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Localization versus Delocalization of Surface Plasmons in Nanosystems: Can One State Have
Both Characteristics?
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From a partial-differential eigenproblem, without use of dipole approximation, we show that the eigen-
modes (surface plasmons) of disordered nanosystems (modeled as random planar composites) are not
universally Anderson localized, but can have properties of both localized and delocalized states simul-
taneously. Their topology is determined by separate small-scale “hot spots” that are distributed and
coherent over a length that may be comparable to the total size of the system. Coherence lengths and
oscillator strengths vary by orders of magnitude from mode to mode at nearby frequencies. The exis-
tence of dark vs luminous eigenmodes is established and attributed to the effect of charge- and parity-
conservation laws. Possible applications are discussed.

DOI: 10.1103/PhysRevLett.87.167401 PACS numbers: 78.67.Bf, 73.20.Fz, 73.20.Mf, 85.35.–p
The nanoscale optical properties of nanosystems have
recently attracted much interest; see, e.g., [1–3] and ref-
erences cited therein. This interest may be due, in part,
to the possibility of using near-field optical phenomena
on those scales for ultradense and ultrafast optical com-
puting and information storage. On the nanometer spatial
scale and at femtosecond times, surface plasmons are the
modes carrying electromagnetic energy. The possibility of
Anderson localization of surface plasmons [4,5] is of cru-
cial importance in this context. In particular, delocalized
modes allow for transfer of energy over the entire extent
of the system, while localized modes permit concentration
of energy in a small part of it.

In this Letter, we study localization of surface plasmons
in a random planar composite (RPC) as a model for a
disordered planar film. Our model composite is made of
two constituents, characterized by dielectric permittivities
´1�v� (inclusion) and ´2�v� (host). Because the nanosys-
tem heterogeneity scale is much less than the wavelength
of light, the quasistatic approximation is applicable. This
does not imply that processes are slow, but rather the op-
posite: the small size prevents retardation effects even for
ultrafast processes. The local system response is described
by a space- and frequency-dependent dielectric function
´�r, v�. The electric potential w�r� satisfies the equa-
tion = ? �´�r, v�=w�r�� � 0 in the rectangular-prism-
shaped volume 0 # x # Lx, 0 # y # Ly , 0 # z # Lz .
Conventional Dirichlet-Neumann boundary conditions
are imposed,

w�r� � w0�r�jz�0,Lz ;

≠xw�r�jx�0,Lx � ≠yw�r�jy�0,Ly � 0 ,

where w0�r� � 2E0z is the potential of the uniform ex-
ternal or volume-average electric field. We also make use
of the spectral parameter s�v� � �1 2 ´1�v��´2�v��21.
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The material-independent eigenmodes of this problem
are characterized by eigenvalues si and eigenfunctions
wi�r�, which satisfy a generalized eigenproblem

si=
2wi �r� � = ? �u�r�=wi�r�� , (1)

along with the homogeneous variant of the above-
mentioned boundary conditions, i.e., for w0�r� ! 0. Here
u�r� is the characteristic function of the ´1 constituent,
equal to 1 inside that constituent and equal to 0 every-
where else. We set u�r� � 0 near the system boundaries.

Using wi�r� and si, spectral representations are ex-
ploited to compute the local potential w�r� and the macro-
scopic (bulk) effective dielectric permittivity e [6]:
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Here p is the fill factor (volume fraction) of the inclusion
constituent ´1�v�, V � LxLyLz is the system volume, and
fi is the oscillator strength (weight) of the eigenmode i.
The localization radius Li of an eigenmode is defined as
the gyration radius of its electric field intensity jEi�r�j2,
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∂2

, Ei � 2=wi .

(4)

All numerical calculations have been performed on a
discrete version of Eqs. (1)–(4). We have generated an
RPC on a cubic lattice by randomly positioning cubes of
© 2001 The American Physical Society 167401-1
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size 2 3 2 3 2 (all sizes are in units of the grid step) with
some probability p0. In the examples discussed below,
we limit ourselves to a thin monolayer of width 2 around
the central yz plane, with p0 � 0.5 as the filling proba-
bility in that layer. The system obtained is a thin film
composite in three-dimensional space. Such systems have
recently been studied extensively (see, e.g., Ref. [7] and
references therein). The eigenmodes of the finite matrix
eigenvalue problem, obtained by the above-described spa-
tial discretization, were found using LAPACK [8]. The error
is expected to be ~ 1�L4

i . Because the step function u�r�
has a singular derivative, we decided to smooth its discon-
tinuities using Gaussian smoothing with an RMS width
equal to the grid step size. Such smoothing does not affect
the properties of the system at intermediate or large scales,
and it actually makes the small scale structure more real-
istic by eliminating sharp edges.

We tested these techniques by computing e�v� for a
uniform planar dielectric layer, reproducing the exact result
with a &10% error. We also tested our solutions with the
exact sum rules of the problem [6]:

1
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ds Im

e�s 1 id�
´2

� p ()
X

i

fi � 1 ; (5)

Fi�z� �
Z

Diz�x, y, z� dx dy � const , (6)

where Di � �1 2 us21
i �Ei is the electric displacement

field of the eigenmode i, and Fi�z� is its normal flux
through the xy planes, which is independent of z. Equa-
tions (5) express the Thomas-Reiche-Kuhn (TRK) dipole
sum rule, while Eq. (6) follows from Gauss’ theorem. Nu-
merically, Eqs. (5) and (6) are satisfied with a relative
error &1025.

In Fig. 1 we show the smoothed, discretized nanostruc-
ture of one particular composite sample, as well as all
of its eigenmodes (surface plasmons) in a plot of oscil-
lator strength fi vs localization length Li . These eigen-
modes are strikingly unusual. First, there is a large number
of eigenmodes with negligible weights fi & 1025. Such
eigenmodes do not couple to propagating waves, and they
can be neither observed nor excited from the far (wave)

FIG. 1. For a planar random continuum composite (in the yz
plane), the density of the inclusion component (left panel) and
all eigenmodes plotted as oscillator strength fi vs localization
radius Li (right panel). The size of the embedding space is
8 3 32 3 32 in grid units.
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zone. We call them dark modes. They can, however,
be excited and observed by near-field scanning optical
microscope-type probes in the near-field region. There
are also many eigenmodes with relatively large weights,
fi * 1�V � 1024, which we call luminous modes, that
couple efficiently to the far-zone fields. Second, both the
luminous and dark modes have localization radii Li with
all possible values, from zero to one-half of the diago-
nal system size, and with very little correlation between
fi and Li, except for the superlocalized (zero-size) eigen-
modes which are all dark. This wide range of Li shows
that Anderson localization does not occur for most of the
modes, including the luminous modes, in contradiction to
what was found in Ref. [7]. Deviations from simple An-
derson localization were also seen in some previous studies
of the spatial structure of vibrational modes [9,10] and de-
phasing rates [11] in disordered solids. Similarly to our
findings, those deviations were also caused by long-range
(dipole-type) interactions.

One can rigorously prove that all Anderson-localized
modes are dark. To quantify the eigenmodes, we nor-
malize them as

R
dV jEij

2 � 1. Then the weight can be
expressed as fi � siL2

zjFi�z�j2��pV �. If an eigenmode
is Anderson localized [12], then the electric field near at
least one of the xy boundary planes must be exponentially
small. Therefore the flux Fi�z� will be exponentially small
at all xy planes, and consequently also fi will be exponen-
tially small. Thus these localized modes cannot signifi-
cantly couple to fields in the far zone and must be dark.
A corollary of this theorem is that if a composite existed
in which all eigenmodes were localized, then it would be
transparent at all frequencies. That is impossible due to
the TRK dipole sum rule of Eq. (5).

To gain more insight, we show in Fig. 2 the local electric
field intensities jEi �r�j2 for particular eigenmodes of four
extreme types, all with eigenvalues very close to si � 0.2.
The data of Fig. 2 confirm the above-discussed absence
of correlation between localization length and oscillator
strength and also show that there is no correlation between
the topology of jEi�r�j2 and that strength—compare the
pairs of eigenmodes: si � 0.1996 with si � 0.2015, and
si � 0.2 with si � 0.2011.

Clearly, the hot spots seen in Fig. 2 cannot yield domi-
nant contributions to the weight fi or the amplitude mi �
siLzFi�z�, since we could have calculated Fi�z� at a value
of z where those hot spots are absent. This implies that a
hot spot actually consists of regions where Diz �r� has large
values but with opposite signs, which nearly cancel out in
the evaluation of Fi�z�. The occurrence of “very dark”
modes (of the type shown in the lower panels of Fig. 2) is
due to the symmetry of the microstructure under reflection
in the midplane of the composite. The odd-parity eigen-
modes exhibit a strictly vanishing total flux Fi�z� � 0.

To illustrate these conclusions, we show the local dis-
placement field Diz�r� in two adjacent yz planes (x � 5
and x � 6� that are symmetric with respect to the
167401-2
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FIG. 2. Local field intensities jEi�x, y, z�j2 of eigenmodes at
the midplane of the sample shown in Fig. 1, vs spatial coordi-
nates y, z in that plane. The oscillator strength per monomer
shown is defined as Fi � pVfi . Localization radius Li is also
indicated for each eigenmode.

midplane of the composite, for the two “most counter-
intuitive” eigenmodes (delocalized dark and localized
luminous)—see Fig. 3. Evidently, the dark mode (upper
panels) has odd parity: the local fields in the symmetric
sections are identical in magnitude and opposite in sign;
thus their displacements completely cancel each other out
in the total flux Fi�z�. This explains the entire band of
dark modes seen in Fig. 1 for fi & 1028. However, a sig-
nificant cancellation occurs also for luminous, even-parity
eigenmodes — see, e.g., the eigenmode exhibited in the
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FIG. 3. Electric displacement field Diz�x, y, z� of two eigen-
modes (si � 0.2011 and si � 0.1996) as function of the coor-
dinates y, z. These displacements are calculated for two adjacent
planes, x � 5 and x � 6 (indicated on the graphs), symmetric
with respect to the mirror-symmetry plane of the composite.
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lower panels of Fig. 3. This occurs due to the flux
conservation constraint of Eq. (6). Although this mode
�si � 0.1996� has even parity, the displacement field Dz

still changes its sign at adjacent points in the midplane
within the hot spot. As a result, the big peak in E2

i almost
completely cancels out, and almost the entire contribution
to the flux Fi�z� comes from the small “ripple” seen out-
side of this peak. This near cancellation in the even-parity
modes explains the very wide range of oscillator strengths
seen in Fig. 1. Such a near cancellation will likely occur
even in the absence of reflection symmetry.

The numerical results presented above deal with individ-
ual surface plasmons. In order to gain a statistical perspec-
tive, we show spectral distributions of localization lengths
P�L, s� � �

P
i d�L 2 Li�d�s 2 si�	, averaged over a rep-

resentative ensemble of systems for all eigenmodes — see
Fig. 4. We have verified that the corresponding distribu-
tions for luminous modes only are similar. Evidently, most
eigenmodes are concentrated at comparatively small eigen-
values, si # 0.3, where the optical absorption is large.
In this spectral region, the eigenmodes at any s are dis-
tributed over the maximum range of localization lengths,
from one-half of the diagonal system size down to zero.
This confirms that there is no uniform Anderson localiza-
tion for all eigenmodes. The coexistence of eigenmodes
with very different localization radii at the same frequency
(eigenvalue) supports the concept of inhomogeneous local-
ization introduced earlier for dipolar eigenmodes [13,14].
Note that the present eigenmodes are obtained without in-
voking the dipole approximation. Therefore, the hot spots
of the local fields on the small scale and modes with small
Li are obtained more reliably.

The maximum size of the eigenmodes and their density
decreases with increasing s. Comparing panels on the left
and right of Fig. 4, we conclude that these distributions
scale with the total size of the composite film, which lim-
its the maximum extension of an eigenmode. This also
implies that the size of the system in our computations is
large enough and that no new information would be ob-
tained if this size were increased. Comparing the panels in
different rows of that figure, one sees that as the transverse
system size decreases, the number of delocalized eigen-
modes also decreases, and the overall distribution shifts
to larger values of s. In the 2D case only [Figs. 4(e) and
4(f)], there is evidence for predominantly strongly local-
ized eigenmodes at s close to 1.

We have found that, without smoothing, the distribu-
tions corresponding to Fig. 4 are considerably different.
The singular hot spots, sensitivity to the system structure
at the minimum scale, eigenmodes delocalized over the en-
tire system—all suggest that the theory may not be renor-
malizable and that a universal description (e.g., based on a
percolation model) may be impossible.

In summary, we have established that eigenmodes (sur-
face plasmons) of a disordered planar nanostructured sys-
tem (modeled as an RPC film) are not generally Anderson
167401-3
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FIG. 4. Contour plots of the spectral distribution P�L, s� of
eigenmodes over their localization length L and spectral variable
s. The system size Lx 3 Ly 3 Lz is indicated above each plot
(the composite film lies in the central yz plane). The lower
panel is for 2D systems of size Ly 3 Lz . The data are averaged
over an ensemble of randomly generated systems large enough
to make the statistical error negligible on the scale of the plots.

localized. This we attribute to the long-range dipolar in-
teractions. We have proved that Anderson localization of
surface plasmons in the entire spectral range is impossible,
because that would conflict with the TRK sum rule. The
localization radii Li are distributed over the entire range
from the minimum scale to the total size of the system,
which is a signature of inhomogeneous localization. A
typical eigenmode has properties of both localized and de-
localized states: it includes hot spots on the small scale, but
those are distributed and coherent over the large scale. The
surface plasmons are extremely inhomogeneous in their os-
cillator strengths fi that range over more than 10 orders of
magnitude. A significant fraction of all the eigenmodes
are dark and can be excited or observed only from the
near-field zone with nanometer scanning probes, but not
from the far zone. At the same time, the dipole-allowed
167401-4
(luminous) eigenmodes also exhibit a very wide range of
fi values. This full or partial suppression of oscillator
strengths is due to the independent effects of two conser-
vation laws: parity and flux (gauge invariance). Our con-
clusions vis-à-vis nonoccurrence of Anderson localization
of the surface plasmon modes in RPC films followed from
a careful analysis of the extensive numerical calculations
with special attention to the luminosity of those modes.
Such an analysis was not performed in previous studies of
metal-dielectric films, like the one described in Ref. [7].

Finally, these unique properties of surface plasmons
make them interesting candidates for retaining and trans-
porting electromagnetic energy and information in ultrafast
and ultradense computing applications: The hot spots of
such modes could allow for concentration of electromag-
netic energy in small parts of the system, while the long
coherence range would permit transfer of energy and in-
formation across the entire extent of the system. The dark
eigenmodes can be excited from within the nanosystem but
will not radiate and cannot be observed or interfered with
from the outside.
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