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Abstract—Magnetic field localization utilizes position depen-
dent and time persistent distortions of the earth magnetic field.
These distortions are introduced by stationary ferromagnetic
material in the environment and can be stored in a map to
enable localization. Estimating the position of a magnetometer
with these distortions requires a calibration of the sensor to
enable the matching of the measurements to the map. Typically,
the calibration is performed in a prior step and requires specific
maneuvers like sensor rotations in a homogenous field. The
goal of the maneuvers is to render the calibration parameters
observable. For heavy platforms, e.g., cars, trains and driverless
transport systems in factories, performing special maneuvers is
cumbersome or even impossible. In addition they operate in an
environment with an inhomogeneous magnetic field. To address
this issue, this paper proposes a novel method that exploits the
magnetic field distortions to render the calibration parameters
observable. To simplify the calibration process, the calibration
parameters are estimated simultaneously with the position of the
platform. The method employs a Rao-Blackwellized particle filter
that reduces the computational complexity and enables real time
processing. The feasibility of the method is shown in an evaluation
with measurements of a magnetometer mounted on a model train.
The results show a high accuracy of the position and calibration
parameter estimation.

Index Terms—Magnetometer calibration, magnetic field local-
ization, Rao-Blackwellized particle filtering

I. INTRODUCTION

ROBUST and accurate localization is important for the au-

tomation of traffic and logistics and therefore an integral

part of smart cities. Nevertheless, providing localization in all

relevant environments is still a challenge. Even outside, where

global navigation satellite systems (GNSS), e.g., GPS and

Galileo can be received, the availability and accuracy of the

obtained position is often degraded due to shadowing and mul-

tipath propagation. To achieve a high availability it is therefore

vital to combine GNSS with other sensors. Typical sensors

combined with GNSS are inertial measurement units (IMUs)

and odometers. Both sensors only provide relative position

information with an inherent drift, which limits the time for

which high position accuracy can be maintained during GNSS

outages. For indoor environments the situation is even more

challenging because GNSS signals are completely blocked.

Hence, many possible alternatives are discussed where the

usability of the different approaches depends on the user. For

Benjamin Siebler and Stephan Sand are with the German Aerospace Center
(DLR), Wessling, Bavaria 82234 Germany (e-mail: benjamin.siebler@dlr.de
and stephan.sand@dlr.de).

Uwe D. Hanebeck is with the Karlsruhe Institute of Technology (KIT) Intel-
ligent Sensor-Actuator-Systems Laboratory, Karlsruhe, Baden-Wuerttemberg
76021 Germany (e-mail: uwe.hanebeck@kit.edu).

Manuscript received Month Day, Year; revised Month Day, Year.

a pedestrian using IMUs attached to the body is a popular

approach. To limit the drift the IMUs are regularly recalibrated

during certain phases of the pedestrian’s movement cycle [1].

Another popular approach, applicable not only to pedestrians,

is the use of signals of opportunity (SoO). SoO are signals

that can be used for but are not dedicated to localization.

Examples of such signals are radio signals from communi-

cations equipment, e.g., Wi-Fi access points. A variety of

methods for SoO localization using different measurement

methods like received signal strength fingerprints or time delay

measurement are considered [2] and are sometimes combined

with simultaneous localization and mapping (SLAM) methods

[3] to additionally estimate the position of the signal sources.

In this paper, the focus is on localization with local distortions

of the earth magnetic field, which can be considered as a SoO.

In buildings, steel reinforced concrete and steel beams create

a strongly varying magnetic field suitable for localization [4].

On roads and railway tracks, the distortions are caused, e.g.,

by buildings, and lamp and traffic light posts. The feasibility of

magnetic localization has been shown indoors for pedestrians

and wheeled robots and outdoors for cars, airplanes, and

trains [5]–[17]. In [18], [19] we proposed two algorithms for

magnetic field based train localization. In accordance with

the before mentioned literature, we implicitly assumed cali-

brated magnetometers. This guarantees that the magnetometer

measurements fit to the values in the map. In practice, the

calibration of magnetometers in a train, or for heavy platforms

in general, is not easily obtained. Standard calibration methods

require the sensor and the platform, on which it is mounted,

to rotate in a homogenous magnetic field [20]–[24]. In [12],

the authors calibrate the magnetometers mounted in a car by

driving circles in a homogenous field and then applying a

modified ellipsoid fitting technique. Due to the limited degrees

of freedom during the calibration maneuvers the parameters of

the vertical axis are not observable. An alternative is to apply

a known but varying magnetic field on the platform and the

sensor. Both possibilities are cumbersome to use when the

platforms have a large size or mass.

We therefore propose a novel method allowing the estima-

tion of all calibration parameters. Instead of rotating the sensor

in a homogenous field, the magnetometer moves through an in-

homogeneous magnetic field that is known from a map. When

the distortions excite the sensor sufficiently all parameters

are observable. However, to know the current magnetic field

value, the platform position must be known and to estimate the

position from the magnetic field, the calibration is required.

To address this issue, a joint estimation problem is formulated

and solved with a Rao-Blackwellized particle filter.
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II. SENSOR CALIBRATION

In this section the sensor calibration model is introduced

and it is shown how an inhomogeneous magnetic field can be

used to estimate the calibration parameters.

A. Sensor Model

An ideal calibration removes the effects from surrounding

material on the magnetometer measurements. The calibration

can be considered as a function that maps the true magnetic

vector field in the navigation frame zn ∈ R
3, e.g., the earth

magnetic field, to the magentic field in the sensors body frame

zb ∈ R
3 that is measured with a magnetometer triad. A

common approach is to assume a linear model, e.g., [20]–

[24]. The linear model considers two effects due to material

in the vicinity of the sensor

• Hard iron effects that introduce a constant offset due to

a constant magnetization.

• Soft iron effects that rotate and scale external fields

applied to the sensor.

In addition the sensor hardware potentially contains errors that

are also covered by a linear model

• Non-orthogonality of the sensor axes.

• Scale-errors due to different gains for each axis.

• Offsets leading to constant nonzero measurements in the

absence of an external field.

Combining the different effects and errors lead to the linear

model

zb = MscaleMno

(
MsoftR

b
n(t)z

n + bhard

)
+ bo + n (1)

where the matrices Mscale, Mno, Msoft and Rb
n(t) account for

the scaling and non-orthogonality of the axes, the rotation and

scaling due to soft iron effects, and the rotation between sensor

and navigation frame. The vectors bhard and bo are the offsets

due to hard iron effects and the sensor errors. The last term

in (1) is the measurement noise n.

For calibration, we assume that only the rotation matrix

Rb
n(t) is time-variant due to the changing attitude of the

platform on which the sensors are mounted. For calibration

it is not necessary to estimate every part of (1) separately and

therefore the model can be simplified to

zb = CRb
n(t)z

n + b+ n. (2)

During calibration the sensor is usually rotated. Furthermore,

a known sensor attitude Rb
n(t) and magnetic field vector

zn is assumed to estimate the calibration parameters. For a

perfectly calibrated sensor that is rotated in a homogenous field

the measurements describe a sphere with radius equal to the

magnitude of the homogenous field. In contrast, measurements

of an uncalibrated sensors form an ellipsoid. The calibration

therefore maps an ellipsoid to a sphere. Since Rb
n(t) is often

unknown, the calibration can also be performed only with the

magnitude of magnetometer measurement ||zb||. If only the

magnitude is used for calibration, the calibration contains a

non-observable rotation. This is because the only knowledge

used in the calibration is that measurements lie on the surface

of a sphere with a certain radius. A multiplication of the

calibrated measurements with an arbitrary rotation still results

in a sphere and therefore is still a valid calibration.

B. Sensor Calibration with Known Magnetic Field

When it is not possible to rotate the platform the observabil-

ity of the calibration parameters must be ensured by changing

the external magnetic field, e.g., by moving the sensor in an

inhomogeneous but known magnetic field. In contrast to other

calibration approaches, the primary goal in this paper is not

to calibrate the sensor so that it measures the true magnetic

field and its physical dimension. Instead the goal is to calibrate

the sensor with respect to the magnetic field stored in a map.

The map itself can be recorded with an uncalibrated sensor.

This is possible because the calibration model is linear and

therefore the composition of models is again linear. So our

calibration can be described basically as a relative calibration

that enables us to use uncalibrated sensors to record a map

and then calibrate every other magnetometer relative to that

map. By not trying to find the true magnetic field, the whole

mapping and localization process is simplified. This is not a

limitation of the approach because if the map contains the

true physical magnetic field also the calibration can be used

to obtain measurements with the correct physical dimensions.

The success of this approach strongly depends on the magnetic

field, which the magnetometer measures during its movement.

When there are too little distortions, the model parameters are

not observable. This issue will be discussed in more detail in

the following.

If the platform attitude and position is known the estimation

of the parameters in (2) is trivial because for each measure-

ment zb the counterpart zn is known from the map and the

estimation problem becomes linear. This can be seen from

writing (2) as a function of the calibration parameter vector θ

zb = h(zn)θ + n, (3)

with the measurement function h(·)
h(zn) =

[
I3×3 ⊗ znT I3×3

]
(4)

and

θ =
[
c1 c2 c3 bT

]T
, (5)

where I3×3 is the three dimensional identity matrix, ⊗ the

Kronecker product, and ci is the i-th row of matrix C. To

be able to estimate θ in (3) at least four measurements of a

magnetometer triad are required. The simplest way to estimate

θ is to stack all Nz available magnetometer measurements into

a single measurement vector of the dimension 3 ·Nz×1. This

results in the system of linear equations





zb1
...

zbNz




 =






h(zn1)
...

h(znNz

)






︸ ︷︷ ︸

D

θ +






n1

...

nNz




 . (6)

Assuming white Gaussian measurement noise the maximum

likelihood estimate of (6) is found by a, possibly weighted,

least-squares estimator (LSE). The pseudo inverse of the
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design matrix D for the LSE only exists when at least

four linearly independent measurements are available. In the

presence of noise the achievable accuracy strongly depends on

the collinearity of the data in the design matrix. If the data has

strong correlations the accuracy will be low. This is the case,

e.g., when the platform does not move considerably during the

time the measurements are recorded.

When the position and attitude is known linear filter al-

gorithms like the well known Kalman filter can be used as

an alternative to the LSE to estimate the parameters. This is

particularly helpful when the estimation is performed online

in a recursive manner. The Kalman filter requires in addition

to the measurement function (3) a model for the temporal

evolution of the parameters θ. Assuming almost constant

calibration parameters, the temporal behavior can be described

by a time discrete random walk

θk = θk−1 +wθ
k−1 (7)

where the index k represents the discrete time step and

wθ
k is a small Gaussian process noise. The Kalman filter

intrinsically accounts for the observability of the parameters.

If the measurements are correlated and the Kalman filter is

not already converged, the state covariance is large indicating

large uncertainty in the estimation and vice versa. The Kalman

filter not only accounts for the observability but also gives the

lowest possible estimation error. This can be seen from its

relation to the posterior Cramér-Rao lower bound (PCRLB).

The PCRLB is a lower bound on the mean-square-error and

therefore limits the performance of any Bayesian estimator

[25]. Furthermore, the PCRLB can be seen as a soft metric

for the observability of a dynamic system. For a linear system

with additive Gaussian noise the Kalman filter is unbiased

and exactly attains the bound and therefor the state covariance

matrix is equal to the bound [25]. This property of the Kalman

filter is important for the proposed simultaneous localization

and calibration filter because in the update step the uncertainty

of the estimated parameters is required.

III. SIMULTANEOUS LOCALIZATION AND SENSOR

CALIBRATION

The concept of particle filter based magnetic localization

was already introduced, e.g., in [9], [13], [19]. For simplifica-

tion, the sensors were calibrated beforehand or the map was

recorded with the same setup that was used for localization

rendering calibration unnecessary. In this section, the particle

filter for localization is extended to simultaneously estimate

the magnetometer calibration parameters based only on a map

of the magnetic field and the magnetometer measurements.

A. Problem Definition

The map of the magnetic field m(·) is a function that

maps the position of the sensor to the magnetic vector at that

position. With the map the state space model for the estimation

problem can be formulated. All states regarding the translatory

dynamics of the platform are lumped together in the vector

dk which at least contains the position and depending on the

motion model also the speed and acceleration of the platform.

The attitude is represented by the vector qk that can be

adapted depending on the degree of freedom of the platform.

For 2-D applications it might only contain the heading and

for 3-D applications in addition pitch and roll angles. The

vectors dk and qk form the pose pk =
[
dT
k qT

k

]T
of the

platform. Besides pk also the calibration parameter vector θk

is estimated. The combined state therefore is

xk =
[

dT
k qT

k θ
T
k

]T
=

[

pT
k θ

T
k

]T
. (8)

The generic state space model for the estimation problem is

given by

xk =

[
f(pk−1,w

p
k−1

)
θk−1 +wθ

k−1

]

(9)

zbk = Rb
n(qk) h(m(dk))θk + nk (10)

with the system function f(·), the measurement function h(·)
from (4) and the process noise of the pose w

p
k and parameters

wθ
k. The pose movement and attitude model f(·) is not limited

to linear functions. For simplicity, the process noise follows the

Gaussian distributions w
p
k ∼ N (0,Qp) and wθ

k ∼ N (0,Qθ).
The choice of the pose noise covariance Qp depends on the

dynamics of the platform and must be chosen accordingly.

The variance of the parameters is treated as a tuning factor.

Theoretically the variance should be zero since the parameters

are assumed constant but using a nonzero value enables the

control of the convergence speed and the steady state behavior

of the Kalman filter. A nonzero value also can be beneficial

when the parameters slowly change over time, e.g., due to a

temperature drift in the magnetometer. For the measurements

additive white Gaussian noise nk ∼ N (0,Rk) is assumed.

The goal of the filter design is to obtain at each time step

k a point estimate of the state vector (8) conditioned on the

complete measurement history

zb1:k =
[

zb1
T · · · zbk

T
]T

. (11)

To achieve this, the full posterior of x is estimated. From the

posterior it is then possible to obtain different point estimates

like the minimum mean-square error estimate (MMSEE) or

the maximum a posteriori estimate.

B. Particle Filter for Localization and Calibration

The estimation of the posterior density is performed with

a recursive Bayesian filter that is able to perform this task

in real time. The closed-form analytical computation of the

posterior is only feasible for a small class of system models

like linear Gaussian systems. For these systems, the Kalman

filter estimates the posterior efficiently. For nonlinear systems,

a numerical approximation is required in most cases. For

the particular estimation problem in this paper, the nonlin-

earities are due to the magnetic field map that is part of

the measurement model and possibly the pose system model.

Therefore, the posterior probability density function (PDF) is

approximated with a particle cloud that represents the posterior

with a set of Np weighted particles, where each particle xi
0:k

with i ∈ {1, . . . , Np} represents a state trajectory hypothesis
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for the time steps 0 to k. This results in a Dirac mixture density

p(x0:k|zb1:k,m) =

Np∑

i=1

wi
kδxi

0:k
(x0:k), (12)

where δ is the Dirac measure

δxi
0:k

(x0:k) =

{

1, if x0:k = xi
0:k

0, otherwise
(13)

and wi
k ≥ 0 the positive and normalized particle weights that

sum up to one

Np∑

i=1

wi
k = 1. (14)

The particle filter is a generic filter that theoretically can

handle all kinds of nonlinearities and the result converges

to the true posterior when the number of particles goes to

infinity. In reality the number of particles are constrained by

the memory size, computational resources and time constraints

in real time applications. To keep the number of particles small

it is vital to also keep the state dimension small because a

particle filter has to sample the whole state space. A higher

state dimension therefore requires more particles to maintain

the same particle density in each dimension. This is often

called the curse of dimensionality. If the density is too low

the posterior is not well represented and the filter most likely

will diverge. For the state vector x in (8) the dimension is

dim(p)+12. The minimum dimension is therefore 13 when a

1-D position, e.g., of a train on a railway track is considered.

Thus, for the case of only ten particles per dimension already

1013 particles would be required. This amount cannot be

processed in real time with a reasonable update rate and

memory requirement. To reduce the computational burden the

structure of the problem is exploited. The problem contains

linear substructures that can be estimated by a Kalman filter

and therefore do not have to be sampled. This concept is

known under different names like marginalized particle filter

[26] or Rao-Blackwellized particle filter [27] and is useful

for many nonlinear estimation problems which obey a certain

structure. One popular example is the FastSLAM algorithm

[28] for SLAM applications with many landmarks. In a

marginalized particle filter the state vector x is decomposed

into two parts xnl and xl. The decomposition requires that

the state space model of xl conditioned on the measurements

and xnl is linear and therefore analytically tractable. With the

decomposed state the posterior density becomes

p(xl
k,x

nl
0:k|zb1:k,m)=p(xl

k|xnl
0:k, z

b
1:k,m)

︸ ︷︷ ︸

linear

p(xnl
0:k|zb1:k,m). (15)

In (15) only the nonlinear part p(xnl
0:k|zb1:k,m) has to be

estimated with a particle filter. This reduces the sampled state

space from dim(xl) + dim(xnl) to dim(xnl). For the linear

part, only the filter density at time step k is estimated. For

the estimation problem under consideration, the linear part xl

of the state vector x in (8) is the parameter vector θ and the

nonlinear parts is p. The posterior therefore becomes

p(p0:k,θk|zb1:k,m)=p(θk|p0:k, z
b
1:k,m)

︸ ︷︷ ︸

Kalman filter

p(p0:k|zb1:k,m)
︸ ︷︷ ︸

particle filter

, (16)

where the Kalman filter estimates of the calibration parameters

are based on the linear model (7) and (10). In the following

we will drop the map m(·) and the superscript b for the

measurements to simplify the notation. The particle filter used

in this paper is a sampling importance resampling (SIR) filter

[29]. In the SIR filter the importance density, from which the

samples of p are drawn, is the one step prediction density

p(pk|pk-1) which simplifies the weight update in the filter to

wi
k ∝ wi

k−1p(zk|pi
0:k, z1:k-1). (17)

The evaluation of the likelihood in (17) is not directly possible

because equation (10) is not defined without the parameter

vector θ. Therefore, the likelihood is related to the parameter

vector with a marginalization [30]

p(zk|pi
0:k, z1:k-1) =

∫

p(zk|pi
0:k, z1:k-1,θk)×

p(θk|pi
0:k, z1:k-1)dθk. (18)

In (18) the PDF p(θk|pi
0:k, z0:k-1) is the prior Gaussian

distribution of the parameters at time step k predicted by the

Kalman filter based on the trajectory of the i-th particle

p(θk|pi
0:k, z1:k-1) = N (θi

k-1,P
i
k-1 +Qθ). (19)

In (19) the covariance matrix Pi
k = Pi

k-1+Qθ is the predicted

state covariance of the Kalman filter and θk-1 is the predicted

parameter vector which is equal to the posterior mean of the

previous step due to the random walk assumption in (7). The

integral in (18) is therefore a convolution of the Gaussian

prior PDF of the parameters with the Gaussian likelihood

p(zk|pi
0:k, z1:k-1,θk) which results in

p(zk|pi
0:k, z1:k-1)=N

(
zk;H

i
kθ

i
k-1,Σ

i
k

)
(20)

with Hi
k = Rb

n(q
i
k) h(m(di

k)) and the covariance matrix

Σi
k = Rk +Hi

kP
i
kH

i
k

T
. (21)

The convolution of the two Gaussian distributions in (18)

therefore is a Gaussian distribution where the measurement

and parameter uncertainties are added up [30]. This means that

the degree of observability of the parameter vector is included

in the weight update by the state covariance matrix Pi
k of

the Kalman filter. Algorithm 1 shows the pseudo code of one

iteration of the marginalized particle filter in detail.

IV. EVALUATION

The feasibility of the proposed approach is shown for a

platform following a fixed trajectory, e.g., a train on a track

[19] or a path following platform encountered in factories.

This example is particular interesting because even partial

calibration by driving a specific maneuver like in [13] is not

possible.
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Algorithm 1: Particle Filter for Localization and Calibration

1: for all particles i do

2: wi
k−1 ∼ N (0,Qp) ⊲ Sample process noise

3: pi
k = f(pi

k−1,w
i
k−1) ⊲ Particle filter time update

4: Pi
k = Pi

k−1 +Qθ ⊲ Kalman covariance time update

5: Hi
k = Rb

n(q
i
k) h(m(di

k))

6: Σi
k = Rk +Hi

kP
i
kH

i
k

T

7: zik = Hi
kθ

i
k−1

8: w̃i
k = wi

k−1 · N
(
zk; z

i
k,Σ

i
k

)
⊲ Weight update

9: Ki
k = Pi

kH
i
k

T
Σi

k

−1

10: θ
i
k = θ

i
k−1 +Ki

k(zk − zik) ⊲ Kalman state update

11: Pi
k = Pi

k −Ki
kΣ

i
kK

i
k

T
⊲ Kalman covariance update

12: end for

13: wi
k = w̃i

k/
∑

w̃i
k ⊲ Normalize all weights

14: Neff ← 1/
∑

wi
k

2

15: if Neff < NT then ⊲ Resample if necessary

16: Resample and assign equal weights

17: end if

Magnetometer Raspberry Pi
and battery

Fig. 1. Train track and the model train used to record the measurements. The
track has an length of ≈ 17m. The first wagon of the model train carries a
Raspberry Pi and a battery. On the second wagon the magnetometer triad is
mounted.

A. Measurement Setup

For the evaluation, experiments with a model train in a

laboratory were conducted. The model train was equipped

with an Xsens MTi-G-700 IMU containing a triad of mag-

netometers. The magnetometers have a resolution and noise

density of 19.53 nT and 20 nT/
√
Hz which is comparable to

typical low-cost sensors. The measurements were recorded at

a rate of 100Hz. The track of the model train is placed on

the laboratory floor as can be seen in Fig. 1 and has a length

of about 17m. The model train consists of a traction unit and

two wagons. On the first wagon a Raspberry Pi logging the

magnetometer data, a battery and a Wi-Fi module is installed.

On the second wagon only the sensor is mounted. Additionally,

a notebook computer logs the ground truth position of the

sensor with a rate of 100Hz. The ground truth is obtained from

an optical Vicon tracking system with sub-centimeter accuracy.

The wagon itself is plastic and therefore has no influence

on the calibration. To evaluate the calibration, ferromagnetic

material was mounted on the wagon as shown in Fig. 2. First,

a steal plate with nuts was placed below the sensor and then

successively screws were added to all sides and finally a

Reflector ball Magnetometer

Steel plateNut

(a)

(b)

(c)

(d)

Fig. 2. Wagon that carries the sensor, a steel plate and an assembly of nuts.
On the corner six infrared reflector balls are placed for position tracking with
the Vicon system. (a) In the first setup the sensor is mounted on a steel plate
with nuts on it. (b) In the second setup on two sides of the sensor steel
screws are added. (c) In the third setup the sensor was completely surrounded
by screws. (d) In the last setup in addition a steel plate was mounted on top
of the screws.

second steel plate was placed on top of the screws. In total

we measured with four different setups: sensor on steel plate,

sensor on steel plate with screws on two, and four sides and

the last setup contains screws on all sides and a second steel

plate on top. During the measurements the train was driving

with ≈ 1m/s, which was the highest speed possible.

B. Filter Implementation

When the platform, here a train, moves on a known trajec-

tory or track, it is useful to use this knowledge directly in the

estimation to reduce the dimension of the state space and thus

reducing the computational complexity. In the following the

used coordinate system and state space model is introduced.

1) Track Coordinates: The train can only move along a spe-

cific track. The position of the train therefore can be described

relative to the track. Formally the position is uniquely defined

with the tuple (s, ntrack) containing the one dimensional along-
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track position s ∈ R+ on track ntrack ∈ N. If there is only

one track s alone is already unique. Position s is defined by

the length of the track between the current train position and

the starting point of the track. The track is assumed to be

known, which is a reasonable assumption because trains and

path following robots move on a predefined series of tracks.

2) State Space Model: The platform motion model is set

to a piecewise constant Wiener acceleration model according

to [31]. The state vector is

pk =
[
sk ṡk s̈k

]T
(22)

and the system equations are

pk =





1 T 1

2
T 2

0 1 T
0 0 1



pk-1 +w
p
k (23)

with the time discrete covariance matrix of the process noise

Qk =






1

4
T 4 1

2
T 3 1

2
T 2

1

2
T 3 T 2 T

1

2
T 2 T 1




σ2

w. (24)

In (24) σw has to be chosen depending on the maximum

acceleration of the platform. A rule of thumb can be found

in [31]. In principle it would be possible to also estimate the

orientation of the magnetometer in relation to the track [19].

Here the orientation was assumed to be known to simplify the

measurement model to

zk = h(m(sk))θk + nk. (25)

C. Alternating Magnetic Field from Power Line

The model train is powered with 230V AC at 50Hz over

a transformer that reduces the voltage to 16V. This voltage

is applied to the track. Depending on the current that the

engine requires, a magnetic field alternating with the 50Hz
frequency of the voltage is induced. Since the alternating

field is not location dependent, this signal can be seen as a

disturbance that negatively affects the estimation. To remove

this noise a simple moving average low-pass filter was applied

that averages over the last two samples obtained from the

magnetometer. This was possible because the frequency of the

observed static magnetic field is well below 50Hz due to the

low train speed. If this is not the case but the frequency of the

disturbance is known a band-stop filter can be used instead or

the amplitude and phase of the disturbance can be estimated

in the particle filter.

D. Start Detector

When the calibration parameters are not already estimated

the particle filter can diverge when the train is not running.

This is due to the limited number of particles and the fact that

in standstill no particle can estimate meaningful calibration

parameters due to a lack of observability. To avoid this

behavior a detector was implemented to detect when the train

starts to drive based on the magnetometer measurements. The

detector uses the well known cumulative sum algorithm [32]

that detects abrupt changes in the mean of a sequence of

measurements.

E. Map Creation

The evaluation of the map is performed for each particle and

every measurement (Algorithm 1 Line 5) and hence should

have a low complexity. In the evaluation therefore the map

is reduced to an array containing only the magnetic field at

discrete positions. The spacing of the along-track positions

is ∆s = 1 cm. The access to the map is performed with an

index calculation is = round( s
∆s

) and a look-up in the array.

For the evaluation the map was extended to contain the 3-D

positions of the discrete along-track positions. This simplifies

the calculation of the position error. The actual map creation

uses multiple runs over the track and consists of two steps.

First, for each measured magnetic field vector the position

provided by the Vicon system is matched to the closest discrete

along track position. Second, a kernel regression is performed

to ensure a smooth map and to remove noise from the sensor

and the 50Hz power supply.

In this example the mapping process was straightforward

due to the availability of the ground truth positions. To obtain

such a map in practice one can use SLAM methods [11]

or a reference platform with additional sensors like lidars,

cameras, IMUs and odometers. The benefit of the proposed

approach is that due to the simultaneous calibration the map

has to be created only once and then can be used by multiple

platforms equipped only with low-cost magnetometers. The

map itself will be subject to changes over time due to a

slowly changing earth magnetic field [33] and changes in the

environment, e.g., due to construction work. While the changes

in the earth magnetic field in one year are relatively small,

typically below 1%, compared to the static variations observed

in our lab and railway measurements [17], the changes due to

the environment can be severe and hence require an update

of the map. Temporal changes or distortions in the magnetic

field caused, e.g., by power lines have to be accounted for in

the localization algorithm by filtering specific frequencies or

by robust estimation filters [34].

F. Results

In the evaluation a total of 16 combinations of maps and

datasets were processed. To get the 16 combinations, four

maps were created with the measurements of the different

setups in Fig. 2 and the corresponding ground truth positions.

Each dataset was then used for estimating the position and

calibration based on the four maps. The magnetic field in

each map is different due to the different calibration param-

eters caused by the different setups. Therefore the estimated

parameters of the 16 combinations are also different. Since the

particle filter is a stochastic filter, 100 Monte-Carlo runs for

each of the combinations were performed to verify that the

results are stable. The number of particles was set to 5000,

which allowed the filter to run in real time on a notebook

processor. The positions of the initial particles are placed

equidistant within a 3m interval around the ground truth

position. The initial speed and acceleration is sampled from
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TABLE I
ENERGY AND VARIANCE OF THE DATASETS

dataset 1 dataset 2 dataset 3 dataset 4

Variance 0.266 0.211 0.184 0.182

Energy 5022 19487 12737 11966

uniform distributions in the intervals ±1m/s and ±0.5m/s2.

The Kalman filters are initialized like the sensor is already

calibrated hence the bias vector is set to zero and the matrix C

in (2) is set to an identity matrix. The initial covariance of the

bias is 22 and for the rest of the parameters 12. The datasets

were truncated to a common duration of 4.75min after the

detection of the start to ensure comparability of the results.

During the measurements the model train was accelerating

constantly from standstill to its maximum speed and then kept

driving.

To show the accuracy of the estimated position the root-

mean-square error (RMSE) was calculated for all runs and

combinations. The RMSE is calculated from the 3-D position

ground truth and the 3-D position estimated by the particle

filter. The estimated 3-D position is obtained from a look-up

in the map at the index is = round( ŝ
∆s

) with the MMSEE ŝ
of the along-track position given by

ŝk =

Np∑

i=1

wi
ks

i
k. (26)

The 3-D position error ǫpos is

ǫpos =
[
δx δy δz

]T
=

[
x− x̂ y − ŷ z − ẑ

]T
(27)

with the ground truth position vector
[
x y z

]T
and the

estimated position vector
[
x̂ ŷ ẑ

]T
found from ŝ. Therefore

the RMSE is

ǭpos =

√
√
√
√ 1

K

K−1∑

k=0

(δx2
k + δy2k + δz2k) (28)

with the number of time steps K. The box plot in Fig. 3

shows the statistics of the RMSE over all Monte-Carlo runs

and the 16 combinations. The lower and upper whiskers are

the minimal and the maximal RMSE, the horizontal line in the

box is the median, and the borders of the boxes are the 25%
and 75% quantiles. The numbering of the datasets reflects the

order of the measurement setups in Fig. 2. For each data set the

different colors are the different maps where blue is the map

created with the setup in Fig. 2a, red with Fig. 2b and so on.

The results show a high accuracy of a few centimeters. Overall

the RMSE was always below 6 cm. The RMSE values of the

different maps for the same dataset are relatively close to each

other, this is a first indicator that the calibration is working

correctly. In contrast to this, a bigger difference between

different datasets can be observed. One property of the dataset

that seems to be connected to the achievable RMSE is the

variance shown in Table I. The table shows the trace of the

sample covariance matrix and the signal energy of the datasets.

dataset 1 dataset 2 dataset 3 dataset 4

2

3

4

5

·10
−2

ǭ
p
o
s
/
m

Fig. 3. Statistics of the particle filter position RMSE in meters for the 100
Monte-Carlo runs and the 16 different combinations.
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Fig. 4. (top) Absolute 3-D position error of the particle filter estimate and
standard deviation of the point cloud in meters. The example is obtained
with dataset 2 recorded with setup Fig. 2b and a map recorded with Fig. 2a.
(middle) Kalman filter estimate (29) of the diagonal elements of matrix C

from (2). The colored area is three times the estimated standard deviation
(30). (bottom) Kalman filter estimate (29) of the bias vector b from (2). The
colored area is three times the estimated standard deviation (30) .

While a higher variance of the measured magnetic field leads

to a smaller RMSE in Fig. 3, the signal energy does not show

a clear influence on the RMSE. Intuitively this is reasonably,

the signal energy accounts also for the mean and therefore the

bias. The bias increases the energy but does not contribute any

position information because it is constant for all positions.

The temporal behavior of the position error and the parameter

estimation is shown in Fig. 4 for one example. The middle and

bottom part show the estimated diagonal elements of matrix

C and the bias b of (2). The diagonal elements of C can be

interpreted as scaling factors between the map and the dataset
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when the off-diagonal elements are close to zero, which was

the case in this example. The MMSEE of the parameters θ̂

in Fig. 4 and the corresponding covariance matrix P̂k is given

by a mixture of all Kalman filter estimates and the particle

weights after the update step [35, p. 48]

θ̂k =

Np∑

i=1

wi
θ
i
k (29)

P̂k =

Np∑

i=1

wi
k

[

Pi
k +

(

θ
i
k − θ̂k

)(

θ
i
k − θ̂k

)T
]

. (30)

Note that the initial position error in the top part of Fig. 4

is close to zero because the particles are initially placed

equally spaced in a 3m interval around the true position

with equal weights. This does not mean the filter knows the

exact position as can be seen from the standard deviation of

the position that is calculated over all particles in the point

cloud. In the beginning the error increases quickly due to a

high uncertainty in the calibration parameters, indicated by

the colored areas in the middle and bottom part of Fig. 4.

When more measurements become available and the train has

moved further the calibration parameters become observable.

This reduces the estimated uncertainty in the Kalman filters

and particles on a wrong trajectory with wrongly estimated

calibration parameters are assigned low weights in the particle

filter update step and hence are not resampled. This can

be seen from the position standard deviation. The standard

deviation decreases and therefore the particle cloud shrinks

until it only spans a few centimeters around the true position.

Evaluating the quality of the magnetometer calibration is not

straightforward because the true calibration parameters are

unknown. The quality is therefore judged by how close the

calibrated map data obtained from the measurement model

(25) is to the sensor readings. In Fig. 5 the magnetic field

vector from the map before and after calibration, and the

measurements are shown. The measured magnetic field is

normalized internally by the sensor with a constant value.

According to the data sheet of the sensor manufacturer the

normalization constant is ≈ 40 µT. The magnetic field of the

map is obtained from the map and the ground truth positions.

In the beginning the calibration is not estimated properly

but after a view seconds the estimation converges towards

the correct value and the calibrated map data nicely fits to

the sensor readings. This observation is in correspondence

with Fig. 4 where we see that the calibration converged after

roughly the same time. Furthermore, a comparison of the bias

and scale factor estimates in Fig. 4 with the value in Fig. 5

shows the estimates converge to the correct values. From Fig. 4

and Fig. 5 it becomes clear that the most challenging part is the

initialization. In the initialization phase it is important that the

train or in general the platform starts and keeps driving with

a trajectory that fits the movement model with a smoothly

changing acceleration and platform attitude. This ensures

the observability and quick convergence of the calibration

parameters and that the particle cloud can follow the correct

trajectory. If the calibration parameters are not converging after

a few seconds or the train is performing some unexpected

1
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B
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Map Sensor Calibrated

−2

−1

0

B
y
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−1

0

Time/s

B
z

Fig. 5. Calibration result of the particle filter for the dataset 2 recorded
with the setup in Fig. 2b and a map recorded with Fig. 2a. The colors fit
the colors of the parameter estimation in Fig. 4. The figure shows the raw
measurements (solid line) of the x-, y- and z-axis of the magnetometer and
the corresponding magnetic map values (dashed line). The dotted line is the
expected measurement from (25) calculated with the magnetic vector from
the map at the ground truth position and the estimated calibration parameters
(29). The magnetic field is unitless due to the internal normalization of the
magnetometer. According to the sensor manufacture a sensor output of 1
corresponds approximately to 40 µT.

movement, the point cloud keeps spreading out and it is

becoming unlikely that a particle follows the right trajectory.

In combination with the resampling step then the particle set

most likely degenerates. This problem is caused by the limited

number of particles that introduces the need for resampling

and by considering only the measurements of the uncalibrated

magnetometer. If additional sensors like an odometer or IMU

are incorporated into the prediction step of the filter, the

particles can follow also more dynamic trajectories and the

overall initialization phase should become more robust.

In Fig. 6 the energy of the calibration error is given in

relation to the signal energy of the measured magnetic field

zk from which its mean z̄ was removed

ǭcal =
K−1∑

k=0

||ẑk − zk||22
/ K−1∑

k=0

||zk − z̄||22, (31)

where || · ||2 is the Euclidean norm, K is the number of

time steps and ẑk is the calibrated magnetic field vector.

The calibrated magnetic field vector is obtained from (25),

the estimated calibration parameters θ̂k from (29) and the

magnetic field in the map at the ground truth position. The

mean was removed for better comparison of the results. If

simply the signal energy would be used, datasets with a large

bias would achieve smaller values compared to datasets with a

smaller bias even though the error energy is the same. The box

plot in Fig. 6 is calculated over the different Monte-Carlo runs

and has the same color coding and shows the same statistical

quantities for ǭcal as Fig. 3 does for the position RMSE. The
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Fig. 6. Statistics of the relative error ǭcal of the calibrated map data for the
100 Monte-Carlo runs and the 16 different datasets. The error is unitless due
to the internal normalization of the magnetometer.

statistics in Fig. 6 show that the signal energy of the error

is two orders of magnitude smaller than the energy of the

measured magnetic field. In analogy to the signal to noise ratio

used in communications, this means that the signal to error

ratio is always higher than 16 dB. To get a better impression of

how the calibration reduces the error between the map and the

measured magnetic field, Table II shows the calibration gain.

The gain is defined by the ratio of the error energy between

the measurements and the map before and after calibration

gcal =
K−1∑

k=1

||znk − zk||22
/ K−1∑

k=1

||ẑk − zk||22 (32)

where znk is the magnetic field directly obtained from the mag-

netic map without calibration. The gain in Table II is the gain

achieved with the worst calibration result from the different

Monte-Carlo runs. Therefore the gain is always higher than

84.27 and up to 843.24 when the map and the dataset was

not recorded with the same setup. The table also shows that

the calibration is close to the uncalibrated dataset when the

same setup was used for the map creation than for localization.

In one case it is even better which can be explained by the

fact that the map can contain small systematic errors due

to sensor and remaining 50Hz noise. The Kalman filter can

adapt the calibration to these small errors and therefore the

result can be slightly better. Combined with the low RMSE

for the position in Fig. 3, the results for the calibration are

a strong indicator that the proposed method works and high

position and calibration accuracy is attainable considering only

the magnetometer readings.

V. CONCLUSION

In this paper, a method for simultaneous localization and

magnetometer calibration with local magnetic field distortions

was introduced. This method enables magnetometer calibra-

tion also for heavy platforms, where common calibration

methods are not applicable. The proposed method is based on a

Rao-Blackwellized particle filter that estimates the pose of the

TABLE II
WORST CASE CALIBRATION GAIN

dataset 1 dataset 2 dataset 3 dataset 4

map 1 0.91 828.56 361.73 296.79

map 2 843.24 1.07 370.30 273.90

map 3 397.62 345.36 0.83 84.27

map 4 481.97 361.67 120.49 0.65

platform with a particle filter and the calibration parameters

with a Kalman filter. The Rao-Blackwellization reduces the

computational complexity and allows the algorithm to run

in real time. The algorithm was formulated for a generic,

nonlinear state space model to allow an easy adaptation to

different applications. In an evaluation the feasibility of the

proposed method was shown based on measurements recorded

with a model train and four different measurement setups. In

the evaluation the filter was capable to accurately estimate

the position and calibration parameters. The position error

was within a few centimeters and the calibration error had an

energy two orders of magnitude smaller than the measured

magnetic field. The evaluated filter used only magnetome-

ter measurements but the filter is easily extendable with

an odometer or an IMU to improve the robustness in the

initialization phase when the calibrations parameters are still

unknown. For applications with more degrees of freedom and

a fast changing platform attitude an IMU should be used in

the estimation. This will improve the performance and lower

the number of required particles.
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