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Abstract— This article develops new methods for adaptively
bounding approximation accuracy with methods that involve
localized forgetting. The existing results use global forgetting.
The importance of local versus global forgetting is motivated
in the text. Such bounds have utility for self-organizing ap-
proximators that could adjust the number of basis elements N
by adding additional approximation resources in the regions
where the approximation error bound is large.
Keywords: Adaptive control, nonlinear systems, adaptive
bounds.

I. INTRODUCTION

Most nonlinear adaptive control methods are proposed to
address model uncertainties that are assumed to be the mul-
tiplication of known nonlinearities and uncertain parameters
[4], [10]. Since the first stability results appeared, adaptive
robust nonlinear control has been extensively developed to
retain closed-loop stability properties in the presence not
only of large parametric uncertainty, but also modeling errors
such as additive disturbances and unmodeled dynamics [4].
On-line approximation methods [1], [2], [5], [8], [9], [11],
[12], [14], [15], [16] are designed to achieve stability and
accurate reference input tracking for systems with partially
unknown nonlinearities, by implementing approximations to
the unknown nonlinear dynamics during the operation of the
system.

Nonlinear close-loop systems which incorporate on-line
approximators can be analyzed using Lyapunov stability
methods. Both the feedback control law and the approximator
parameter estimation equations are derived such that the
time derivative of a Lyapunov function has some desirable
properties (e.g., negative definiteness). The theory for ap-
proximation based nonlinear control is provided in [2], [5],
[8], [9], [12], [14]. The design and analysis of adaptive
systems have been extensively addressed in [2], [12], [14],
including controller structure selection, automatic adjustment
of the control law, and complete proofs of stability. Its
application based on the feedback linearization method is
developed in e.g., [8], [9]. On-line approximation based
control by backstepping methods is considered in e.g., [5].

Since on-line approximation based control can never
achieve an exact modeling of unknown nonlinearities, in-
herent approximation errors could arise even if optimal
approximator parameters were selected. Usually, a restrictive
assumption is made that a magnitude bound on the inherent
approximation error is known. Articles [5], [12], [13] relax
the assumption of a known bound on the inherent approxi-
mation errors. With a partially known bound, these articles

discuss estimation of the bounding parameters and the design
of adaptive robust controllers to guarantee global uniform
ultimate boundedness.

However, the global features of the leakage modification
for parameter updates in [5], [12], [13] causes each pa-
rameter estimate to drift toward certain design parameters
as the operating point x leaves a local region for which
the parameter is applicable. Thus, both the approximated
function and the bounding function will lose local accuracy
and any knowledge learned from past experience will not
be retained for future use. This issue of global forgetting
was addressed in [17], by deriving localized leakage based
adaptation algorithms for both the approximator parameters
and bounding parameters. The analysis of [17] focused on the
scalar single-input-single-output system: ẋ = f(x) + g(x)u
with g(x) = 1 and x ∈ �1.

In this paper, we use the backstepping extension proposed
in [3] and develop an adaptive robust control scheme for
higher order (i.e., x ∈ �n, n > 1) single-input-single-
output systems by incorporating on-line approximation of
the unknown bounding functions on approximation errors.
The existing localized adaptation algorithms [17] for func-
tion approximator parameters and bounding parameters are
extended to higher order systems with gi(x) �= 1,∀i =
1, · · · , n. Filtering techniques [3] are applied to calculate
time derivatives of intermediate state commands for the
backstepping approach. The stability and robustness results
yield a smaller m.s.s. bound on the tracking error than those
in the literature; in addition, the bounding function and
function approximation information are retained as a function
of the operating point even as the operating point moves
around the operating envelope.

II. PROBLEM FORMULATION

Consider the following class of nth-order single-input-
single-output nonlinear systems

ẋi(t) = fi(x) + gi(x)xi+1(t), 1 ≤ i ≤ n − 1, (1)

ẋn(t) = fn(x) + gn(x)u(t) (2)

where x = [x1, · · · , xn]� is the state vector and u is the con-
trol signal. It is assumed that the system is strictly feedback
passive (see p.46 in [7]). The functions fi(x), gi(x), i =
1, · · · , n represent nonlinear effects that are unknown at the
design stage. Each of these functions is assumed to be con-
tinuous on a known compact set D. To ensure controllability,
it is necessary to assume that each gi is bounded away from
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zero and of known sign. Therefore, without loss of generality,
we will invoke the following assumption:

Assumption 1: It is assumed that gi(x) has lower bound
such that gi(x) ≥ gli(x) ≥ gl > 0, ∀x ∈ D, where gli(x) is
a known function and gl is a known constant.

A. Reference Trajectory

There is a desired trajectory xd(t) with derivative ẋd(t),
both of which are available and lie in the region D for all
t > 0. The region D is a compact domain of operation that
is specified at the design stage. The region D contains all
trajectories xc = [xd, x2c, · · · , xnc]� for which the system
is expected to operate. In fact, we will assume existence of
a constant γ > 0 such that

γ ≤ min
x∈{�−D}

(‖xc(t) − x‖), (3)

for any t ≥ 0. This condition states that the desired trajectory
is at least a distance γ from the boundary of D. The region D
also defines the largest region over which approximations to
f and g will be developed. Our goal is to design the control
signal u to steer x1(t) to track the reference input xd(t) and
to achieve boundedness for the states xi for i = 2, . . . , n.
Note that existing approaches in the literature (e.g., [6], [7])
would require knowledge of the first n derivatives of xd(t).
The approach herein only requires knowledge of xd(t) and
its first derivative [3].

B. Approximator Definition

For x ∈ D, we define approximations to the unknown
functions fi(x) and gi(x) as f̂i(x) = θ�fi

Φfi
(x) and ĝi(x) =

θ�gi
Φgi

(x) for i = 1, . . . , n, where the parameter vectors θfi

and θgi
will be adapted on-line. For x /∈ D, f̂i(x) = 0 and

ĝi(x) = gl. The vector Φfi
(x) is a user specified regressor

vector containing the basis functions for the approximation.
Denote the support of the k-th basis function of Φfi

(x)
vector by Sfi,k = {x ∈ D |Φfi,k(x) �= 0}. Let S̄fi,k denote
the closure of Sfi,k. Note that each S̄fi,k is a compact set.
For each i, the Φfi

(x) vector is defined as a set of positive,
locally supported1 functions Φfi,k(x) for k = 1, · · · , N such
that each set Sfi,k is connected with D =

⋃N
k=1 Sfi,k where

N is a finite integer. This ensures that for any x ∈ D, there
exists at least one k such that Φfi,k(x) �= 0. Therefore,
{Sfi,k}N

k=1 forms a finite cover for D. Similarly, we define
the support of the k-th basis function of Φgi

(x) as Sgi,k with
closure S̄gi,k. The sets S̄gi,k, k = 1 · · · , N also form a finite
cover of region D.

In this paper, we are not concerned with the selection of
particular basis vectors Φfi

or Φgi
. Any basis vectors which

satisfy the above assumptions are qualified candidates for
the regressor vectors. Splines, radial basis functions, certain
wavelets, etc. satisfy these assumptions.

We define a set of parameters θ∗fi
that are optimal in the

sense:

θ∗fi
= arg min

θ

(
max
x∈D

∣∣fi(x) − θ�Φfi
(x)

∣∣)
1‘Locally supported’ means that ρ(Sfi,k) < µ � ρ(D), where for set

A, ρ(A) = maxx,y∈A (‖x − y‖).

Note that these optimal parameters are unknown. They are
not used in the implemented control law, but are useful for
the analysis that follows. Since D is compact and each fi is
continuous, the vector θ∗fi

exists and is well-defined. Define
the parameter estimation error vector

θ̃fi
= θfi

− θ∗fi
.

Let
δfi

(x) = fi(x) − (θ∗fi
)�Φfi

(x)

represent the inherent or residual approximation error. Note
that by the definition of θ∗fi

above, the maximum value of
δfi

(x) on D is bounded. This maximum value can be affected
by the choice of the dimension and type of corresponding
basis vector Φfi

(x), but for a given choice of basis vector it
cannot be decreased by the choice of the parameter vector
θfi

. The upper bound on the magnitude of the residual
approximation error only depends on the designer’s choice of
approximator. The quantities θ∗gi

, θ̃gi
and δgi

(x) are defined
similarly.

With the above definitions, system equations (1)-(2) can
be expressed as

ẋi(t) = (θ∗fi
)�Φfi

(x) + δfi
(x)

+
(
(θ∗gi

)�Φgi
(x) + δgi

(x)
)
xi+1, 1 ≤ i < n,

ẋn(t) = (θ∗fn
)�Φfn

(x) + δfn
(x)

+
(
(θ∗gn

)�Φfn
(x) + δgn

(x)
)
u.

C. Bound Approximation

By the definition of the δfi
and δgi

, the magnitude of
these inherent approximation error functions are bounded on
D; however, the bound is not known. Our control approach
will utilize an estimate of these upper bound functions.
Therefore, we assume a form for the bounding functions
with multiplicative parameters that will be estimated. To
save computational effort, we reuse the same basis elements;
however, the approach easily extends to the case of different
basis elements.

By the above discussion, there exists a positive constant
vector Ψ∗

fi, i = 1, · · · , n, referred as the optimal bounding
parameter, such that

|δfi
| ≤ (Ψ∗

fi
)�Φfi

, ∀x ∈ D.

The vector Ψ∗
fi

is not unique since any Ψ̄∗
fi

> Ψ∗
fi

satisfies
this assumption. To avoid confusion, the optimal bounding
parameter is defined to be the vector with the smallest 1-
norm such that the assumption is satisfied. A vector Ψ∗

gi

yielding a bound on |δgi
| is defined similarly. Note that

the optimal bounding parameter vectors Ψ∗
fi

and Ψ∗
gi

are
unknown. They are used only for analytical purpose. The
control law will use estimates Ψfi

and Ψgi
of the optimal

bounding parameter vectors. Therefore, the approximated
bounding functions are Ψ�

fi
Φfi

for |δfi
| and Ψ�

gi
Φgi

for |δgi
|,

where the vectors Ψfi
and Ψgi

will be estimated on-line.
For the following analysis, we define bounding parameter
estimation errors as

Ψ̃fi
= Ψfi

− ΨM
fi

and Ψ̃gi
= Ψgi

− ΨM
gi

.
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where each element of ΨM
fi

is defined as ΨM
fi,k

=
max{Ψ∗

fi,k
,Ψ0

fi,k
}, k = 1, · · · , N with the vector Ψ0

fi
=

[Ψ0
fi,1

, · · · ,Ψ0
fi,N

]� selected in the design stage. With these
estimated upper bounds, we will select proper terms in the
control signal or the intermediate state commands to properly
handle the inherent approximation errors.

III. ADAPTIVE BACKSTEPPING-BASED DESIGN

Define the tracking error vector as x̃ = [x̃1, · · · , x̃n]�

where

x̃1 = x1 − xd (4)

x̃i = xi − xic for i = 2, . . . , n (5)

where the xic are defined below. The pseudocontrol signals
αi of the backstepping procedure [6], [7] are defined as

α1 =
ua1

ĝ1 + βg1

(6)

αi =
uai

ĝi + βgi

(7)

where
ua1 = −k1x̃1 + ẋd − f̂1 − βf1 + us1

and

uai = −kix̃i + ẋic − f̂i − βfi
− (ĝi−1 + βgi−1)x̄i−1 + usi

for i = 2, . . . , (n−1). The control gains, ki, i = 1, · · · , n−1
are designer specified positive constants that will determine
the decay rate for disturbances and initial condition errors.
The usi

(t) terms are defined as

usi
(t) = −ri(t)sign(x̄i) (8)

where x̄i, which represent compensated tracking errors, will
be defined below in eqn. (10). The usi

(t) terms are defined
to return state x to the approximation region D and keep it
there (i.e., to ensure that D is an invariant set). Here the gain
ri(t) is given by

ri(t) =
{

0, when x ∈ D
b̄fi

+ b̄gi
|xi+1|, when x /∈ D (9)

where b̄fi
, b̄gi

are known upper bounds on |fi(x)| and |gi(x)|,
respectively. Note that if constants b̄fi

and b̄gi
are not known,

then they could be estimated using the methods suggested in
[13], [12]. We do not present such an adaptive bounding
approach herein for x /∈ D as it is not the main topic of this
article.

The compensated tracking error signals x̄i for i =
1, · · · , n are defined as [3]

x̄i = x̃i − ξi, for i = 1, · · · , n (10)

where the ξi are defined below.
The signal xic required for eqn. (5) and its derivative

ẋic required for eqn. (6-7) are defined by the following the
following procedure [3].

1) For i = 2, · · · , n,
a) Define

x0
ic = αi−1 − ξi.

The signals xic and ẋic are defined as

ẋic = −Ki(xic − x0
ic) (11)

with Ki > ki being a designer specified constant.
Since the filter of (11) is being used as a means
to compute xic and ẋic without differentiation,
the designer would typically select Ki � ki so
that xic accurately tracks x0

ic over the bandwidth
of x0

ic. Since (11) is a stable linear filter, xic and
ẋic will be bounded if the input x0

ic is bounded.
b) Define

ξ̇i−1 = −ki−1ξi−1 + (ĝi−1 + βgi−1)(xic − x0
ic).

This is a stable low pass filter. Its input is the
product of (ĝi−1 +βgi−1) which we will prove to
be bounded and (xic − x0

ic) which is small. For
xic, x

0
ic ∈ D we always have that |xic − x0

ic| <
2ρ(D) where

ρ(D) = max
x1,x2∈D

‖x1 − x2‖
is the diameter of set D. For any x, each ξi is
bounded by b̄ξ, i.e., |ξi| ≤ b̄ξ, where

b̄ξ =
2ρ(D)

k
max

i

[
sup
∀t

(|ĝi−1 + βgi−1 |
) ]

(12)

k = mini ki.
2) Define

u = uad + usn
(13)

where uad and usn
are defined as

uad =
uan

ĝn + βgn

,

uan
= −knx̃n + ẋnc− f̂n−βfn

−(ĝn−1 +βgn−1)x̄n−1

and

usn
= −rn(t)sign(x̄n) (14)

rn(t) =

{
0, when x ∈ D

b̄fn+b̄gn |uad|
gl

, when x /∈ D.
(15)

where b̄fn
, b̄gn

are defined as known upper bounds on
|fn(x)| and |gn(x)| for x /∈ D, respectively. Similarly,
we do not present a discussion herein for the case when
b̄fn

and b̄gn
are unknown. For completeness, the signal

ξn = 0 and kn is a designer specified positive constant.

A. Tracking Error Dynamics

This subsection uses the control approach defined above
to derive the dynamics of the tracking error. This analysis
can be divided into three cases.

1) For i = 1:

˙̃x1 = f̂1 + (ĝ1 + βg1)(α1 − ξ2) − ẋd − θ̃�f1
Φf1

−βg1x2c + (ĝ1 + βg1)(x2c − x0
2c)

+(g1x2 − ĝ1x2c) + δf1

= −k1x̃1 − θ̃�f1
Φf1 − βf1 + us1 + δf1

−βg1x2c + (ĝ1 + βg1)(x2c − x0
2c)

+(g1x2 − ĝ1x2c) − (ĝ1 + βg1)ξ2. (16)
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2) For 1 < i < n:

˙̃xi = f̂i + (ĝi + βgi
)(αi − ξi+1) − ẋic − θ̃�fi

Φfi

−βgi
xi+1,c + (ĝi + βgi

)(xi+1,c − x0
i+1,c)

+(gixi+1 − ĝixi+1,c) + δfi

= −kix̃i − (ĝi−1 + βgi−1)x̄i−1 − θ̃�fi
Φfi

−βfi
+ usi

+ δfi
− βgi

xi+1,c

+(gixi+1 − ĝixi+1,c) − (ĝi + βgi
)ξi+1

+(ĝi + βgi
)(xi+1,c − x0

i+1,c). (17)

3) For i = n:

˙̃xn = fn + gn(uad + usn
) − ẋnc

= f̂n + (ĝn + βgn
)uad − ẋnc − θ̃�fn

Φfn

−βgn
uad + (gn − ĝn)uad + δfn

+ gnusn

= −knx̃n − (ĝn−1 + βgn−1)x̄n−1 − βfn

−θ̃�fn
Φfn

− βgn
uad + (gn − ĝn)uad

+δfn
+ gnusn

. (18)

The equations of this section will be used in the follow-
ing subsection to derive the dynamics of the compensated
tracking errors defined in (10).

B. Compensated Tracking Error Dynamics

From Step 1b of the procedure described in Section III, the
variables ξi, i = 1, · · · , n − 1 are produced by filtering the
unachieved portion of x0

i+1,c. The variables x̄i are referred
as compensated tracking errors. These variables are obtained
by removing the filtered unachieved portion of x0

i+1,c from
the tracking error, as specified in eqn. (10). The dynamics
of the compensated tracking errors are derived according to
the three different cases in Section III-A.

1) For i = 1

˙̄x1 = −k1x̄1 − θ̃�f1
Φf1 − βf1 − βg1x2c

+(g1x2 − ĝ1x2c) − (ĝ1 + βg1)ξ2 + δf1 + us1

= −k1x̄1 − θ̃�f1
Φf1 − βf1 − βg1x2

+(g1 − ĝ1)x2 + (ĝ1 + βg1)x̄2 + δf1 + us1

= −k1x̄1 − θ̃�f1
Φf1 − θ̃�g1

Φg1x2 − βf1 − βg1x2

+(ĝ1 + βg1)x̄2 + δf1 + δg1x2 + us1 . (19)

2) Similarly, for 1 < i < n:

˙̄xi = −kix̄i − (ĝi−1 + βgi−1)x̄i−1 + usi

−θ̃�fi
Φfi

− θ̃�gi
Φgi

xi+1 − βfi
− βgi

xi+1

+(ĝi + βgi
)x̄i+1 + δfi

+ δgi
xi+1. (20)

3) For i = n, because x̄n = x̃n:

˙̄xn = −knx̄n − (ĝn−1 + βgn−1)x̄n−1 − βfn

−θ̃�fn
Φfn

− βgn
uad − θ̃�gn

Φgn
uad

+δgn
uad + δfn

+ gnusn
. (21)

Given eqns. (19) - (21), we are now ready to analyze the
stability of the specified control law.

IV. STABILITY AND PARAMETER ADAPTATION

We consider the following Lyapunov function candidate

V =
n∑

i=1

Vi(x̄i, θ̃fi
, θ̃gi

, Ψ̃fi
, Ψ̃gi

) (22)

where

Vi =
1
2

(
x̄2

i + θ̃�fi
Γ−1

fi
θ̃fi

+ θ̃�gi
Γ−1

gi
θ̃gi

+Ψ̃�
fi

Γ−1
Ψfi

Ψ̃fi
+ Ψ̃�

gi
Γ−1

Ψgi
Ψ̃gi

)
.

with Γfi
, Γgi

, ΓΨfi
, ΓΨgi

, i = 1, · · · , n being defined as
positive definite matrices representing the learning rates. The
time derivative of the V is V̇ =

∑n
i=1 V̇i, and V̇i along

solutions of eqns. (19 - 21) are:
1) For i = 1,

V̇1 = −k1x̄
2
1 + x̄1(ĝ1 + βg1)x̄2 + x̄1us1 + ∆1

+θ̃�f1
Γ−1

f1

(
θ̇f1 − Γf1Φf1 x̄1

)
+θ̃�g1

Γ−1
g1

(
θ̇g1 − Γg1Φg1 x̄1x2

)
. (23)

2) For i = 2, · · · , (n − 1),

V̇i = −kix̄
2
i − x̄i−1(ĝi−1 + βgi−1)x̄i

+x̄i(ĝi + βgi
)x̄i+1 + x̄iusi

+ ∆i

+θ̃�fi
Γ−1

fi

(
θ̇fi

− Γfi
Φfi

x̄i

)
+θ̃�gi

Γ−1
gi

(
θ̇gi

− Γgi
Φgi

x̄ixi+1

)
. (24)

3) For i=n,

V̇n = −knx̄2
n − x̄n(ĝn−1 + βgn−1)x̄n−1

+x̄ngnusn
+ ∆n

+θ̃�fn
Γ−1

fn

(
θ̇fn

− Γfn
Φfn

x̄n

)
+θ̃�gn

Γ−1
gn

(
θ̇gn

− Γgn
Φgn

x̄nuad

)
. (25)

In the above, for i < n:

∆i = x̄i (−βfi
− βgi

xi+1 + δfi
+ δgi

xi+1)
+Ψ̃�

fi
Γ−1

Ψfi
Ψ̇fi

+ Ψ̃�
gi

Γ−1
Ψgi

Ψ̇gi
, (26)

and for i = n:

∆n = x̄n (−βfn
− βgn

uad + δfn
+ δgn

uad)
+Ψ̃�

fn
Γ−1

Ψfn
Ψ̇fn

+ Ψ̃�
gn

Γ−1
Ψgn

Ψ̇gn
. (27)

We choose the localized adaptive laws of θfi
and θgi

, i =

1, · · · , n for ‖x̄‖ >
√

ρ̄+µ
c as

θ̇fi
= Γfi

x̄iΦfi
(28)

θ̇gi
=

{
Proj{Γgi

x̄i xi+1 Φgi
}, if i < n

Proj{Γgn
x̄n uad Φgn

}, if i = n
(29)

where a projection modification Proj{·} is used to ensure
that ĝi, i = 1, · · · , n are bounded away from zero. When

‖x̄‖ ≤
√

ρ̄+µ
c , θ̇fi

= 0 and θ̇gi
= 0. The design parameters

ρ̄, µ, c are defined in the discussion related to Theorem

792



1. Substituting (28) and (29) in (23) - (25), we obtain the
derivative of V defined in eqn. (22) as

V̇ = −
n∑

i=1

kix̄
2
i +

n−1∑
i=1

(x̄iusi
+ ∆i) + (gnx̄nusn

+ ∆n) . (30)

Next, we will only consider the case when x ∈ D and
perfect approximation is not possible. We are interested in
developing bounds on the approximation error and using
those bounds in the control law to achieve robustness to the
approximation error. This goal is attained by defining smooth
functions βfi

and βgi
, i = 1, . . . , n as

βfi
= Ψ�

fi
Φfi

tanh
( x̄i

ε

)
= Ψ�

fi
· Ωfi

(31)

βgi
= Ψ�

gi
· Ωgi

(32)

and

Ωgi
=

{
Φgi

tanh
( x̄ixi+1

ε

)
, if i < n

Φgn
tanh

(
x̄nuan

ε

)
, if i = n

(33)

where ε > 0 is a small design constant.
Lemma 1 of [12] provides the inequality

0 ≤ |m| − m · tanh (m/ε) ≤ ηε

for any ε > 0 and for any m ∈ R, where η is a constant that
satisfies η = e−(η+1) (i.e. η = 0.2785). This Lemma is used
below.

With this definition, starting from (26) and (27), we can
reduce the expression for ∆i:

∆i ≤ (ΨM
fi

)�Φfi
|x̄i| + (ΨM

gi
)�Φgi

|x̄ixi+1|
−(ΨM

fi
+ Ψ̃fi

)�Φfi
x̄i tanh

( x̄i

ε

)
−(ΨM

gi
+ Ψ̃gi

)�Φgi
x̄ixi+1 tanh

( x̄ixi+1

ε

)
+Ψ̃�

fi
Γ−1

Ψfi
Ψ̇fi

+ Ψ̃�
gi

Γ−1
Ψgi

Ψ̇gi

≤ ηε
(
(ΨM

fi
)�Φfi

+ (ΨM
gi

)�Φgi

)
+Ψ̃�

fi
Γ−1

Ψfi

(
Ψ̇fi

− ΓΨfi
Ωfi

x̄i

)
+Ψ̃�

gi
Γ−1

Ψgi

(
Ψ̇gi

− ΓΨgi
Ωgi

x̄ixi+1

)
(34)

and similarly

∆n ≤ ηε(ΨM
fn

)�Φfn
+

|uad|
|uan|ηε(ΨM

gn
)�Φgn

+Ψ̃�
fn

Γ−1
Ψfn

(
Ψ̇fn

− ΓΨfn
Ωfn

x̄n

)
+Ψ̃�

gn
Γ−1

Ψgn

(
Ψ̇gn

− ΓΨgn
Ωgn

x̄nuad

)
(35)

where the extension of Lemma 1 in [12], which provides the
inequality2

|x̄nuad| − x̄nuad tanh (x̄nuan/ε) ≤
∣∣∣∣ x̄nuad

x̄nuan

∣∣∣∣ ηε,

is used.

2Note that uan and uad have the same sign since the denominator of
the control equation is ensured to be bounded away from zero such that
θ�gn

Φgn + βgn > gl > 0.

Based on the inequalities (34–35), for ‖x̄‖ >
√

ρ̄+µ
c the

localized adaptive laws of Ψfi
and Ψgi

with σ-modification
are selected as

Ψ̇fi
= ΓΨfi

[
x̄itanh

( x̄i

ε

)
− σΨfi diag(Ψfi

− Ψ0
fi

)
]
Φfi

, (36)

Ψ̇gi
= Proj{τΨgi

} (37)

where

τΨgi
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΓΨgi

(
x̄ixi+1 tanh

( x̄ixi+1
ε

)
− σΨgi diag(Ψgi

− Ψ0
gi

)
)
Φgi

, if i < n

ΓΨgn

(
x̄nuad tanh

(
x̄nuan

ε

)
− σΨgn diag(Ψgn

− Ψ0
gn

)
)
Φgn

, if i = n

where diag(v) is the square diagonal matrix with diagonal
components equal to the vector v; σΨfi

, σΨgi
> 0; and

Ψ0
fi

and Ψ0
gi

are design parameters (vectors). When ‖x̄‖ ≤√
ρ̄+µ

c , Ψ̇fi
= 0 and Ψ̇gi

= 0.
Note that all usi

terms in (30) are zero for x ∈ D. If we
substitute (34–35) and (36–37) into (30), we attain

V̇ ≤ −
n∑

i=1

kix̄
2
i + ηε

n∑
i=1

(ΨM
fi

)�Φfi

+ηε

(
n−1∑
i=1

(ΨM
gi

)�Φgi
+

|uad|
|uan| (Ψ

M
gn

)�Φgn

)

−
n∑

i=1

(
σΨfiΨ̃�

fi
Rfi

(Ψfi
− Ψ0

fi
)

+σΨgiΨ̃�
gi

Rgi
(Ψgi

− Ψ0
gi

)
)

where Rfi
= diag(Φfi

) and Rgi
= diag(Φgi

). After
applying the equation

ã�R(a − a0) =
1
2
ã�Rã +

1
2
(a − a0)�R(a − a0)

−1
2
(a∗ − a0)�R(a∗ − a0)

to the two terms in the last summation, with the vector a
replaced by Ψfi

and Ψgi
, i = 1, · · · , n, respectively, we

have

V̇ ≤ −c ‖x̄‖2 + d0 + ρ (38)

where c, d0 and ρ are all positive constants given by

c = min
i=1,...,n

{ki} (39)

d0 = ηε
n∑

i=1

(ΨM
fi

)�Φfi
+ ηε

(
n−1∑
i=1

(ΨM
gi

)�Φgi

+
|uad|
|uan| (Ψ

M
gn

)�Φgn

)
(40)

ρ =
1
2

n∑
i=1

[
σΨfi(ΨM

fi
− Ψ0

fi
)�Rfi

(ΨM
fi

− Ψ0
fi

)

+σΨgi(ΨM
gi

− Ψ0
gi

)�Rgi
(ΨM

gi
− Ψ0

gi
)
]
. (41)
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Let ρ̄ > (d0 + ρ) be a strict upper bound on (d0 + ρ).
Select a small design constant µ > 0. For ‖x̄‖ >

√
ρ̄+µ

c ,

V̇ < −µ < 0. When ‖x̄‖ ≤
√

ρ̄+µ
c , a deadzone is included

in the adaptive laws. Without such a deadzone, stability is
not guaranteed and the parameters could drift.

Note that m tanh(m/ε) ≥ 0; therefore, without leakage
terms Ψ̇fi

and Ψ̇gi
would always be non-negative .

The stability properties are summarized in the following
theorem:

Theorem 1: Assuming the upper bound ρ̄ > d0 +ρ > 0 is
known, for the system described by (1)-(2) with the adaptive
feedback control law of eqns. (13-15) and the parameter
adaptation laws of eqns. (28–29) and (36–37), we have the
following stability properties:

1) For x(0) /∈ D, x(t) for t > 0 converges to region D
in finite time.

2) When x ∈ D and δfi
= δgi

= 0:

a) x̄i ∈ L2;
b) x̄i → 0 as t → ∞;
c) x̄i, θfi

, θgi
∈ L∞.

3) When x ∈ D and δfi
�= 0 or δgi

�= 0:

a) x̄i, x̃i, θ̃fi
, θ̃gi

, Ψ̃fi
, Ψ̃gi

∈ L∞;
b) xi, θfi

, θgi
, Ψfi

, Ψgi
∈ L∞;

c) ˙̄xi, θ̇fi
, θ̇gi

, Ψ̇fi
, Ψ̇gi

∈ L∞;
d) x̄ is ρ̄-small in the m.s.s. [4].
e) The total time outside the deadzone is finite.

f) ‖x̄‖ is ultimately bounded by ‖x̄‖ ≤
√

ρ̄2+µ
c , as

t → ∞.
Pf.

1) When x /∈ D: We want to show that all initial
conditions will return to and stay within region D.
Note that the Φfi

, Φgi
, θ̇fi

, θ̇gi
, βfi

, βgi
terms are

all zero, and δfi
= fi(x) and δgi

= gi(x) − gl for
i = 1, · · · , n. Therefore, For x /∈ D, we consider the
Lyapunov function as

V̄ =
1
2

n∑
i=1

x̄2
i . (42)

The derivative of V̄ can be easily shown to be similar
to (30), where ∆i terms defined in eqns. (26 - 27) are
simplified to

∆i =
{

x̄i (fi + (gi − gl)xi+1) , for 1 ≤ i < n
x̄n (fn + (gn − gl)uad) , for i = n.

Applying the sliding control of (8) and (14), we obtain
the derivative of V̄ defined in eqn. (42) as

dV̄

dt
≤ −

n∑
i=1

kix̄
2
i +

n−1∑
i=1

(−ri|x̄i| + |∆i|)

+ (−gnrn|x̄n| + |∆n|) . (43)

Since the sliding gains of (9) and (15) yield, for i < n

ri|x̄i| = (b̄fi
+ b̄gi

|xi+1|)|x̄i| ≥ |∆i|,

and, for i = n

gnrn|x̄n| =
gn

gl
(b̄fn

+ b̄gn
|uad|)|x̄n| ≥ |∆n|.

Then, we attain

dV̄

dt
≤ −

n∑
i=1

kix̄
2
i < −kV̄ (44)

V̄ (t) ≤ e−ktV̄ (0), for any t ≥ 0. (45)

Then, for any t larger than some finite time called T2,
V̄ (t) < γ2

8 which implies that ‖x̄(t)‖ < γ
2 . In addition,

for x /∈ D |ξi| < b̄ξ where b̄ξ = 2ρ(D)gl

k by methods
similar to those used to derive (12). Therefore, we can
attain ‖ξ(t)‖ < γ

2 by choosing gl sufficiently small for
x /∈ D. Therefore, for t > T2,

‖x̃(t)‖ ≤ ‖x̄(t)‖ + ‖ξ(t)‖ < γ

which implies that x returns to within D in finite time.
Once x ∈ D, the sliding mode term will not allow x
to leave D.
The reminder of this proof will only be concerned with
the case of x ∈ D, where each sliding control term usi

is zero. For x ∈ D, we will continue the analysis of
V̇ for V defined in (22).

2) When x ∈ D and δfi
= δgi

= 0: Note that all usi

terms in (30) are zero for x ∈ D. In addition, for the
ideal case of perfect approximation, the βfi

, βgi
, δfi

,
and δgi

terms are identically zero, which yields directly
∆i = 0. Then, (30) is simplified as

dV

dt
≤ −

n∑
i=1

kix̄
2
i (46)

which is negative semi-definite. This implies that the
variables x̄i, θfi

, θgi
are each bounded. Since each

term of ˙̄xi is bounded, V̈ can be directly shown
to be bounded. Barbalat’s lemma implies that each
x̄i approaches zero as t approaches infinity. Finally,
integrating both sides of (46) yields

V (0) ≥
n∑

i=1

∫ t

0

kix̄
2
i (τ)dτ,

which shows that each x̄i is in L2.
3) When x ∈ D and δfi

�= 0 or δgi
�= 0: Starting from the

inequality (38), the derivative of V for ‖x̄‖ >
√

ρ̄+µ
c

is:

V̇ ≤ −c ‖x̄‖2 + d0 + ρ < −µ < 0 (47)

where c, d0 and ρ are given as (39–41), respectively.

Therefore, if ‖x̄‖ >
√

ρ̄+µ
c , then V is decreasing.

If ‖x̄‖ ≤
√

ρ̄+µ
c then θ̃fi

, θ̃gi
, Ψ̃fi

and Ψ̃gi

are all constant and ‖x̄‖ is bounded. Thus,
V (t) is bounded by the maximum of V (0) or

max‖x̄‖=
√

ρ̄+µ
c

(
V (x̄, θ̃fi

(0), θ̃gi
(0), Ψ̃fi

(0), Ψ̃gi
(0))

)
which shows that x̄i, θ̃fi

, θ̃gi
, Ψ̃fi

, Ψ̃gi
∈ L∞. The
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L∞ property of x̃i comes from the fact that each ξi

is bounded. Properties 3b, 3c can be similarly shown.
For the proof of 3d, we integrate (38) to obtain

c

∫ t

0

‖x̄‖2 dτ ≤ V (0) +
∫ t

0

(d0 + ρ) dτ

which implies that x̄ is ρ̄-small in the mean square
sense (m.s.s.).
Next, we will show the Property 3e. Assume x starts
at t0 outside the deadzone, enters the deadzone at
t2i−1, and leaves it at t2i, for i ≥ 1. Then, during the
interval t ∈ [t2i−1, t2i], there is no parameter update;
‖x̄(t2i−1)‖ = ‖x̄(t2i)‖, thus

V (t2i−1) = V (t2i),

and outside the deadzone according to (47),

V (t2i+1) − V (t2i) < −µ(t2i+1 − t2i).

Therefore, the total time outside the deadzone is

Td = (t1 − t0) +
∑
i≥1

(t2i+1 − t2i),

and

Td <
1
µ

(
V (t0) − V (t1) +

∑
i≥1

(V (t2i) − V (t2i+1))
)

<
1
µ

(
V (t0) − V (t1) +

∑
i≥1

(V (t2i−1) − V (t2i+1))
)

<
V (t0)

µ

which is a finite value. Property 3f comes directly from
the Property 3e.

�
The formulation of localized adaptive laws as defined in

eqns. (36–37) localizes the effects of leakage terms to the
vicinity of the present operating point, thus eliminating the
problem with global forgetting. Localized forgetting also
decreases the required amount of on-line computation, since
all parameters associated with zero elements of basis vectors
are left unchanged.

In addition, due to the inclusion in ρ of Rfi
and Rgi

,
which are local functions of the operating point, the m.s.s.
bound can be shown to be significantly smaller than the
bound derived from the previously existing approaches.

V. CONCLUSIONS AND OPEN ISSUES

We have considered in this paper the robust adaptive
control design for a wide class of n-th order uncertain
nonlinear systems. A novel robust adaptive backstepping
design procedure is proposed by incorporating the locally
learned adaptive bounding functions on the residual approx-
imation errors. This is an extension of the localized adaptive
bounding technique proposed in [17] to higher order systems
with gi(x) �= 1. Furthermore, the complexity of calculating
time derivatives of intermediate state commands for the
backstepping approach [6], [7] is addressed by the command

filtering techniques proposed in [3]. We have proved that the
overall adaptive scheme can guarantee the boundedness of
both actual tracking errors and compensated tracking errors,
by applying the Lyapunov stability analysis.

In addition, we successfully show that the localized adap-
tation algorithms with deadzone and parameter projection
modification is effective to prevent the parameter drift and
to guarantee the ultimate boundedness of the compensated
tracking errors x̄. Since we have shown that the m.s.s. bound
on x̄ is on the order of the residual function approximation
errors, our future extension will focus on the adaptive en-
hancement of the structure of the approximator to achieve
better tracking performance.
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