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Abstract: User mobile device or for wireless node detection localization is a primary concern not only in normal days but 

especially during emergency situations. There is variety of useful and necessary applications related to localization and it is an 

important technology playing critical role in wireless communication. The conceptual point of view is to sense the localization 

(coordinates of the user) from a specific region of interest (ROI). For reducing the complexity and increasing efficiency, the 

data samples for location sensing is limited in a term of taking sparsity of the detected signal in known transformed domain by 

taking fewer data samples. This whole phenomenon is called compressive sensing. This paper introduces this technology 

especially in location-sensing and discusses the present techniques. 
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1. Introduction 

In mobile and wireless network architecture location and 

mobility management have been an important factor for 

many good reasons such as giving on time rescue services, in 

case of GPS; in none availability of satellite plane of view 

directing users to their destination and many other useful 

applications. Location-sensing or localization is an automatic 

means of position determination for the user through signal 

detection from their devices. Efficient location-sensing 

require sampling of fewer data blocks from received signal 

and in many cases continuous signal is not received, fewer or 

interrupted signal has been detected. From these few samples 

based on sparsity technique location estimation is performed. 

This paper discusses different present techniques for 

localization of user through compressed sensing. 

Localization has gained its popularity in many domains 

including mobile ad-hoc and vehicular networks, robotics 

and Public Protection and Disaster Relief (PPDR) 

communication system. There are surveys [1][37] purely 

based on location-sensing techniques through trilateration 

methods, none at the moment were related to compressive-

sensing for localization of user nodes. 

The outline of this survey is as follows: Section 2 

discusses the main challenges and parameters for accurate 

localization of the user. Also what were the drawbacks of 

non-compressive techniques previously used for location-

sensing. Later in the section 3, compressive sensing is 

explained and the re-formulation of the location parameters 

in form of sparse values is explained. In section 4 focus will 

be on the effective algorithms for localization explaining the 

sparse techniques and recent developments to perform 

efficient localizations. 

2. Localization Issues and Parameters 

2.1. Linearizing Vs Non- Linear 

For location estimation usually parameters are taken into 2 

or 3D dimensional coordinates. In cellular network location 

parameters are taken within the network without the aid from 

external resources such as GPS. Mostly UE is known in 

normal days and if not known the parameters are detected 

from within the network. Not like GPS, cellular network 

localization parameters are detected from limited region of 

interest (ROI). While detecting signals the nodes may be 

moving generating time-stamped measurements. These 

parameters may be in non-linear coordinates. These 

parameters should be combined to form a trajectory leading 

to the user location. 

For accurate and sparse calculations (discussed in next 

section 3) all parameters are converted to linear parameters. 

Geometric methods can locate an object distance and 

measurements. Before sparsity was not introduced multiple 

dimensional coordinates were used. Following kinds of non-
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linear parameters exists  

1) Lateration-Single Dimension 

2) Trilateration-2D 

3) Multi-lateration-3D 

Every UE exhibits three or more parameters. For 

deploying compressive sensing, an efficient and less complex 

computation requires to convert all parameters in lateration to 

mere approximation values. The description is illustrated in 

the following figure 1.  

 

Figure 1. Location-sensing coordinates measurement 

Location estimate in cellular/wireless networks are mostly 

processed through “RF finger prints” terminology. It is very 

similar to human finger printing. UE location-dependent 

signal parameters are extracted accordingly with their time-

averages. There are two types of RF finger printing either 

reference or target [2]. The parameters obtained are unique 

set of geographic coordinates. A simple set of data matrix is 

shown below. 
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By using number of mathematical techniques such as 

Euclidean distance or Sum of Absolute Difference (SAD) 

these three dimensional values compute the distances with 

reference with the adjacent or known coordinate as shown in 

following equation 
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Here in above equation Si,j is the N-dimensional RSS space. 

As discussed above for localization many non-linear 

parameters were considered and computed. As the paper 

concentrate on compressive sensing effectiveness for 

localization rather than using trilateral coordinate system, 

further in next section sparsity in compressive sensing 

methodology is discussed in details. 

3. Fundamentals of Compressive Sensing 

3.1. Sparse Representation 

Taking the location parameters from region of interest 

(ROI) and re-formulating it in l-minimization matrix for 

compressive sensing on the data is termed as sparse 

representation. The reason to apply sparse transformation for 

location estimation is due to the in-efficiency of location-

sensing technology those require computation on large 

amount of data that cost overhead to its management and 

require high budget for hardware and software. Re-

formulation in compressive sensing provides fundamentally 

advance approach for cost-effective and time-consuming 

solutions. 

 

Figure 2. L-minimization [3] 

By using fewer samples in linear domain compressive 

sensing implies sparsity. The explanation can be put 

forwarded as having a unknown signal vector £
N
, it is 

sampled using n functions for linearizing and later 

reconstruct it, where n < N when signal space is bigger than 

measurements. Nearly from mid-eighteen it has been 

researched that minimization on l-norm can recover sparse 

measurements as illustrated in above figure. Usually a sparse 

matrix derived from discrete-time domain signal is 

represented as follow  

1{ } M
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eΘ=Ψ                                     (3.2) 

The discrete signal is represented as S
M

 and e is M x1 

column vector of weighted product of co-efficient 
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The “T” symbol denotes transpose of the sparse vector. 

The above equation is the sparse representation of signal. 

Only the basis linear combination of k vectors are considered, 

meaning their values are the most significant such as 

if 0
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Where ei is the linear projection of M signal, having N as 

intermediate acquiring samples. In a matrix if most of the 
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elements are non-zero then the matrix or vector is considered 

dense not sparse matrix. Transform coding is successfully 

processed on the data samples those are k-sparse signals 

through compressive sensing. This framework is considered 

incoherent and represented as sparse representation. There 

exists number of different techniques for sparsing the data 

such as wavelet transformation, Logan phenomena, Lasso, 

the matching pursuit and least absolute shrinkage. Using not 

all signal samples but only few intervals is actually sparsity 

of signal where the sample is most weighted one. 

3.2. Compressive Sensing vs Data Compression  

There are two types of compression lossless and lossy. 

Compression sensing and data compression are two very 

different technologies. Before discussing compressive 

sensing in detail, the difference between two techniques 

should be well cleared. Data compression is a methodology 

of discarding and reducing data for increasing bit storage. 

There are number of different models and coding techniques 

for performing data compression. 

Compressive sensing (CS) is very similar to transform 

coding, involving large amount of data. Transforming code 

process input signals into dense form of high dimensional 

space. The signal is sampled into sparsity form in a known 

transform domain. By sparsity it is meant, the matrix having 

samples of most weighted coefficients of a received signal 

that through transformation becomes zero.  

3.3. Spatial Sparsity in ROI 

Incoherency and sparsity are the two main pillars on which 

CS relies. High-dimensional signals especially trilateral 

coordinates for localization can easily be presented using few 

small set of variables and co-efficient through sparsity as 

shown in the figure 3. 

4. Present Techniques 

This section discusses present algorithms and 

methodologies for localization of user nodes through 

compressive sensing. As discussed in above sections the 

significance of sparsity theory over certain old techniques 

like FFT and Nyquist sampling theorem. In the following 

algorithm [5], a pair-wise distance measured matrix is 

derived by using sparsity. The central node only transmit 

small noisy compressive signal and a pair-wise matrix is 

constructed from those samples. CS uses l-minimization 

matrix to find pair-wise matrix through sparsing. By applying 

l-minimization algorithm, a sparse pair-wise distance matrix 

is reconstructed for learning locations of nodes. Suppose  
n

k ROIS ∈  is a sparse matrix S having pair-wise distance 

values. In the matrix each value is a two dimensional location 

vector as expressed in equation 4.1. 
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Figure 3. Sparse Data Samples 

Further on three steps are performed on the matrix, in step 

1, Floyd or Dijkstra path algorithm is applied on the values to 

recover sparse pair-wise values. In step 2, MDS algorithm is 

implied on the resultant matrix S`. The output from step 1 

and 2 gives 3D relative coordinates of the nodes. Since this 

technique derive 3D coordinates for single node, the next 

techniques uses compressive sensing to derive the location of 

multiple points. The next popular technique [8] was evolved 

for missile launch system not for PPDR or public service 

schemes. The algorithm is very simple and straight forward 

by approaching the problem through Received Signal 

Strength (RSS) parameters. The RSS values are stored in a 

sparse matrix for pin-pointing the multiple location targets. 

The locations are then extracted from the sparse values 

through l-minimization matrix technique. Like previously 

discussed techniques that measured the k-sparse 

representations, instead RSS measurements in M-

dimensional coordinates are measured accurately by 

convoluting with original received signal according to below 

equation 

εξ +ΩΘ=b                               (4.2) 

 

Figure 4. Coordinate Matrix [8] 
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Where Ω is the sparse matrix having sparse coefficients ε  

A fixed power definition is specified through adopted 

channel model and according to the RSS matrix readings on 

the grid scale the location of the targets are estimated. The 

following algorithm [10] emphasize main concern on the 

distribution of the estimation for low-dimensional location 

coordinates. A projection matrix is specified that is 

incoherent with the sparse matrix. This algorithm is based on 

the spatial sparsity representation. If the received signal 

having of l length then l+2 parameters would be required for 

the estimation of location points on the M target locations 

having k sparse samples containing amplitudes of source 

signals referred as “Localization via spatial sparsity”. 

Algorithms [7][9], [10] is based on both previous techniques 

[4][5] discussed above. Extracting the received signal 

strength and plotting over k sparse spree, a simple illustration 

is shown in figure 4. 

A new technique is proposed in algorithm [12] defined as 

Greedy Matching Pursuit “GMP”. GMP is an algorithm 

similar to OMP and CoSAMP [39] algorithms that could 

offer much better performance in regard to the unknown 

target locations from a measured signal.  By adopting target 

energy decay model [40], [41] the states of signal energy 

received at certain location for pointed target from another 

location j is approximated as: 

0 ij

ij

ij

J G
C

dα=                                  (4.3) 

Here 0J  is the received signal intensity at i, ijd is the 

derived distance from Euclidean formula between the know 

target location i with the required / estimated target location j, 

ijG holds the Raleigh fading for the received target signal. 

Sparsity is implied on the resultant matrix, after getting 

sparse representation points on the grid, energy of the target 

signal will be highest where there are most of the targets 

resides. 
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