scenarios (a1, a2, a3, a4) are created for

this topology (see table II). These are the four distinct non-

unitary sets of suspect links. It should be noted that for this

sample topology only 24 link pairs (
P

1≤i≤4(| ai | ∗(| ai |

−1))/2) among the 153 link pairs of the network ( 18 ∗ (18−
1)/2) need to be distinguishable.

V. ANOMALY LOCALIZATION COST

Consider a set of candidate monitor locations, M, a set of

network paths that are candidate to be monitored, P
′

, and a

set of anomaly scenarios A. The anomaly localization cost

includes two costs:



Fig. 1: Illustrative network and an associated anomaly detection solution

TABLE I: Sets of suspect links for all potential anomalies
Anomalous link Set of suspect links

(0, 1) {(0, 1)}
(0, 2) {(0, 2), (1, 3), (1, 7)}
(1, 2) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(0, 3) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
(1, 3) {(0, 2), (1, 3), (1, 7)}
(2, 3) {(2, 3)}
(0, 4) {(0, 4), (1, 4)}
(1, 4) {(0, 4), (1, 4)}
(2, 4) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(0, 5) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
(1, 5) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
(4, 5) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(0, 6) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(2, 6) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
(5, 6) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(0, 7) {(0, 7)}
(1, 7) {(0, 2), (1, 3), (1, 7)}
(6, 7) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

TABLE II: Anomaly scenarios
Anomaly scenario Set of suspect links

a1 Sa1
= {(0, 2), (1, 3), (1, 7)}

a2 Sa2
= {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}

a3 Sa3
= {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

a4 Sa1
= {(0, 4), (1, 4)}

• Monitor cost: it includes the effective cost of acquiring

hardware and software monitoring devices and the cost

of their maintenance. In addition, it includes the cost

of communications between monitors and the NOC. For

instance, the cost of communications between a monitor

and the NOC can be expressed as a function of the

physical distance that separates them. Let us denote by

Cn the cost of deploying a monitor on node n. Let Yn be a

binary variable that indicates whether node n is selected

to hold a monitoring device. The monitor cost can be

expressed as follows:

∑

n∈M

CnYn (1)

• Probe cost: it expresses the overhead of monitoring flows

on the underlying network. Measurements of links that do

not provide localization information should be avoided

in order to minimize the monitoring overhead. Clearly,

measuring links that do not belong to the set of suspect

links of an anomaly scenario does not provide any extra

localization information. Furthermore, measurement of

links that belong to the set of suspect links might be

useless. Revisit Fig. 1 and table I to illustrate. Consider an

anomaly on link (6, 7). The associated set of suspect links

is Sa3
= {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}. Consider now

the set of paths {p1:(1, 5)(5, 6)(2, 6); p2:(1, 5)(0, 5)(0, 2);

p3:(1, 7)(6, 7)(2, 6)} that distinguishes between all the

suspect links pairwise. Path p1 divides S into two subsets:

S1
a3
{(1, 5), (2, 6)} and S2

a3
{(0, 5), (0, 3), (6, 7)}. The links

of S1
a3

are distinguished from links of S2
a3

. Link (5, 6) that

is crossed by p1 does not belong to Sa3
, and therefore,

it does not provide any localization information. Path p2

divides S1
a3

into two subsets: S11
a3
{(1, 5)} and S12{(2, 6)},

and divides S2
a3

into two subsets: S21
a3
{(0, 5), (6, 7)} and

S22
a3
{(0, 3)}. Finally, p3 distinguishes betwen (0, 5) and

(6, 7). However, it crosses (2, 6) that is already distin-

guished from all the other suspect links. Thus, measuring

(2, 6) by p3 does not provide extra localization informa-

tion, although it belongs to S.

Let us denote by Ce the cost of measuring link e. Ce

should be proportional to the load of link e, in order

to avoid multiple measurements of the most overloaded

links of the network. Consider an anomaly scenario a ∈
A. Let us denote by Sa the set of suspect links associated

to the anomaly scenario a. Let Xpa be a binary variable

that specifies whether path p is part of the localization

solution of a. Let δpe be a binary input parameter that

indicates whether path p crosses link e. The probe cost

of the localization solution of a reads as follows:
∑

e∈E,p∈P
′

CeδpeXpa (2)

VI. ILP FORMULATION

The objective of the ILP is to find a localization solution for

each anomaly scenario in A such that the anomaly localization

cost is minimized. Let δpn be a binary parameter that indicates

whether node n is an end-node of path p. For simplicity of

notation, we define the following sets:

• δP′ = {δpe; p ∈ P
′

, e ∈ E}
• δM = {δpn; p ∈ P

′

, n ∈ M}
• CM = {Cn; n ∈ M}
• CE = {Ce; e ∈ E}



Let α be the weight associated to the monitor cost,

and let β be the weight associated to the probe cost.

The input into the ILP is an instance of the graph G =
(E ,M,P

′

,A, δP′ , δM, CM, CE , α, β). The objective function

minimizes the sum of the monitor cost and the probe cost. It

reads as follows:

α ∗
∑

n∈M

CnYn + β ∗
∑

a∈A,e∈E,p∈P
′

CeδpeXpa (3)

The ILP is subject to two constraints. The first constraint

ensures that the end nodes of all selected monitoring paths

hold monitoring devices. It reads as follows:

Yn ≥ δpnXpa; ∀n ∈ M,∀p ∈ P
′

,∀a ∈ A (4)

The second constraint ensures that the suspect links asso-

ciated to each anomaly scenario are distinguishable pairwise.

To this end, according to Theorem 2, the constraint ensures

that for each anomaly scenario a and for each pair of suspect

links (e1, e2) : e1, e2 ∈ Sa there exists at least one monitoring

path that crosses either e2 or e2, but not both. This constraint

reads as follows:
∑

p∈P
′

(δpe1
+ δpe2

− 2δpe1
δpe2

)Xpa > 0;

∀a ∈ A;∀e1, e2 ∈ Sa (5)

We show that the above inequality is sufficient to distinguish

between all the link pairs of each anomaly scenario using the

argument of the following theorem.

Theorem 3: Let P1 be the subset of paths of P
′

that

cross either e1 or e2, but not both.
∑

p∈P
′ (δpe1

+ δpe2
−

2δpe1
δpe2

) =| P1 |.
Proof: Refer to Appendix B.

Corollary 7: If
∑

p∈P
′ (δpe1

+ δpe2
− 2δpe1

δpe2
)Xpa > 0,

then there exists at least one path in P
′

that crosses either

e1 or e2, i.e. there exists at least one path in P
′

that

distinguishes between e1 and e2.

VII. OUR ANOMALY LOCALIZATION PROBLEM IS

NP -HARD

Theorem 4: The anomaly localization problem presented in

the previous section is NP-Hard.

Proof: Our anomaly localization problem can be reduced

from the NP-Hard facility location problem.

Facility location problem: consider a set of potential

facility locations F , and a set of clients D. Opening a facility

at location i incurs a non-negative cost that is equal to fi. The

cost of servicing client j ∈ D by a facility installed at location

i ∈ F is dij . The problem is to find an assignment of each

client to exactly one facility such that the sum of the facility

opening costs and the service costs is minimized.

We denote by f the set of facility opening costs, f =

{fi, i ∈ F}, and by d the set of service costs, d =

{dij ; i ∈ F , j ∈ D}. Given an instance I = (D,F , f, d)
of the facility location problem, we produce an instance

R(I) = (E ,M,P
′

,A, δP′ , δN , CM, CE , α, β) of our local-

ization problem as follows. For each client j ∈ D, we create:

• Three nodes labeled by nj1, nj2, and nj3.

• One link connecting nj1 to nj2, labeled by ej1.

• One link connecting nj2 to nj3, labeled by ej2.

• An anomaly scenario aj such that Saj
= {ej1, ej2}.

For each facility location i ∈ F , we create two nodes

labeled by mi1 and mi2. For each i ∈ F and for each

j ∈ D, we create one link connecting mi1 to nj1, labeled

by e1
ij , and one link connecting mi2 to nj2, labeled by e2

ij .

We obtain a graph G = (E ,N ), where N = {nik; i ∈ D, k ∈
[1; 3]} ∪ {mjk; i ∈ F , k ∈ [1; 2]}, and E = {ejk; j ∈ D, k ∈
[1; 3]}∪{ek

ij ; i ∈ F , j ∈ D, k ∈ [1; 2]}. An example of a graph

constructed out of a facility location instance with four facility

locations and four clients is shown in Fig. 2.

Fig. 2: Example of a graph constructed out of a facility location instance
with four facility locations and four clients

The candidate monitor location set is M = {mjk; i ∈
F , k ∈ [1; 2]}. The anomaly scenario set is A = {aj ; j ∈ D}.

The set of candidate monitoring paths is P
′

= {pij ; i ∈ F , j ∈
D}, where pij is the non-looping path between mi1 and mi2

that crosses the links e1
ij , ej1 and e2

ij . The monitor deployment

costs are defined as follows: Cmi1
= Cmi2

= fi/2. The link

measurement costs are defined as follows: Cei1
= Cei2

= 0,

Ce1
ij

= Ce2
ij

= dij/2. The remaining input parameters can be

inferred easily from G, M, A and P
′

as follows:

• δajej′k
=

{

1 if j = j
′

0 otherwise
; ∀j, j

′

∈ D, k ∈ [1; 2]

• δajek
ij

= 0; ∀i ∈ F , j ∈ D, k ∈ [1; 2]

• δpijmi′k
=

{

1 if i = i
′

0 otherwise
; ∀i, i

′

∈ F , k ∈ [1; 2]

• δpijej1
= δpije1

ij
= δpije2

ij
= 1; ∀i ∈ F , j ∈ D

• δpijej2
= 0; ∀i ∈ F , j ∈ D

• α = β = 1

Obviously, the above reduction can be carried out in

polynomial-time. In the sequel, we show that there is an



optimal solution to the Instance I of the facility location

problem if and only of there is an optimal solution to the

instance R(I) of our anomaly localization problem.
Let us start by demonstrating that if there is an optimal

solution to the facility location instance, then there is a feasible

solution to the anomaly localization instance. Let the facility

location solution assigns each client j to a facility installed

at location i. Consider the anomaly localization solution that

selects for each anomaly scenario aj the path pij and the

monitor locations mi1 and mi2. Fix an anomaly scenario aj .

By construction, path pij crosses three links that are ej1 and

e1
ij and e2

ij . It follows, according to Theorem 1, that pij

distinguishes between ej1 and ej2. Constraint (4) states that

if pij is selected to be monitored, then, its end nodes must

be selected to hold monitoring devices. Thus, the solution

that selects for each anomaly scenario aj the path pij to

be monitored, and its end nodes, mi1 and mi2, as monitor

locations is a feasible solution to the anomaly localization

instance.

Conversely, we demonstrate that if there is an optimal

solution to the anomaly localization instance, then there is a

feasible solution to the facility location instance. An optimal

solution to the facility location problem selects exactly one

path for each anomaly scenario. This is because each anomaly

scenario comprises only two links, and thus, monitoring one

path that crosses exactly one of the two links is sufficient to

distinguish between them. Let the optimal anomaly localiza-

tion solution selects for each anomaly scenario aj the path pij ,

and naturally, the monitor locations mi1 and mi2. Trivially,

the solution that assigns to each client j ∈ D the facility

installed at location i is a feasible solution to the facility

location instance.

We now prove that the constructed anomaly localization

solution has the same cost as its corresponding optimal facility

location solution (the proof holds in the converse case). Let Wi

and Zij be a binary variable that indicates whether a facility

is installed at location i, and a binary variable that indicates

whether client j is serviced by a facility installed at location

i, respectively. Using the arguments that Zij = Xpijaj
and

Wi = Yi1 = Yi2, we show that the cost of the localization

solution, denoted by Cost(SR(I)), is equal to the cost of its

corresponding facility location solution, denoted by Cost(SI),
as follows:

Cost(SR(I)) =
X

mik∈M

Cmik
Ymik

+
X

aj∈A,pij∈P
′

(Ce1
ij

+

Ce2
ij

)Xpijaj

=
X

mi1∈M

fiYmi1
+

X

aj∈A,pij∈P
′

dijXpijaj

=
X

i∈F

fiWi +
X

j∈D,i∈F

dijZij

= Cost(SI)

Now, we show that the solution to the anomaly localization

instance, denoted by SR(I), that is constructed out of an

optimal solution to the facility location instance, denoted by

S∗
I , is optimal. Assume to the contrary that SR(I) is not

optimal. Let S
′
∗

R(I) be an optimal solution to the anomaly lo-

calization instance, and let S
′

I be the facility location solution

constructed out of S
′
∗

R(I). We have Cost(S∗
I ) = Cost(SR(I)) <

Cost(S
′∗
R(I)) = Cost(S

′

I), leading to a contradiction. Using the

same arguments, we can show that the solution to the facility

location instance constructed out of an optimal solution to the

anomaly localization instance is optimal.

VIII. PERFORMANCE EVALUATION

A. Evaluation Methodology

We compare our anomaly localization scheme with an

hybrid anomaly localization scheme that combines the

strengths of the schemes proposed in [7] and [8]. As proposed

in [8], a set of paths that distinguishes only between the

pairs of suspect links is monitored during the localization

phase. However, to guarantee that all potential anomalies can

be localized uniquely, a set of monitors that can distinguish

between all pairs of the network links is deployed [7]. Such

a scheme can be formulated as two ILPs. The first ILP

computes a minimal subset of monitor locations that enables

the localization of all potential anomalies. This ILP is run

only once offline. It reads as follows:

Minimize
∑

n∈M

Yn

subject to:
∑

p∈P

(δpe1
+ δpe2

− 2δpe1
δpe2

)Zp > 0;

∀e1, e2 ∈ E ;∀p ∈ P

δpnYn ≥ Zp; ∀p ∈ P,∀n ∈ N

The second ILP is run whenever an anomaly is detected. The

input is the set of monitor locations selected by the first ILP,

M
′

, and a set of suspect links S. The output is a minimal set

of monitoring paths that can distinguish between the suspect

links pairwise. This ILP reads as follows:

Minimize
∑

p∈P

Zp

subject to:
∑

p∈P

(δpe1
+ δpe2

− 2δpe1
δpe2

)Zp > 0;

∀e1, e2 ∈ S;∀p ∈ P

Zp ≤ δpnYn; ∀p ∈ P,∀n ∈ M
′

We refer to this hybrid anomaly localization scheme as

HLS. We solve the ILPs using Cplex11.2 [15] running on

a PC equipped with a 2,992.47 MHz Intel(R) Core(TM)2

Duo processor and 3.9 GB of RAM. We consider only small

topologies (8 nodes and 18 links) for which the ILPs can

deliver solutions in tractable time. All numerical results are

the mean over 30 simulations on random topologies. We use

Brite (Waxman model: α = β = 0.4, random node placement)

to generate network topologies [14]. Our localization scheme
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Fig. 3: Numerical results for TOP(8, 18). In each of the two sub-graphs, the first histogram to the left presents results for solutions computed
using the hybrid localization scheme (HLS), and the other histograms present results for the solutions computed using our anomaly localization
ILP with different values of α.

takes as input any detection solution that covers all links

of the network. Detection solutions are computed using the

anomaly detection scheme proposed in [11]. For our anomaly

localization ILP, we set Cn = Ce = 1,∀n ∈ N and ∀e ∈ E.

We set the weight associated to the probe cost β = 1, and we

vary the weight associated to the monitor cost α ∈ [1, 2, 4, 6[.

B. Simulation Results

We define three metrics for the comparison. The first

metric is the time of computing the localization solution, i.e.

monitors that are to be activated and paths that are to be

monitored when an anomaly is detected. This metric reflects

the speed of the localization scheme. The better is to avoid

online computations, i.e. computations done upon detecting

an anomaly, in order to shorten the localization delay.

TABLE III: Average ILP Computation Time (seconds) for

TOP(8, 18)
Hybrid scheme Our scheme

Offline Computation Time 64.16 6.67

Online Computation Time 25.7 10−3 0

Table III depicts the online computation time and the offline

computation time for the hybrid localization scheme and for

our localization scheme. Intuitively, as shown in the table, the

online computation time is zero for our localization scheme.

This is because we compute full localization solutions for all

potential anomalies offline. In contradiction, the hybrid scheme

leaves the selection of monitoring paths upon detecting an

anomaly, thereby achieving a non-negligible online computa-

tion time. This time can be relatively high for large topologies

where the number of candidate monitoring paths is large. For

the offline computation time, the table shows that our scheme

is about 10 times faster than the hybrid scheme, although, it

computes full localization solutions for all potential anomalies.

We explain this result by the fact that, unlike the hybrid

scheme, our scheme does not distinguish between every pair

of the network links.

The second metric is the localization cost. Fig. 3a plots the

total number of deployed monitors, the average number of

active monitors per anomaly, and the average overhead, i.e.

the number of links monitored that provide no localization

information, per anomaly for the hybrid localization scheme

and for our localization scheme with α ∈ [1, 2, 4, 6[. Three

conclusions can be drawn from the numerical results. The first

is that there is an interplay between the monitor location cost

and the probe cost. The different results for the different values

of α illustrate this conclusion. Indeed, the larger the value of

α is, the fewer the number of monitors is and the larger the

localization overhead is. For instance, for α = 1, we have

localization solutions with zero overhead and 7 monitors, i.e.

7 of the 8 nodes of the network hold monitoring devices. The

second is that the existing localization scheme that deploys

monitors offline and selects monitoring paths online does not

take into consideration this interplay, and therefore, delivers

sub-optimal localization solutions. In effect, using the same

number of monitors, for α ≥ 6, our localization scheme can

localize any potential anomaly with about 65% less overhead

than the existing localization scheme.

The third metric is the number of monitoring paths. Recall that



this is the path selection criterion for the existing localization

scheme. We do not consider this criterion in our localization

scheme for two reasons. The first is that, upon detecting

an anomaly, the set of paths that distinguish between the

suspect links are monitored simultaneously. Therefore, the

minimization of the number of monitoring paths does not

reduce the localization delay. The second reason is that this

metric is tightly correlated to the number of monitors and the

localization overhead. Indeed, if we relax the constraint on

the localization overhead, this would allow long monitoring

paths that cross a large number of links. Therefore, the number

of monitoring paths that can distinguish between the suspect

links would decrease. Likewise, if we relax the constraint on

the number of monitors, we would deploy more monitors in

the network, thus, the monitoring paths would get shorter.

Therefore, the number of monitoring paths that can distinguish

between the suspect links would increase. Fig. 3b validates

these claims. Hereby, we can observe that the larger α is,

the more monitoring paths we have. Not surprisingly, for

α ≥ 6, our localization scheme monitors only 18% more paths

than the hybrid localization scheme, while deploying the same

number of monitors and incurring 65% less overhead.

IX. ROBUSTNESS OF OUR ANOMALY LOCALIZATION

SCHEME AGAINST TOPOLOGY CHANGES

The anomaly localization solution must be updated when-

ever the detection solution changes. However, the detection

solution changes in rare cases where a persistent anomaly

makes a network link unavailable for a long period of time,

or where the network topology is modified voluntary (e.g. add

and/or removal of links and/or nodes). Clearly, in the first case,

only the anomaly scenario whose set of suspect links contains

the anomalous link is affected by the anomaly. After updating

the set of detection paths, the affected anomaly scenario is

updated and its localization solution is recomputed. Further,

voluntary network changes are usually planned in advance,

in which case detection and localization updates should be

computed offline before changes are made. We conclude based

on this discussion that it is of great importance to provide

a fast heuristic for computing localization solutions in order

to ensure fast recovery of the localization process in case of

persistent anomalies.

X. CONCLUSION

In this paper, we addressed the problem of localizing

single link-level anomalies. Two findings were presented and

demonstrated: 1) Not all pairs of the the network links need

to be distinguishable for localizing all potential link-level

anomalies, 2) All potential anomaly scenarios can be derived

offline from any detection solution that covers all the network

links. These findings were exploited to develop an anomaly

localization scheme that computes full localization solutions

offline. In order to achieve a good trade-off between the

number and locations of monitoring devices and the quality

of monitoring paths, monitor locations and monitoring paths

are selected jointly. A novel anomaly localization cost model

was proposed, and our localization scheme was formulated

as an ILP. However, it was demonstrated that the problem

is NP-hard. Our scheme was compared with an hybrid

anomaly localization scheme that combines the strengths of

two existing schemes. Extensive simulations was conducted

on small network topologies. Results show that using the

same number of monitoring devices, our schemes incurs 65%

less overhead than the hybrid scheme. Our ongoing work is

on the design of a scalable, cost-efficient and fast heuristic

solution. Furthermore, we are working on extending our

scheme to localize multiple link-level anomalies.

APPENDIX A

This section presents the proofs of corollaries 2, 3, 4, 5 and

6.

• Corollary 2: e1 ∈ S(e2) ⇔ S(e1) = S(e2), ∀e1, e2 ∈ E
Proof: e1 ∈ S(e2) ⇔ (according to Theorem 1) there

does not exist any path that crosses either e1 or e2, but

not both ⇔ for each p ∈ P , p crosses both e2 and e1, or p
neither crosses e1 nor e2 ⇔ De1+ = De2+ and De1− =
De2− ⇔ (according to Theorem 2) S(e1) = S(e2)

• Corollary 4: S(e1) 6= S(e2) ⇔ S(e1) ∩ S(e2) = ∅
Proof: We prove the direct implication by contra-

diction. Assume to the contrary that S(e1) 6= S(e2) and

S(e1) ∩ S(e2) 6= ∅. Let e3 ∈ S(e1) ∩ S(e2). According

Corollary 2, S(e3) = S(e1) and S(e3) = S(e2). thus,

S(e1) = S(e2), leading to a contradiction. The indirect

implication is trivially true.

• Corollary 3: ∪e∈ES(e) = ∪S(i)∈dSS(i) = E
Proof: According to Theorem 2, e ∈ S(e),∀e ∈

E . Thus, ∪e∈ES(e) = E . Obviously, ∪e∈ES(e) =
∪S(i)∈dSS(i).

• Corollary 5:
X

S(i)∈dS

| S(i) | = | E |

Proof: According to Corollary 4, | ∪S(i)∈dSS(i) |=|

E |, and according to Corollary 2, ∩S(i)∈dSS(i) = ∅.

Thus,
X

S(i)∈dS

| S(i) | = | E |.

• Corollary 6: dPairs = AllPairs -
X

S(i),S(j)∈dS:i<j

| S(i) | ∗ | S(j) |

Proof: According to Corollary 1, only links that

belong to same set of suspect links need to be distinguish-

able pairwise. Therefore, the set of link pairs that are to be

distinguished can be expressed as {{(ei, ej); ei, ej ∈ E}
- {(ei, ej); S(ei) 6= S(ej)}}. We conclude that dPairs =

AllPairs -
X

S(i),S(j)∈dS:i<j

| S(i) | ∗ | S(j) | . Clearly, the

number of pair of links that need to be distinguishable

equals the number of all link pairs of the network if and

only if the number of distinct sets of suspect links equals

1, i.e. the number of detection paths equals 1.

APPENDIX B

This section presents the proof of Theorem 3.



Proof: Paths in P
′

can be divided into three subsets of

paths.

• P1: paths that cross either e1 or e2, but not both.

• P2: paths that cross both e1 and e2.

• P3: paths that neither cross e1 nor e2.

On the one hand, we have

∀p ∈ P2, δpe1
= 0 and δpe2

= 0.

Thus, ∀p ∈ P2, (δpe1
+ δpe2

− 2δpe1
δpe2

) = 0.

Contributing to
∑

p∈P2
(δpe1

+ δpe2
− 2δpe1

δpe2
) > 0.

On the other hand, we have ∀p ∈ P3, δpe1
= 1 and δpe2

= 1.

Thus, ∀p ∈ P3, (δpe1
+ δpe2

− 2δpe1
δpe2

) = 0.

Contributing to
∑

p∈P3
(δpe1

+ δpe2
− 2δpe1

δpe2
) = 0.

Subsequently,
∑

p∈P
′ (δpe1

+ δpe2
− 2δpe1

δpe2
) =

∑

p∈P1
(δpe1

+ δpe2
− 2δpe1

δpe2
).

Now, we have ∀p ∈ P1 δpe1
+ δpe2

= 1 and δpe1
δpe2

= 0.

Thus, δpe1
+ δpe2

− 2δpe1
δpe2

= 1.
Therefore,

∑

p∈P1
(δpe1

+ δpe2
− 2δpe1

δpe2
) = Cardinal(P1).

We conclude that
∑

p∈P
′ (δpe1

+ δpe2
− 2δpe1

δpe2
) =

Cardinal(P1).

REFERENCES

[1] A. Adams, T. Bu, R. Caceres, N. Duffield, T. Friedman, J. Horowitz,
F.L. Presti, S.B. Moon, V. Paxson, and D. Towsley, The Use of End-to-End

Multicast Measurements for Characterizing Internal Network Behavior,
IEEE Communications, 2000.

[2] V.N. Padamanabahn,L. Qiu, and H.J. Wang Server-Based Inference of

Internet Performance, IEEE INFOCOM, 2003.
[3] N. Duffield, Network Tomography of Binary Network Performance Char-

acteristics, IEEE Transactions on Information Theory, vol. 52, pp. 5373-
5388, 2006.

[4] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot NetDiagnoser:

Troubleshooting Network Unreachabilities Using End-to-End Probes and

Routing Data, ACM CoNEXT, 2006.
[5] Y. Bejerano, and R. Rastogi, Robust Monitoring of Link Delays and Faults

in IP Networks, IEEE/ACM Transactions on Networking, 2006.
[6] Y. Zaho, Z. Zhu, Y. Chen, D. Pei, and J. Wang, Towards Efficient Large-

Scale VPN Monitoring and Diagnosis under Operational Constraints,
IEEE INFOCOM, 2009.

[7] S Argawal, K.V.M. Naidu, and R. Rastogi, Diagnosing Link-Level Anoma-

lies Using Passive Probes, IEEE INFOCOM, 2007.
[8] P. Barford, N. Duffield, A. Ron, and J. Sommers, Network Performance

Anomaly Detection and Localization, IEEE INFOCOM, 2009.
[9] H.X. Nguyen, R. Teixeira, P. Thiran, and C. Diot, Minimizing Probing

Cost for Detecting Interface Failures: Algorithms and Scalability Analy-

sis, IEEE INFOCOM, 2009.
[10] L. Cheng, X. Qiu, L. Meng, Y. Qiao, and R. Boutaba, Efficient Active

Probing for Fault Diagnosis in Large Scale and Noisy Networks, IEEE
INFOCOM, 2010.

[11] E. Salhi, S. Lahoud, and B. Cousin, Joint Optimization of Monitor

Location and Network Anomaly Detection, IEEE LCN, 2010.
[12] E. Salhi, S. Lahoud, and B. Cousin, Heuristics for Joint Optimization

of Monitor Location and Network Anomaly Detection, IEEE ICC, 2011.
[13] F. Chudak, and D. Chmyos, Improved Approximation Algorithms for

the Uncapacitated Facility Location Problem, ACM SIAM Journal on
Computing, vol. 33.1, pp. 1-25, 2004.

[14] BRITE, [Online]. Available: http://www.cs.bu.edu/brite/. Last accessed
February, 2012.

[15] Cplex, [Online]. Available: http://www.ilog.com/products/cplex. Last
accessed February, 2012.


