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Abstract. How difficult is it to find the position of a known object using random samples? We study this question,
which is central to Computer Vision and Robotics, in a formal way. We compare the information complexity
of two types of tasks: the task ofidentificationof an unknown object from labeled examples input, and the task
of localizationin which the identity of the target is known and its location in some background scene has to be
determined.

We carry out the comparison of these tasks using two measuring rods for the complexity of classes of sets; The
Vapnik-Chervonenkis dimension and theε-entropy of relevant classes. The VC-dimension analysis yields bounds
on the sample complexity of performing these tasks in the PAC-learning scenario whereas theε-entropy parameter
reflects the complexity of the relevant learning tasks when the examples are generated by the uniform distribution
(over the background scene). Our analysis provides a mathematical ground to the intuition thatlocalization is
indeed much easier thanidentification.

Our upper-bounds on the hardness oflocalizationare established by applying a new, algebraic-geometry based,
general tool for the calculation of the VC-dimension of classes of algebraically defined objects. This technique
was independently discovered by Goldberg and Jerrum. We believe that our techniques will prove useful for
further VC-dimension estimation problems.

Keywords: learning theory, PAC, Vapnik-Chervonenkis dimension, localization, identification, recognition,
computer vision

1. Introduction

Object recognition, a fundamental task of computer vision, usually deals with the following
situation: one observes a scene, extracts some measurements out of it, and uses them to judge
whether certain objects are present in the scene, and what are their positions. In the basic
form of this task, calledlocalization, the identity of the object is known, and one tries to guess
its position correctly. A different and more general task isidentification, where the only
advance information about the object is its membership in some known library of objects.
The identificationtask is to discover both the shape and the position of the target object.

The aim of this work is to provide some rigorous mathematical analysis of the
information-complexity of these tasks. Our analysis yields a justification to the clear intu-
ition that localizationis an easier task thanidentification.

Let aclass of imagesbe a class of objects that are transformed instances of one particular
object. Such a class depends on the original object and on the type of transformations

∗An extended abstract of this paper appeared in the Proceedings of the Sixth Annual ACM Conference on
Computational Learning Theory (Ben-David & Lindenbaum, 1993).
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allowed. One can viewlocalizationas the task ofidentificationfrom a library that is a class
of images.1

We wish to quantify the ‘complexity’ of classes of images, for different objects and
groups of transformations, and to compare it to the ‘complexity’ of some natural library
classes to which the objects belong. The measures of complexity of a class that we shall
investigate are two: The Vapnik-Chervonenkis dimension and the metric (ε-) entropy. These
measures are relevant to the learning difficulty of classes in the distribution-free PAC model
and with respect to the fixed uniform distribution (respectively).

If no limitations are imposed on the shape of the object, classes of images may be
arbitrarily difficult to learn (see Claim 4 in Section 3 for an example). We shall therefore
limit our discussion to objects that are semi-algebraic sets inRn, i.e., can be defined by
boolean combinations of polynomial inequalities.

As for the families of allowed transformations, we shall consider affine transforma-
tions ofRn as well as some subgroups such as isometries (or Euclidean transformations),
which correspond to repositioning of rigid bodies, and Similarity transformations, which
allow also uniform scale change. These groups of transformations are commonly used
to model image acquisition distortions that arise when the input information is derived
from a (two-dimensional) picture taken by a camera whose position relative to the object
is unknown.

In Section 2 we define our objects of research—the Semi-Algebraic sets. We then develop
some tools for proving lower bounds on the VC-dimension of classes of such sets. Section 3
investigates the VC-dimension of classes of transformed images of a semi-algebraic object.
We introduce a technique for bounding the VC-dimension of classes parameterized by
algebraically defined sets of real numbers. We believe that this technique, relying on a
classical result of Milnor, is a powerful tool that will be applicable far beyond the issues
discussed in this paper. Goldberg and Jerrum have, independently, discovered and analyzed
a very similar technique (Goldberg, 1992; Goldberg & Jerrum, 1995).

Viewed from the distribution-free PAC learnability angle, these results imply, on one
hand, upper bounds on the number of examples needed for thelocalizationof an object
of some semi-algebraic degree, and on the other hand, much higher lower bounds on the
number of examples needed for theidentificationof such an object from among all objects
of the same degree.

Section 4 carries these results over to the setting of learnability with respect to the (fixed)
uniform distribution. This is done by analyzing theε-entropy of the relevant classes, and
showing that, for wide classes of semi-algebraic objects, the entropies, under the metric
induced by the uniform distributions, approach their maximum possible values (over all
probability distributions).

Finally, in Section 5, we discuss the relevance our results to object recognition.

2. The VC-dimension of semi-algebraic classes

We wish to show thatlocalizationis, in some sense, an easy task. This statement may fail
when the object one wishes to localize is very ‘wild’, an example of such a case is given
later (see Claim 4). We shall therefore focus on well behaved geometrical objects—Semi-
Algebraic subsets ofRn.
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Definition 1 (Semi-algebraic and polynomial sets).

• A semi-algebraic(open) setof degree(k,m) in Rn is a set that can be represented as a
boolean combination ofk sets of the form{x̄ ∈ Rn : f j (x̄) > 0} where the functionsf j

are real polynomials of maximal degreem.
• Thesemi-algebraic classof degree(k,m) overRn is the collection of all(k,m)-semi-

algebraic subsets ofRn, namely,

SAn
(k,m)

def= {A ⊆ Rn : A is a semi-algebraicopen set of degree(k,m)}.

• A polynomial setis a semi-algebraic open set of degree(1,m), for some finitem.

From the Computer Vision point of view, even polynomial objects of modest degrees
(e.g., 4) seem to enable the description of complicated objects, thereby providing sufficient
representation power (Keren, Cooper & Subrahmonia, 1992; Terzopoulos et al., 1987).
The class we consider here is even richer: besides polynomial objects it also contains
combinations of them which include, e.g., polygonal objects (which, fork being the number
of polygon sides, are semi-algebraic sets of degree(k, 1)).

The VC-dimension of a concept class is defined as follows:

Definition 2 (Vapnik-Chervonenkis dimension). Let X be some set andK a collection of
its subsets (a concept class).

• We say thatK shattersa set of pointsA ⊆ X, if, for every B ⊆ A, there exists some
C ∈ K such thatC ∩ A = B.
• TheVapnik-Chervonenkis dimension(in short, VC-dimension) ofK is the maximum size

of a set shattered byK. (If K shatters sets of unbounded size, we say thatVCdim(K) is
∞.)

A finite concept class is always associated with a finite VC-dimension:

Example 1. LetK be a concept class containing a finite number,N, of concepts. A finite
point set ofn points contains 2n different subsets, but onlyN subsets of any point setA
may be represented asc∩ A (for anyc ∈ K). Therefore, no set larger thanblog Ncmay be
shattered, andVCdim(K) ≤ blog Nc.

Infinite concept classes, like the semi-algebraic classes specified above, may have finite
or infinite VC-dimension. The following theorem of Dudley is a key tool for their analysis.

Theorem 1 (Dudley, 1984). For a real-valued function f on some domain X, let pos( f )
denote{x ∈ X : f (x) > 0}. If H is a real vector space of functions from X toR
then the VC-dimension of{pos( f ) : f ∈ H} equals the linear(vector space) dimension
of H. Furthermore, for h being any real-valued function on X, the VC-dimension of
{pos( f + h) : f ∈ H} is also equal to this linear dimension.
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Let CC(n,m) = ( n+m
m ) denote the number of subsets of sizem of a set of sizem+ n.

The following claim is a straightforward application of Dudley’s theorem:

Claim 1. The VC-dimension of SAn
(1,m)—the class of all degree m polynomial subsets of

Rn is CC(n,m).

(This claim also follows from results of Cover (1965).) We can now readily compute the
VC-dimension of the classes of regions inR2 that are bounded by graphs of polynomial
functions.

Corollary 1. Let B2
m

def= { p̂ : p is a polynomial of degree at mostm},wherep̂
def= {(x, y)

∈ R2 : y < p(x)}. Then, for every m∈ N, the VC-dimension of the class B2
m is m+ 1.

The proof is immediate by noting that, for every polynomialp, p̂ equals{pos( f ) : f (x, y)
= p(x)− y} where the degree ofp is at mostm andy plays the role of the fixed function,
h, from Dudley’s theorem. Another natural family of classes of semi-algebraic sets inR2

is the classes of convexk-edge polygons. Such a class is a subclass ofSA2
(k,1).

Claim 2. The VC-dimension of the class of convex k-edge polygons is at least2k.

This can be easily verified by considering a set of 2k points equally spaced on the boundary
of a circle and noting that, for every subset of it, there is a convexk-gon that contains this
subset and no other point of the set.

2.1. The VC-dimension of classes generated by classes of known dimension

We shall now present some tools for the evaluation of the VC-dimension of classes of
subsets ofRn from the dimensions of their generating classes.

Definition 3. Let C be a class of subsets ofRn,

• C, is shift invariantif, for everyc ∈ C and for everȳt ∈ Rn, c+ t̄
def= {x̄ + t̄ : x̄ ∈ c} is

also inC.
• C is scale invariantif, for every subsetc ∈ C and for everyα ∈ R, αc

def= {αx | x ∈ c},
is also inC.
• Theelement-wise unionof two classes,C1 ∪ C2, is {a ∪ b |a ∈ C1, b ∈ C2}.
• Theelement-wise intersectionof two classes,C1 ∩ C2, is {a ∩ b |a ∈ C1, b ∈ C2}.

Lemma 1. Let C1,C2 be classes of bounded subsets inRn whose VC-dimension is finite.
Then
1. If C1 and C2 are shift invariant, or scale invariant, then so are C1 ∪ C2 and C1 ∩ C2.
2. If C is scale invariant, then, for every r> 0, bounding C to the ball around the origin

B(O, r ) = {x̄ ∈ Rn : ‖x̄‖ ≤ r }, does not affect its VC-dimension, i.e., VCdim(C) =
VCdim(C ∩ {B(O, r )}).

3. If C1 and C2 are shift invariant then VCdim(C1 ∪ C2) ≥ VCdim(C1)+ VCdim(C2).
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Proof: We leave the proof of the first two claims to the reader. For the third claim,
consider two sets of pointsS1, S2, of sizesVCdim(C1) andVCdim(C2) respectively, each
shattered by the corresponding class. LetSC1, SC2 be subclasses ofC1,C2, that contain
the minimal number of subsets needed to shatter these sets. The shift invariance ofC1,C2

and the boundedness of their members, imply that theS1, S2 sets can be chosen such that
the intersection between any member ofSC1 and any member ofSC2 is null. Every union
of an element ofSC1 with an element ofSC2 is a member ofSC1 ∪ SC2. It follows that
the classSC1 ∪ SC2, which is a subclass ofC1 ∪ C2, shattersS1 ∪ S2, implying that its
VC-dimension is at leastVCdim(C1)+ VCdim(C2). 2

To see how tight this bound is, we compare it to the upper bound derived in (Dudley,
1984). There, Dudley considers the element-wise union (or intersection) of two classes,C1

andC2. He applies Sauer lemma (Sauer, 1972) to get:

VCdim(C1 ∪ C2) ≤ sup

{
r ∈ N;

VCdim(C1)∑
i=0

(
r

i

) VCdim(C2)∑
j=0

(
r

j

)
> 2r

}
.

Now, lettingr ∗ = VCdim(C1 ∪ C2), Dudley’s inequality becomes:

2r ∗ <

VCdim(C1)∑
i=0

(
r ∗

i

) VCdim(C2)∑
j=0

(
r ∗

j

)
< (r ∗)VCdim(C1)(r ∗)VCdim(C2)

implying

VCdim(C1 ∪ C2)

log(VCdim(C1 ∪ C2))
≤ VCdim(C1)+ VCdim(C2).

2.2. Lower-bounding the VC-dimension of semi-algebraic classes

We use Lemma 1 to obtain a general lower bound on the VC-dimension of semi-algebraic
sets.

Claim 3. The VC-dimension of the class SAn
(k,m) of semi-algebraic subsets ofRn of degree

(k,m), is at leastk
2(

m+n
m ).

Proof: Consider the classA = B ∩ C, whereB is the class of polynomial objects of
degreem, andC the class of balls (of finite radii). By Claim 1 there exists a set of size
CC(n,m) that is shattered by the classB. Since there exists some ball inC that contains
it, the VC-dimension of the new classA is at leastCC(n,m). Note thatA contains only
bounded sets, and is shift and scale invariant. Applying Lemma 1 we conclude that the
VC-dimension of the class

⋃
i=1...k/2

A is at leastk2CC(n,m). The claim now follows by
noting that this latter class is a class of semi-algebraic sets of degree(k,m). 2
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In fact, as we prove later in Claim 8, there is an upper bound on the VC-dimension of
classes of semi-algebraic objects which is not very different from this lower bound—it is
larger by only a logarithmic factor.

3. The VC-dimension of classes of images

In this section we wish to bound from above the VC-dimension of classes of images, i.e.,
collections of images of a given object under a family of transformations. As the Claim 4
below demonstrates, such a bound depends on the object generating the class. We shall
consider objects that are semi-algebraic sets of a given degree. We will show that, for wide
classes of transformations, the dimension of the corresponding classes of images of any
(k,m)-semi-algebraic set inRn is substantially below the dimension ofSAn

(k,m)—the class
of all sets of the same degree.

The families of transformations we consider include the families of translations, rotations,
scale changes, combinations of them, and the group of all affine transformations.

Definition 4.

• An object,V , is a subset ofRn.
• A transformation,t , is a mapping,t (x̄) from Rn to Rn. A class of transformations is

denotedT .
• For anyt ∈ T , let Vt denote thet-transformed image ofV , i.e.,Vt = {t (x̄) : x̄ ∈ V}.
• The class ofT-images ofV , denoted byCT (V), is {Vt : t ∈ T}.
• A translation is a transformation ofRn defined by an equation of the formt (x̄) = x̄+ ȳ,

for some vector,̄y ∈ Rn. The class of all translations is denotedT .

First, we show that even the most simple transformation class: one-dimensional transla-
tion, may yield a class of images associated with infinite VC-dimension.

Claim 4. There exists a one-dimensional object, V, such that VCdim(CT (V)) is infinite.

Proof: Consider the setS={1/2, 1/3, 1/4, . . .}. Let{An}n∈N enumerate all its finite sub-
sets. (A possible enumeration of these subsets is, for example,A1 = ∅, A2 = {1/2}, A3 =
{1/3}, A4 = {1/2, 1/3}, A5 = {1/4}, A6 = {1/2, 1/4}, . . . .) Now define the object as
V∗ = ⋃

n∈N(An+ n). We claim that the class of its translations,CT (V∗) = {V∗ + t :
t ∈ R}, has an infinite VC-dimension. To see this, just note thatCT (V) shatters any finite
subset ofS. 2

The above claim makes it clear that simple transformations do not necessarily elicit
simple image classes. In the rest of the section we shall show that the complexity of classes
of images depends on the complexity of both the object being transformed and the family
of the transformations.
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3.1. A mapping between points and transformation subclasses

The main idea behind the following analysis is to translate the question of the combina-
torial complexity of a classCT (V) to some geometric question in the space of transforma-
tionsT . Once this translation is established, the mighty tools of algebraic geometry can be
called in to solve our combinatorial problem. We shall now describe a general framework
for such translations.

Given a family of transformations ofRn, T , the first step we take is to note that any
object,V ⊆ Rn, induces a mapping of points ofRn to subsets ofT . Namely, every point
x̄ ∈ Rn may be mapped into the subset of transformationsK V

x̄ = {t ∈ T : x̄ ∈ Vt }. Note
that this mapping is dual to the mapping from members ofT to subsets ofRn defined by
mappingt to the setVt .

Consider now a set of pointsS = {x1, x2, . . . , xN} in Rn. Fixing an objectV ⊆ Rn,
every subsetA ⊂ Scorresponds to the subset

W(A, S)
def= {t ∈ T : Vt ∩ S= A}.

of the family, T , of transformations. The following claim follows immediately from the
definitions:

Claim 5. For any A⊆ S and t∈ T,
• For t ∈ W(S, A) and x∈ S, t ∈ K V

x iff x ∈ A.
• For any object V⊆ Rn and a family T of transformations, the class of images, CT (V),

shatters a set S⊆ Rn iff, all of the members of{W(A, S) : A ⊆ S} are nonempty.2

We have therefore reduced the calculation of the VC-dimension of classes of images to
counting the number of nonemptyW(A, S) sets of transformations. This reduction is the
basis for the subsequent derivations of this section.

3.2. Parameterizing the transformations

The next step we take is to representT parametrically, with parameters forming some
parameter spaceRp. For example, ifT is the family of translations ofRn, it can be naturally
parameterized by assigning the parameterȳ ∈ Rn to the translation (ofRn) t (x̄) = x̄ + ȳ.

As mentioned in Section 1, the transformations of most practical interest are Translations,
Euclidean, Similarity and Affine transformations, a family that includes all the former
families. A linear affine transformation onRn is defined by a pair,(A, b), whereA is an
n× n matrix andb ∈ Rn. Such a transformationH = (A, b)acts onRn by H(x) = Ax+ b.
We shall restrict our attention to nonsingular transformations, i.e., transformations that are
one-to-one or, equivalently, their defining matrixA is regular. For these transformations
the inverse transformation, denotedH ′ = (A′, b′), always exists, and its parameters, the
components of(A′, b′) ∈ Rn2+n will be used to represent the transformationH(x) =
Ax+ b. Allowing a slight abuse of notation, we shall identify sets of transformations with
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the sets of their corresponding parameters. For example,K V
x̄ will also denote the set of

parameters that correspond to all transformationst for which Vt includes the point̄x.
The families of Euclidean transformations and of similarity transformations ofRn can

always be represented inRn2+n, but can also be represented in lower dimensional parameter
spaces. This will enable us to obtain, in some cases, better bounds on the VC-dimension
of classes of images of an object under such transformations.

The following lemma demonstrates a useful property of Affine transformations, namely,
that simple objects,V , give rise to simple subsetsK V

x̄ of the parameter space.

Lemma 2. If V is a semi-algebraic subset ofRn of degree(k,m) then, for everyx̄ ∈ Rn,

the set of transformation parameters KV
x̄ is a semi-algebraic set of degree(k,m) (in the

parameter space of affine transformationsRn2+n).

Proof: A sufficient and necessary condition for a pointx̄ to be inside the transformed
object is that the result of applying the inverse transformation on it,ȳ = A′ x̄ + b′ will
be in the original (nontransformed) semi-algebraic setV . The expression for̄y is a linear
function of the parameters, and inserting it into the polynomials{ f j } that specifyV , induces
polynomial sets of equal degree in the parameter space{t̄ | f j (t̄, x̄) > 0}. The union and
intersection operations on the polynomial sets ofRn transform into similar operations on the
polynomial sets of the parameter space, and therefore, the setK V

x̄ is also a semi-algebraic
set of degree(k,m). 2

LetCA(V)denote the class of all objects obtained by transforming a semi-algebraic object
V via affine transformations. Our next step is to set upper bounds on the VC-dimension
of classes of the formCA(V).3 For this proof we shall employ (a small modification of)
the classical result of Milnor (1964), regarding the number of connected components of
polynomial sets.

Lemma 3 (A modification of Milnor (1964)). Suppose X⊂ Rn is specified by the
polynomial inequalities f1(x) > 0, . . . , fl (x) > 0, fl+1(x) ≥ 0, . . . , f p(x) ≥ 0 with total
degree d= deg f1+ · · · + deg fp. Then9(X), the number of connected components of the
set X, satisfies

9(X) ≤ 1

2
(2+ d)n

Proof: The original theorem of Milnor provides this relation when all inequalities that
specify X are weak (that is, all of them are of the typef j (x) ≥ 0). Consider now the
sequence of sets{Xq}q∈N specified by the weak inequalitiesf1(x)− 1/q ≥ 0, . . . , fl (x)−
1/q ≥ 0, fl+1(x) ≥ 0, . . . , f p(x) ≥ 0. Clearly,X1 ⊂ X2 ⊂ · · · ⊂ X andX = ⋃q∈N Xq.
Each of the setsXq does satisfy Milnor’s condition; therefore, the number of connected
components cannot increase unboundedly withq.

The next claim, a purely point-set-topological statement, suffices to conclude the proof
of the lemma. 2
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Claim 6. Let X1 ⊆ X2 ⊆ · · · ⊆ Xq ⊆ · · · be a sequence of sets in some topological
space and let X denote their union,

⋃
q∈N Xq. Let ]A denote the number of connected

components of a set A, then

]X ≤ sup
q∈N

]Xq

Proof (of the claim): First, note that if two of points,x, y, are in the same connected
component in someXq, then they share the same connected component inX as well.
Assume supq∈N ]Xq is some finite number,d (otherwise there is nothing to prove). Let
x1, x2, . . . , xd+1 be points inX, and letq̂ be such that they are all members ofXq̂. As
]Xq̂ ≤ d, there are somei 6= j such thatxi andxj share the same connected component of
Xq̂. It follows thatxi andxj are in one connected component ofX. 2

3.3. The VC-dimension of affine transformed objects

Theorem 2. For every semi-algebraic set V of degree(k,m) in Rn,

VCdim(CA(V)) = O(n2 lognkm)

Proof: Let S = {x1, . . . , xN} be a subset ofRn that is shattered by the class of images
CA(V). Let us focus on the parameter space of transformationsRn2+n. The union of
boundariesBS =

⋃i=N
i=1 ∂K V

xi
of the semi-algebraic open parameter sets{K V

xi
} divides

the parameter space into connected components. We shall show that the number of such
components bounds the number of nonempty sets of the formW(A, S), and therefore, the
exponent of the size of the shattered setS. We shall then apply Lemma 3 to bound the
number of the connected components.

Claim 7. For any pair A, A′ of distinct subsets of S, any connected component of
Rn2+n\BS that has a nonempty intersection with W(A, S) necessarily has an empty in-
tersection with W(A′, S).

Proof (of the claim): Let xi0 be a point inA\A′. By Claim 5, anyt ∈ W(A, S) is a
member ofK V

xi0
while for any t ∈W(A′, S), t /∈ K V

xi0
. Consider the sets int(K V

xi0
) and

int(Rn2+n\K V
xi0
). They are disjoint open sets and they cover(Rn2+n\BS). It follows that

any subset of(Rn2+n\BS) that meets bothW(A, S) andW(A′, S) is partitioned by the sets
int(K V

xi0
) and int(Rn2+n\K V

xi0
) into nonempty disjoint open subsets, and is therefore not

connected. 2

To calculate the number of connected components of(Rn2+n\BS), recall that each of the
parameter setsK V

xi
is specified byk-many polynomial sets of the form{t̄ | f j (t̄, xi ) > 0}

and note that at least one of the functionsfi j (t̄) = f j (t̄, xi ) vanishes on each point of the
boundary ofVxi .

Consider now the product functionG(t̄) = ∏
i, j fi j (t). Any connected component

of Rn2+n\BS is a union of one or more connected components of{t̄ : G(t̄) > 0} or of
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{t̄ : G(t̄) < 0}. G(t̄) is a (kmN)-degree polynomial inn2 + n real variables (whereN
stands for the cardinality of the shattered set,S), and, by Lemma 3, the total number of
connected components of its positive set{P |G(t̄) > 0} and its negative set (which is the
pos-set of−G) is not higher than 2· 1

2(2 + kmN)n
2+n. Consequently, our assumption

that the setS is shattered byCA(V) implies that 2N ≤ (2 + kmN)n
2+n. The theorem

now follows by taking the logarithm of the last inequality and noting that it fails whenever
N ≥ 2(n2 + n) log((n2 + n)(2+ km), for sufficiently large values ofk andm. (N ≤
a log(bN) implies that, fora ≥ 2 andb ≥ 1, N ≤ 2a log(ab), as otherwise,a ≥ N

log(bN) >
2a log(ab)

log 2+logab+log log(ab) ≥ 2a log(ab)
2 log(ab) ≥ a, which is a contradiction. In fact, for sufficiently large

b, the conditionN ≤ a log(bN) implies thatN ≤ (1+γ )a log(ab) for any positiveγ . This
enhanced bound is not needed for this proof but will be useful below, for the asymptotic
bounds.) 2

In the Computer Vision and Robotics context, one is usually interested only in two-
or three-dimensional object spaces. For these cases, it is easy to see that subgroups of
affine transformations, such as Translation, Euclidean and Similarity transformations can
be represented in a parameter space smaller thanRn2+n, implying that the corresponding
classes of imagesCT (V), CE (V), CS(V), have lower VC-dimensions.

In the two-dimensional case, for example, the translation transformation may be rep-
resented only by the two components of the (inverse) translation vectorb′. To represent
the Euclidean transformation we need also to specify the rotation matrixA′. To keep the
transformation linear in the parameters, which is essential for the derivation, we use a four-
dimensional spacēt = {t1 = a′11(= a′22), t2 = a′21(= −a′12), t3 = b′1, t4 = b′2} with a
constraintt2

1 + t2
2 = 1 kept in mind. For Similarity transformations, which also allow uni-

form scale change, five-dimensional parameter space is used, with four parameters identical
to the Euclidean transformation parameters, and the fifth induced by the weaker constraint
t2
1 + t2

2 = t2
5 . The most general affine transformation, is represented, as described above by

the(n2+ 2= 6)-dimensional parameter space.
Now, let BT (V), BE (V), BS(V), andBA(V) be upper bounds on the VC-dimension of

the corresponding classes of images when the complexity of the objectV , represented by
the productkm, increases to infinity. Applying the parameterizations introduced above,
with the method presented in the proof of Theorem 2 will yield the required asymp-
totic bounds. The additional degree-2 polynomial constraint on the parameters, which
occurs in some of the cases, is easily incorporated by expressing it as two weak inequality
constraints.

Corollary 2.

BT (V) = 2 log(km)

BE (V) = 4 log(km)

BS(V) = 5 log(km)

BA(V) = 6 log(km)
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3.4. An upper bound on the VC-dimension of semi-algebraic sets

Using the same technique, it is possible to prove the following upper bound on the class of
semi-algebraic subsets.

Claim 8. The VC-dimension of the class of semi-algebraic subsets ofRn of degree(k,m),
is at most2k(m+n

m ) log(k(k+ 1)(m+n
m )).

Proof (sketch): Assuming that a set ofN points is shattered, we look at the induced
partition of a parameter space. The dimension of this parameter space, representing the
coefficients of thek polynomials of degreem is k(m+n

m ). This space is partitioned here by
kN linear polynomials, implying that the inequality 2N ≤ (2+kN)k(

m+n
m ), must be satisfied,

which, in turn, implies the claim. 2

Note that this upper bound differs only by a logarithmic factor from the lower bound
derived above.

4. Learnability of geometric objects under the uniform distribution

The Vapnik-Chervonenkis dimension of a class can be viewed as a measure of the
(information-theoretic) hardness of its distribution-free learnability. That is, its learnability
in a setting where the underlying distribution—the distribution according to which exam-
ples are provided and relative to which the accuracy of hypotheses is defined—is unknown
to the student and, furthermore, his performance is analyzed in a worst-case setting. Con-
sequently, the Vapnik-Chervonenkis dimension of a class may be readily used to provide
upper bounds on the difficulty of learning the class, in less demanding models of learn-
ability, e.g., when the underlying distribution is known to the student, or is chosen from a
limited family of candidate distributions.

The relevance of the VC-dimension to hardness (i.e., lower bound) results is not as clear as
its applicability to upper bounds. ‘Real-life’ settings are usually much more restricted than
what the distribution-free model may reflect. It may very well be the case that a class, whose
distribution-free learnability is hard, is easily learnable once the underlying distribution is
chosen from among a family of ‘realistic’ or ‘relevant’ distributions.

In this section we wish to show that, in the realm of classes of geometric objects in a
Euclidean space, this is not the case. That is, the lower bounds on the difficulty of learnability
of such classes, as provided by the Vapnik-Chervonenkis dimension, hold even in the
restricted model of one fixed underlying distribution—the uniform probability measure.

4.1. Learning in metric spaces and covering numbers

The difficulty of learning a concept class under a fixed distribution is best analyzed in the
context of metric spaces. Let us begin our discussion by introducing some basic concepts
from the theory of metric spaces.
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Definition 5.

• A metric space(E, d) is a setE associated with a distance functiond(·, ·) between its
members, satisfying, for everyx, y, z ∈ E, three conditions:

1. d(x, x) = 0,
2. d(x, y) = d(y, x) ≥ 0,
3. d(x, z) ≤ d(x, y)+ d(y, z).

(We use a weaker definition of a metric space, which is often referred to also as “pseudo-
metric”.)
• Let (E, d) be a metric space, letA be a subset ofE andε > 0.

1. B ⊆ E is anε-cover for A if for every a ∈ A there exists someb ∈ B such that
d(a, b) < ε.

2. Nd(ε, A) is the minimal cardinality of anε-cover for A. (If there is no such finite
cover then it is defined to be∞.) Nd(ε, A) is sometimes referred to as theε-covering
numberof A.

3. A ⊆ E is ε-separatedif, for any distincta, b ∈ A, d(a, b) > ε.
4. Md(ε, A) is the maximal size of anε-separated subset ofA. Md(ε, A) is sometimes

referred to as theε-capacityor theε-entropyof A.

Theε-covering numbers andε-capacities are closely related. The following inequalities
can be verified (see, e.g., (Kolmogorov & Tichomirov, 1961)):

Claim 9. For every metric space(E, d), A ⊆ E andε > 0

Md(2ε, A) ≤ Nd(ε, A) ≤Md(ε, A).

Given a probability space(X,O, P), a natural pseudo-metric,dP, is induced over the set
of measurable sets: For everya, b ∈ O, dP(a, b) = P(a1b).4 We shall useNP(ε, A) to
denoteNdP (ε, A) (and similarly forM). Note thata andb are subsets in the spaceX but
are points in the induced metric space. Similarly, a set ofX subsets (e.g., a concept class)
is a subset of the induced metric space.

Benedek and Itai (1988) investigate learnability with respect to a fixed distributions. The
results of Section 4 there imply the following bounds:

Theorem 3 (Benedek & Itai (1988)). Let lPC (ε, δ) denote the number of random examples
needed for(ε, δ)—learning of a class C with respect to a probability distribution P. For
any probability space(X,O, P), any concept class C⊆ O and any positiveε andδ,

l P
C (ε, δ) ≥ log(1− δ)+ logMP(2ε,C),

l P
C (ε, δ) ≤

54

ρ
(ln 1/ρ + lnNP(ρ/2,C)),

whereρ = min(ε, δ).
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The above result reduces the assessment of the information-complexity of the learnability
of a class, under a given distributionP, to finding its covering numbers relative to the
(pseudo-) metricdP. A fundamental result of Dudley now brings us back to the VC-
dimension.

Theorem 4 (Dudley (1984)). For any measurable space(X,O) and any class B⊆ O,

inf{w : for any finite subset A, ‖{b∩ A : b ∈ B}‖ = O(‖A‖w)}
= inf

{
w : sup

P
{NP(ε, B)} = O(ε−w)

}
,

wheresupP denotes the supremum over all probability distributions over(X,O).

The connection of Dudley’s theorem to the VC-dimension goes through Sauer’s lemma
(Sauer, 1972). The lemma implies that, for every classB of sets,‖{b ∩ A : b ∈ B}‖ =
O(‖A‖VCdim(B)). Furthermore, there exist classes for whichVCdim(B) is the minimal
exponent satisfying this equation (for example, this is the case whenX is infinite andB is
the class of all subsets ofX of some fixed finite cardinalityd). Consequently, the theorem
implies that, for a classB having dimensiond, (1/ε)d is an upper bound on itsε-covering
numbers relative to any distribution, and that there exist classes and distributions that give
rise to covering numbers that are arbitrarily close to this function ofε.

Wishing to establish lower bounds on the difficulty of learning under some fixed dis-
tribution, we shall have to show that for the classes we care about, the covering numbers
relative to this distribution approach the upper bound stated by the theorem.

4.2. The covering numbers may approach the VC-dimension limit
even for a uniform distribution

One should note that if a classB has a finite VC-dimensiond, then, there always exists a
probability distribution,P, such that forε = 1/d, NP(ε, B) = 2d (which is of the same
order of magnitude as Dudley’s upper bound). To establish this claim just pick a set of size
d that is shattered byB and letP be the uniform distribution over this set.

The interesting questions are to show that such ‘maximum capacity’ behavior can be
attained for arbitrarily smallε’s and, maybe more important, to demonstrate such behavior
relative to natural distributions.

The first probability measure that comes to one’s mind, when considering a bounded
region of a Euclidean space, is the uniform distribution over that region. Clearly, many
classes in such a space may have much lower capacities than the bounds derived from
their VC-dimension. For example, classes of finite (and co-finite) sets may have arbitrarily
large VC-dimension, yet theirε-capacity (with respect to the pseudo-metric induced by the
uniform distribution) is just 1, for anyε > 0. We wish to set forth the thesis that, as long as
the classes under consideration are natural classes of geometric objects, the bounds derived
from the combinatorial considerations are indeed matched by theε-capacities under the
uniform distribution. Given the vagueness of the notion of a ‘natural class of geometric
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objects’ we settle for demonstrating the above claim through various examples of such
classes.

Let C(n, d) denote
∑d

i=0(
n
i ). Sauer’s lemma (Sauer, 1972) states that, for any classB

having VC-dimensiond, C(n, d) is an upper bound on the cardinality of5B(A)(= {b∩ A :
b ∈ B}) for sets A of cardinality n, and is the minimal such upper bound. Note that
d = inf{w : C(n, d) = O(nw)}. It follows that Dudley’s bound is established once one
shows that, for any classB having dimensiond and for anyε > 0,M(ε, B) ≥ C(1/ε, d).

To prove his theorem, Dudley picks, for everyn, a setA of cardinalityn for which this
bound is attained. He then constructs a probability distributionP that concentrates on these
sets and gives each member of such a set equal probability weight (of about 1/|A|)). Under
such a distribution,5B(A) is ε-separated and, therefore,MP(1/|A|, B) = C(|A|, d),
meeting the upper bound of the theorem.

When one wishes to apply this idea to the uniform distribution, the setsA must be chosen
more carefully. Having no control over the distribution, our tool for giving the needed
weights to members ofA is to make sure that, with every pointx in such a set, there is an
attached neighborhoodUx such that the members ofB that participate in defining5B(A)
do not divide these neighborhoods (i.e., there existsB′ ⊆ B such that5B′(A) = 5B(A)
and, for everyb ∈ B′ andx ∈ A, eitherUx ⊆ b or Ux ∩ b = ∅). The probabilities of these
neighborhood sets, under the uniform distribution, will now play the role thatP(x)—the
probability weight of a singleton{x}—plays in Dudley’s construction ofP.

Let us demonstrate the theme discussed above by applying it to a couple of example
classes of subsets of the unit square. LetUS denote [0, 1] × [0, 1] and letU denote the
uniform distribution over it.

Claim 10. For every0< ε < 1,MU (ε,SA2
(k,2)) ≥ C(π/(4ε), k).

Proof: For anys, t ∈ R andρ > 0, let B((s, t), ρ) denote the circle{(x, y) : (x− s)2

+ (y−t)2 < ρ2}. For every 0< ε′ = 4
πε
< 1, letBε′ denote{B((i√ε′ −

√
ε′

2 , j
√
ε′ −

√
ε′

2 ),√
ε′/2) : i, j ∈ {1/ε′, 2/ε′, . . . ,1/√ε′}}. Bε′ is a set of cardinality1

ε′ = π
4ε of disjoint

circles, each having areaπ4 ε
′ = ε. (See figure 1 (left).) Every union of≤k of such circles

is a member ofSA2
(k,4), every pair of distinct such unions is at leastε apart (in the metric

dU ), and there areC(π/(4ε), k) such distinct unions. 2

Repeating the proof of the previous claim, replacing the sets of circlesBε by the sets of

rectanglesRε def= {{(x, y) : i
√
ε < x < (i + 1)

√
ε ; j
√
ε < y < ( j + 1)

√
ε} : i, j = 0, 1,

2, . . . , 1√
ε
− 1}, one readily gets:

Claim 11. For every0< ε < 1,MU (ε,SA2
(4k,1)) ≥ C(1/ε, k).

Using a somewhat more complicated construction this can be improved to:

Claim 12. For every0< ε < 1,MU (ε,SA2
(k,1)) ≥ C(1/2ε, k).
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Figure 1. Constructing the metric space required for proving claims 10 and 12. In the left figure, a concept is a
union ofk circles (say the 4 darkened ones) and corresponds to a point in the metric space. Similarly, in the right
figure a concept is a union ofk triangles.

Proof: For anyk ∈ N and 0< ε < 1, define a set of functions

2ε
k = {θ : {2i ε : 0≤ i ≤ 1/2ε} → {0, 1} : θ assumes the value 1 at mostk times}.

For any such functionθ , let pθ be the polygonal object obtained by successively connecting,
by linear segments, the points(2i ε, θ(2i ε)). Define a class

P(ε,k) def= { p̂θ : θ ∈ 2ε
k

}
.

Recall thatp̂θ denotes{(x, y) : y < pθ (x)}, i.e., any member ofP(ε,k) is determined by a
polygonal objectpθ that is obtained by assigning values 0 or 1 to reals that are multiples
of 1/2ε and connecting the resulting points of the plan by linear segments. (See figure 1
(right).) Furthermore, all thepθ definingP(ε,k) have at mostk many 1’s. Note that, for every
ε andk there existC(1/2ε, k)—many such functionsθ and each classP(ε,k) is ε-separated.

2

So far, we have established lower bounds on the covering numbers of classes defined
by combinations of linear segments or quadratic functions. Our next result pushes the
ideas employed above to obtain similar bounds for classes whose members are sets defined
by single polynomials. The idea is to replace the polygonal objectspθ by interpolating
polynomials.

Claim 13. For every integer m and every1/m < ε < 1,MU (ε, B2
m) ≥ C(1/3ε,m).

(Note that, as B2
m ⊂ SA2

(1,m), this bound applies also to SA2
(1,m).)
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Proof (sketch): Given anym andε, we repeat the construction of the classesP(ε,m) but
replace the polygonal objectspθ by their interpolations via polynomials of degreem. 2

4.3. Localization and identification under the uniform distribution

The significance of these results to our discussion stems from their comparison to the upper
bounds of Section 3 on the VC-dimensions of corresponding classes of images. Consider a
student who is trying to learn by viewing labeled examples drawn independently according
to the uniform distribution on the unit square. We compare the information complexity (i.e.,
the number of labeled examples needed) of two types of tasks: the task ofidentification, in
which all the student knows are the parameters(k,m) of the semi-algebraic class to which
the target object belongs, and the task oflocalizationin which he knows that the target is a
transformed image of some given objectV .

Combining the results of this section with the lower bound of Theorem 3, we get the
following lower bounds on the information complexity of the task ofidentification: For
C = SA2

(k,2) or SA2
(k,1) and, whenε > 1/k, also forC = SA2

(1,k),

l U
C (ε, δ) ≥ k log(1/ε)+ log(1− δ).

On the other hand, for the task oflocalizationof any objectV ∈ SA2
(k,m) under the class of

all affine transformations, the basic distribution-free upper bound of Blumer et al. (1989),
combined with our results of Section 3 yields:

l U
C (ε, δ) ≤ max

{
log(km)

48

ε
log

13

ε
,

4

ε
log

2

δ

}
.

5. The implications on the shape recognition problem

Consider a student who is trying to learn by viewing labeled examples drawn independently
according to some distribution on the unit square. We compare the information complexity
(i.e., the number of labeled examples needed) of two types of tasks: the task ofidentification,
in which all the student knows are the parameters(k,m) of the semi-algebraic class to which
the target object belongs, and the task ofrecognitionin which he knows that the target is a
transformed image of some given objectV .

Combining the results of Section 2 with the lower bound of Blumer et al. (1989), implies
that for some ‘unfortunate’ sampling distribution the student will need a large, number of
samples, proportional tokm2, to identify a semi-algebraic object of degree(k,m) up to a
prediction error ofε.

The results of the last section strengthen this conclusion and imply that this difficulty
is not due to some ‘peculiar’ distribution but exists also when the sampling distribution is
uniform. Our results, combined with Theorem 3, imply that the number of samples needed
for identificationis at least proportional tok. We conjecture here that this bound is not tight
and thatidentificationof semi-algebraic sets under the uniform distribution is as hard as
identificationunder arbitrary distribution.
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On the other hand, for the task oflocalizationof any objectV ∈ SA2
(k,m) under the classes

of Affine, Euclidean and Similarity transformations, the basic distribution-free upper bound
of Blumer et al. (1989), combined with our results of Section 3 implies that, asymptoti-
cally, the number of samples needed is not more thanα log(km) whereα is 2, 4, 5 or 6,
for Translation, Euclidean, Similarity and Affine transformation, respectively. This is, of
course, much smaller than the number of samples required foridentification.

Note, however, that the actual VC-dimension of such classes may be even lower than these
logarithmic bounds. This is the case for, e.g., the class of translations of convex polygonal
objects: Even though the number of sides may be arbitrarily large, the VC-dimension is
only three (Pach & Woeginger, 1990). We conjecture here that the true VC-dimension
of more general classes of images will be indeed logarithmic in the complexity of the
object.

The ability to make the good hypotheses that achieve a small prediction error may be
tied to the ability to localize the object within certain precision, by constructing the fol-
lowing mapping between thelocalization imprecision and the maximal prediction error
associated with it: For any (known or bounded) sampling distribution, and any metric used
to measure thelocalization error, one may consider all pairs of object instances whose
localization error is above a certain thresholdd0, and find a lower bound on the asso-
ciated distribution-weighted symmetric differences. A successful learning procedure that
results in prediction error smaller than this bound implies that the error in the location of
the object is smaller thand0. Such a procedure was suggested and used in (Lindenbaum,
1995) to set bounds on the probability of achieving several recognition tasks for specific
objects.
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Notes

1. In the field of computer vision, the term ‘recognition’, or ‘model-based recognition’ refers toidentification
from a library that is generated by transforming a finite number of base objects.

2. Dudley (1984) defines a collection of sets{A1, A2, . . . , AN} to be independent, if for every functionθ :
{1, . . . , N} → {−1, 1}, the intersection,

⋂N
i=1 Aθ(i )i , is nonempty. With this notation the above claim says that

the class of images,CT (V), shatters a setS⊆ Rn iff {K V
xi
| xi ∈ S} is an independent set.

3. Such bounds can be deduced also from the results obtained by the independent work of Goldberg and Jerrum
(1995), which was first published together with our work (Ben-David & Lindenbaum, 1993) and was discovered
even before (Goldberg, 1992). Their work considers concept classes specified by logic formula or algorithm
and characterizes a wide set of concept classes, associated with polynomial VC-dimension. Their technique
is similar to ours except that they do not use the parameter space directly as we do and use more recent, and
sometimes tighter, bounds derived by Waren, instead of the bounds by Milnor we use.

4. a1 b denotes the symmetric difference between the two subsets,a andb, and is the set(a ∩ b̄) ∪ (b∩ ā).
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