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After exactly half a century of Anderson localization1,
the subject is more alive than ever. Direct observation of
Anderson localization of electrons was always hampered by
interactions and finite temperatures. Yet, many theoretical
breakthroughs were made, highlighted by finite-size scaling2,
the self-consistent theory3 and the numerical solution of the
Anderson tight-binding model4,5. Theoretical understanding is
based on simplified models or approximations and comparison
with experiment is crucial. Despite a wealth of new experimental
data, with microwaves and light6–12, ultrasound13 and cold
atoms14–16, many questions remain, especially for three
dimensions. Here, we report the first observation of sound
localization in a random three-dimensional elastic network. We
study the time-dependent transmission below the mobility edge,
and report ‘transverse localization’ in three dimensions, which
has never been observed previously with any wave. The data
are well described by the self-consistent theory of localization.
The transmission reveals non-Gaussian statistics, consistent with
theoretical predictions.

Most text books on condensed matter explain that the
electronic states in disordered conductors are extended plane
or Bloch waves with finite lifetimes. This gives rise to ‘ohmic
resistance’, proportional to the length of the sample. In the picture
presented by Anderson1, ‘large’ disorder makes electronic states
localized in space. This offers a mechanism to explain the widely
observed metal–insulator transitions17. Scaling theory proposes a
single parameter, the Thouless conductance g , to describe the
anomalous length dependence of the resistance of a sample2. The
localized regime is characterized by the so-called Thouless criterion
g < 1. Although these ideas were first proposed for electron
localization, in the early 1980s interest in classical-wave localization
was raised18,19, with the promise of avoiding the difficulties caused
by interactions in electronic systems. At the same time, the
absence of bound states for classical waves makes localization
more challenging to achieve in practice, with absorption as an
extra concern.

Here, we demonstrate Anderson localization of ultrasound
in a three-dimensional (3D) medium. Our samples are
single-component random networks made by brazing aluminium
beads together, see Fig. 1a. With ultrasound, we probe the
vibrational excitations of the network in the intermediate frequency
regime (0.2–3 MHz), where the wavelength is comparable to
the bead and pore sizes. We use pulsed techniques to measure
the amplitude transmission coefficient, shown in Fig. 1b. The
transmission spectrum exhibits a succession of bandgaps and
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Figure 1 The random elastic network and corresponding transmission

coefficient. a, Top view of one of the samples (right) and a magnified image

showing the mesoscale structure of the random elastic network (left). The samples

were made from 4.11±0.03mm diameter aluminium beads brazed together at a

volume fraction of approximately 55%. The diameter (120mm) of the slab-shaped

samples was much larger than the thickness L, which ranged from 8.3 to 23.5 mm.

b, Frequency dependence of the amplitude transmission coefficient for

L= 14.5mm. The arrows indicate the resonance frequencies of isolated

aluminium beads.

pass bands, due to the overlapping resonances of the aluminium
beads20. Our study focuses on frequencies just below the first
bandgap at 0.5 MHz, and at higher frequencies (1.6–3 MHz),
where it was possible to extract the phase and amplitude of
the coherent pulse for longitudinal waves crossing the sample.
Hence, we were able to measure the longitudinal phase vp and
group vg velocities, as well as the scattering mean free path ℓ
(refs 21,22). Note that because absorption is negligible (see below),
the attenuation of the coherent pulse gives ℓ directly. Around
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Figure 2 Transverse localization in three dimensions. a,b, Temporal evolution of

the effective width squared, w 2
ρ
(t ), of the transmitted intensity emanating from a

point source for several transverse displacements ρ of the detector and for two

sample thicknesses. The frequency is 2.4 MHz. The solid curves are the best fits of

our self-consistent theory to the experimental data (symbols), from which we

determine ℓ ∗
B = 2mm, DB = 11m2 s−1, ξ ≈ 15mm for the L= 14.5mm sample

and ξ ≈ 7mm for the L= 23.5mm sample. Other input parameters—kℓ = 1.8

and the internal reflection coefficient R= 0.82—were obtained from independent

measurements. The dashed line shows the linear time dependence of w 2
ρ
that

would be seen for diffuse waves, using D= 1.25m2 s−1. c, Dependence of the

intensity ratio on distance ρ at six different times, showing the non-Gaussian profile

that is found both experimentally (symbols) and theoretically (solid curves).

0.20 MHz, vp = 1.75 km s−1, vg = 2.1 km s−1 and ℓ = 2.2 mm,
whereas around 2.4 MHz, vp = 5.0 km s−1, vg = 5.2 km s−1 and
ℓ = 0.6 mm. This leads to a product of wave vector k and scattering
mean free path kℓ = 1.6 at 0.20 MHz and kℓ = 1.8 at 2.4 MHz. The
values of kℓ for shear waves, likely to dominate, are not known but
are probably roughly equal23. The small values of kℓ indicate that
our samples are strongly scattering. For 3D disorder, localization is
expected when kℓ ∼< 1 (ref. 24). Because the exact critical value is
not known, the ultrasonic waves at both frequencies are candidates
to be Anderson localized.

In previous reports on Anderson localization with classical
waves, absorption has been a major obstacle to reaching
unambiguous conclusions7,8,10,11,25. The following experiment is
capable of probing Anderson localization without being blurred by
absorption. We measure the spatially and time-resolved transmitted
intensity through our sample. Using a quasi-point source that is
about a wavelength wide and a subwavelength-diameter detector
that scans the sample at various transverse positions ρ in the
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Figure 3 Averaged time-dependent transmitted intensity. Transmitted intensity,

I (t ), normalized so that the peak of the input pulse is unity and centred on t= 0, at

representative frequencies in the diffuse (a) and localized (b) regimes for the

L= 14.5mm sample investigated in Fig. 2a,c. In a, the fit to the diffusion theory

with R= 0.85 gives D= 3.0m2 s−1, ℓ ∗ ≃ 2.5mm and τa too large to be

measurable. In b, the data are fitted by the self-consistent theory (red curve), with

ξ = 15mm, ℓ ∗
B = 2mm, DB = 16m2 s−1 and τa = 160 µs. For comparison, the

dashed blue line shows the long-time behaviour predicted by diffusion theory.

near field (ρ = 0 opposite to the source), the average transmitted
intensity I(ρ, t) was determined26. From these measurements,
we determine the ratio I(ρ, t)/I(0, t), probing the dynamic
spreading of the intensity in the transverse direction. Any possible
absorption factor exp(−t/τa) cancels in this ratio. For each ρ,
a transverse width wρ(t) of I(ρ, t) can be defined by setting
I(ρ, t)/I(0, t) ≡ exp[−ρ2/w2

ρ
(t)]. If the wave propagation is

diffuse, the spatial intensity profile is Gaussian and w2
ρ
(t) = 4Dt is

independent of ρ. We have observed this normal diffuse behaviour
in less strongly scattering samples, and hence have been able
to demonstrate a way of measuring the diffusion coefficient
without the usual complications due to boundary conditions
and absorption26.

For frequencies between 1.6 and 3 MHz, we observe markedly
different behaviour, shown in Fig. 2 for two representative samples
at 2.4 MHz. Instead of increasing linearly with propagation time,
w2

ρ
(t) is seen to saturate. This saturation is reminiscent of

transverse localization, previously predicted in 3D systems with
2D disorder27 and observed in 2D disordered photonic crystals12.
In our samples, the disorder is clearly 3D because the scattering
mean free path is much smaller than the sample thicknesses
(10 < L/ℓ < 40). It is not at all clear a priori that transverse
localization can occur with 3D disorder. Scaling theory2 predicts
a diffusivity D(L) dependent on the sample size L, so that
w2

ρ
(t) = 4D(L)t still rises linearly with time. The saturation of

wρ(t) could possibly be explained by a diffusivity D(t) decaying
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Figure 4 Statistical approach to localization. Comparison of the near-field speckle patterns I (x, y )/〈I 〉 for diffuse and localized waves observed at frequencies of 0.20 (a)
and 2.4 MHz (b). In a, the speckle pattern is typical for the diffuse regime, whereas b reveals the narrow intense spikes that we explain in terms of Anderson localization.

Note the different colour scales in the two figures. c, The measured probability distribution P (Î ) of normalized intensity Î = I/〈I 〉 at 0.2 MHz (open circles) is close to the
Rayleigh distribution (dashed blue line). The experimental error bars are proportional to the square root of the number of counts in each bin. The solid magenta curve is the

best fit to the theory of ref. 30 with g= 11.4. d, At 2.4 MHz, P (Î ) (filled symbols) shows very large departures from the Rayleigh distribution. The error bars represent the

error in the mean of experimental data for several samples. The solid curve shows the theory30 with g= 0.80. At large Î ∼> 25, the data can also be described by a stretched

exponential P (Î )∝ exp(−2
√
gÎ ) with the same value of g (dotted curve). The large fluctuations 〈 Î 2〉 = 2.74 and the large deviation from Rayleigh statistics with g < 1

support our conclusion that Anderson localization of sound has set in at frequencies near 2.4 MHz.

with time9–11. This would still lead to a Gaussian transverse intensity
profile and hence to w2

ρ
constant with ρ. However, this is not what

we observe.
To describe the dynamics of the anomalous transverse

confinement of the multiply scattered waves, we apply a
novel version of the self-consistent theory of localization. The
new element consists of incorporating boundary conditions
self-consistently28,29. This theory provides a position-dependent,
dynamic diffusivity kernel D(r, t − t ′). Near the mobility edge,
the position dependence of D affects all aspects of wave transport
considerably. The self-consistent theory requires as input the
value for kℓ, the localization length ξ, the diffusion constant DB

free from macroscopic interferences and the internal reflection
coefficient R. In the model, we replace the incident focused beam
by a point source at depth ℓ∗

B. This is the transport mean free
path associated with diffusion in the absence of macroscopic
interferences, which ought to be negligible just after the beam
comes in. Figure 2 compares the observed dynamics of transverse
width to this theory. Excellent agreement with the data is seen
for all ρ with a single set of parameters for each sample (solid
curves), yielding, in particular, ξ ≈ 15 mm and ξ ≈ 7 mm for the
thinner and thicker samples respectively. We attribute the smaller
value of ξ for the thicker sample to stronger scattering due to
small differences in the microstructure. This is consistent with
the strong sensitivity of ξ to small changes in disorder that is
expected near the localization transition. As ρ increases, the curves

w2
ρ
(t) move upwards, meaning that the observed transverse profile

I(ρ, t) is not Gaussian. Figure 2 shows that this behaviour is well
captured by the theory, in which the position dependence of D is
a crucial element. Any homogeneous absorption would not affect
the results in Fig. 2. We believe that this combination of theory and
experiment provides strong evidence for Anderson localization of
ultrasound near 2.4 MHz in our samples and enables us to estimate
the mobility edge (kℓ)c , which we find to be approximately 1%
above the measured kℓ = 1.8.

To find extra support for our conclusions, we have measured the
time-dependent transmission using an extended quasi-plane-wave
source. Near 0.2 MHz, the average transmitted intensity I(t)
was found to decay exponentially at long times (Fig. 3a), with
the entire time dependence of I(t) being well described by
diffusion theory26. We conclude that multiply scattered ultrasound
at 0.2 MHz propagates in a normal, diffuse way. In contrast, for
ultrasound propagating near 2.4 MHz, the time dependence of I(t)
shows a quite different behaviour (Fig. 3b), with a non-exponential
tail at long times. Similar behaviour has been reported before
and is often explained by a time-dependent reduction of the
effective diffusion coefficient D(t) (refs 9–11). The solid curve
in Fig. 3b is a fit to the self-consistent theory, and gives an
excellent description of the experiment at all propagation times.
The good agreement between theory and experiment supports
our previous conclusion that ultrasound at 2.4 MHz is localized.
From the fits in Figs 2 and 3b and the relation DB = vEℓ

∗
B/3,
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we find transport velocities 3–5 times larger than the phase
velocity of longitudinal waves. Further theoretical work is needed
to understand these—apparently large—values for vE in the
localized regime.

We also address the statistical approach to Anderson
localization7. The normalized transmitted intensity Î ≡ I/〈I〉 was
measured for a large number of individual speckle spots in the near
field, and for a broad incident beam. The intensity distributions
P( Î) for both frequencies are shown in Fig. 4. We have compared
our data to the theory of ref. 30, with the Thouless conductance
g as the only free parameter in the fit. The agreement is excellent
for g = 0.80 ± 0.08 at 2.4 MHz and g = 11.4 ± 0.8 at 0.2 MHz.
The strong deviation from Rayleigh statistics with g < 1 observed
at 2.4 MHz is interpreted as a signature of localization7. The
remarkable agreement with theory, derived for the intensity in
the far field, and for g ≫ 1, reveals a universality of the statistics of
localized waves.

Our discovery of 3D transverse localization provides a powerful
new approach for guiding future investigations of localization for
any type of wave—not only for assessing whether or not the
waves are localized but also for measuring the localization length.
By studying three different fundamental aspects of Anderson
localization simultaneously, we have also shown the versatility of
ultrasonic experiments, which are very well suited for undertaking
a complete study of this phenomenon—one of the most fascinating
in all condensed matter. Our results suggest that it should now be
feasible to determine critical exponents, by measuring the variation
of the localization length with frequency near the mobility edge,
as well as to investigate the sensitivity of the localization length
to sample microstructure, the spatial correlations of localized
waves in 3D and the microscopic nature of localized states.
All of these experiments, either with sound or light, would
make unique contributions to advancing our understanding of
Anderson localization.

METHODS

The elastic network of aluminium beads was created by precisely controlling

the flux, alloy concentration and temperature during brazing to form elastic

bonds between the beads while preserving their spherical shape. The samples

were made in the form of disc-shaped slabs, to minimize edge effects. After

brazing, the samples were lightly polished to ensure that opposite faces of the

slabs were flat and parallel, and carefully cleaned to remove any residue of the

brazing process. The samples were waterproofed with very thin plastic walls

to enable pulsed ultrasonic immersion transducer techniques to be used26,

thereby ensuring that the samples remained dry when immersed in a water

tank between the generating and detecting transducers. The coherent pulse,

from which vp, vg and ℓ were determined, was then measured by scanning the

position of the sample in a plane parallel to the sample surface and averaging

the transmitted field over all positions21,22. These measurements were made

using large-diameter immersion transducers to aid in the spatial averaging of

the transmitted field and hence in the extraction of the coherent component.

The ratio of the Fourier transforms of the transmitted and input signals gave

the amplitude transmission coefficient.

To measure I(ρ, t), a quasi-point source was created by focusing the

pulsed ultrasonic beam onto a small aperture cut in the tip of an acoustically

opaque cone-shaped screen. The cone shape was chosen so that edges of the

beam could be effectively blocked when the aperture was placed close to the

sample being investigated, while at the same time preventing significant stray

sound being reflected back towards the sample from the screen. The transmitted

field at a transverse distance ρ was measured using a miniature hydrophone

with a diameter of 400 µm, which is smaller than a wavelength, enabling the

transmitted field to be detected in a single speckle spot. The average transmitted

intensity I(ρ, t) was determined for selected values of ρ by scanning the

sample position in a grid over a very large number of independent speckle

spots26. To measure the time-dependent transmission I(t) for an extended

quasi-plane-wave source, the sample was placed deep in the far field of a

small-diameter planar transducer, and the transmitted speckle pattern was

scanned by moving the hydrophone with the sample fixed in position. For

measurements of both I(ρ, t) and I(t), the number of speckle spots over which

the intensity was averaged was typically 529–3,025, and the bandwidth was set

at 5% of the central frequency of the pulse by digitally filtering the transmitted

field before determining the dynamic intensity profiles.

The normalized intensity Î ≡ I/〈I〉 at a particular frequency was

determined from the square of the magnitude of the Fourier transform of

the transmitted field in each near-field speckle, normalized by the average

intensity in the speckle pattern. The results were then binned to determine

P( Î). To improve the statistics, the results were averaged over up to 100

frequencies within a 5% bandwidth where the statistics were similar—the

same bandwidth as for the dynamic measurements of I(ρ, t) and I(t). In

the localized regime, where fluctuations are largest, the statistical accuracy of

the measured distribution was further improved by averaging over different

samples, which were found to exhibit the same statistics. This enabled the error

bars in Fig. 4d to be determined from the standard error in the mean.
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