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Abstract Connected coverage, which reflects how well a

target field is monitored under the base station, is the most

important performance metric used to measure the quality of

surveillance that wireless sensor networks (WSNs) can pro-

vide. To facilitate the measurement of this metric, we propose

two novel algorithms for individual sensor nodes to identify

whether they are on the coverage boundary, i.e., the bound-

ary of a coverage hole or network partition. Our algorithms

are based on two novel computational geometric techniques

called localized Voronoi and neighbor embracing polygons.

Compared to previous work, our algorithms can be applied

to WSNs of arbitrary topologies. The algorithms are fully

distributed in the sense that only the minimal position infor-

mation of one-hop neighbors and a limited number of simple

local computations are needed, and thus are of high scalabil-

ity and energy efficiency. We show the correctness and effi-

ciency of our algorithms by theoretical proofs and extensive

simulations.
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1 Introduction

Wireless sensor networks (WSNs) are ideal candidates for

monitoring the physical space and enabling a variety of

applications such as battlefield surveillance, environmen-

tal monitoring and biological detection. In such a network,

a large number of sensor nodes are deployed over a geo-

graphic area (called the region of interest or ROI) for the

purpose of monitoring certain events (e.g., emergence of the

enemy’s tanks). Typically, each sensor node has a very lim-

ited sensing range within which it is able to perform sensing

operations. The sensed data will be transmitted to a base

station (BS) over a multi-hop wireless path. The BS collects

data from all connected nodes, concludes the activities in the

ROI, and serves as a bridge to connect the WSN with outside

users [2, 19].

As a consequence of this special network architecture,

from the user’s point of view, a position in the ROI is really

under the surveillance of the WSN if and only if this position

is within the sensing range of at least one of the sensor nodes

connected to the BS. We define the collection of all these

positions in the ROI as the connected coverage, or coverage

in short, and argue in this paper that the continuous moni-

toring of the connected coverage is a must be functionality

for all mission-critical WSNs to provide, regardless of their

specific applications or focus.

First of all, connected coverage is the most important per-

formance metrics used to measure the quality of service a

WSN can provide in a certain time, and should be an in-

separable complementarity of the report about the observed

events in the ROI. For example, in the battlefield surveil-

lance scenarios, the report from the BS that “none of the

enemy’s tanks have been observed in the ROI” is misleading
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if it is not reinforced with the description of the current con-

nected coverage. As sensors running out of energy, or being

physically destroyed by natural or intended attacks, there is

an inevitable devolution of the WSN characterized by the

shrink of connected coverage or the growth of coverage hole

in the ROI, and the WSN should continuously self-monitor

the change of its coverage performance.

Secondly, the information of the connected coverage can

also be used to facilitate many basic operations of WSNs.

Some important ones are listed as follows:

Routing. If all the coverage boundaries can be identi-

fied beforehand, routing in a WSN can be very efficient,

especially geographic routing [11]. The reason is that over-

looking coverage boundaries may cause problems in com-

munications, as routing along shortest paths tends to put an

increased load on boundary nodes, thus quickly exhausting

their energy supply and growing the coverage hole.

Topology control. In a densely deployed WSN, it is often

suggested to allow sensor nodes to alternatively sleep to con-

serve energy while meeting the coverage requirement [21].

If a sensor node can self-identify its position on a coverage

boundary, it can automatically tune its strategy to wake up

neighboring nodes to fill in the coverage hole. Furthermore,

in a WSN with both static and mobile sensors [32], identi-

fying coverage boundaries among randomly deployed static

nodes would help determine movement strategies of mobile

sensors to improve connected coverage.

Self-diagnosis of network health. Self-diagnosing the

health status of a WSN can keep sensor nodes aware of

the probability of system failures, and help to launch many

other network management activities. The current status of

connected coverage is a very important input for such self-

diagnosis. Also note that, instead of having all nodes to send

their positions or health conditions to the sink, we only need

a few nodes on coverage boundaries to do so. By doing so, we

can not only reduce competitions for the wireless channel,

but also save precious energy.

Re-deploying or repairing WSNs. For mission-critical ap-

plications, it may be necessary to repair or even re-deploy

the WSN when the coverage performance is unsatisfactory.

The details of coverage information can help decide when

and how to perform the network repair or re-deployment. For

example, we can know where the best places are for adding

new nodes to reduce or eliminate the coverage holes and how

many new nodes are needed.

In this paper, we develop two novel algorithms for cover-

age boundary detection in WSNs. In particular, we propose

two novel computational geometric techniques, called local-

ized Voronoi polygon (LVP) and neighbor embracing poly-

gon (NEP), based on which two complementary algorithms

are designed. The LVP-based algorithm requires both the di-

rectional information (the orientation of each neighbor) and

the distance information (the distance to each neighbor), and

theoretically can detect all the boundary nodes no matter how

the nodes are distributed. By contrast, the NEP-based algo-

rithm merely needs directional information, but can only find

the local (or global) convex points of the coverage boundary.

As compared to previous proposals, both algorithms can be

applied to WSNs of arbitrary topologies. They are also truly

distributed and localized by merely needing one-hop neigh-

bors’ information and a few simple local computations, and

thus are of high scalability and energy efficiency. We show

the correctness and efficiency of our algorithms by theoreti-

cal proofs and extensive experimental results.

The remainder of the paper is organized as follows.

Section 2 provides the network model, problem definition

and a concise overview of the existing proposals for cover-

age boundary detection. In Sections 3 and 4, we present the

LVP-based and NEP-based algorithms and prove their cor-

rectness, respectively. Section 5 evaluates the performance of

our algorithms by theoretical analysis and simulation results,

and this paper is finally concluded in Section 6.

2 Preliminaries

In this section, we first give the notation, assumptions and

the network model used in the paper, and then present the

formal problem statement. The existing proposals for the

coverage boundary detection will be summarized briefly at

last.

2.1 Notation, assumption and network model

We use the following notation throughout the paper:

� ‖u − v‖ or ‖uv‖: the Euclidean distance between two

points u and v, where u, v ∈ R
2.

� ∂ A: the topological boundary of a set A ⊂ R
2.

� A�: the complement of set A ⊂ R
2, i.e. A� = R

2 − A.
� uv: the line segment from point u to v where u, v ∈ R

2.
� n: the total number of sensor nodes in the network, or

network size.
� si : the position of node i for 1 ≤ i ≤ n, i ∈ N.
� rc: the communication range of sensor nodes.
� rs : the sensing range of sensor nodes.
� Disk (u, r ): the closed disk of radius r and centered at point

u. Let 0 indicate the origin and we have

Disk0 = Disk(0, rs) = {v : ‖v − 0‖ ≤ rs, v ∈ R
2}.

We define two operations on subsets of the Euclidean

space:

� Translation: Au = A + u = {v + u : v ∈ A} for u ∈ R
2

and A ⊂ R
2.

� Minkowski-addition: A ⊕ B = {u + v : u ∈ A, v ∈ B}

for A, B ⊂ R
2 . Obviously Au = A ⊕ {u}.
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Throughout this paper, we assume that any two sensor

nodes can directly communicate via bi-directional wireless

links if their Euclidean distance is not greater than rc, the

communication range; and a position in the plane can be

perfectly monitored (or covered) by a sensor node if their

Euclidean distance is not greater than rs , the sensing range.

Although we use a simplified “disk model” here, our schemes

are applicable to more general and practical scenarios. The

impact of the disk model on the performance of our schemes

is discussed in Appendix A. Similar to [3, 21, 33], we also

assume that sensor nodes are homogeneous in the sense that

rc and rs are the same for all nodes, and keep constant in

each node’s lifetime.

Instead of considering all the possible combinations of rc

and rs , we focus on the case of rc = 2rs in this paper. There

are two reasons for doing so. First, as pointed out in [35],

the specification of rc ≥ 2rs holds for most commercially

available sensors such as Berkeley Motes and Pyroelectric

infrared sensors. Second, as shown in Appendix B, for ar-

bitrary spatial distributions of sensor nodes, rc ≥ 2rs is the

sufficient and necessary condition for the existence of local-

ized boundary node detection algorithms.1 Therefore, we set

rc = 2rs to reduce communication energy consumption and

interference. However, it should be noted that our algorithms

are still applicable to the scenarios of rc > 2rs without any

changes.

For simplicity, we assume that the ROI is a 2-D square

planar field hereafter. Our results, however, can be easily

extended to 2-D or 3-D ROIs of arbitrary shapes. For l > 0,

let Al denote the square ROI of side length l centered at the

origin, i.e., Al = [−l/2, l/2]2, and ∂ Al be the border of Al .

We examine a large-scale WSN consisting of hundreds or

even thousands of stationary sensor nodes,2 and denote the

sensor nodes deployed in the ROI as V = {s1, . . . , si , . . . ,

sn}.

2.2 Formal definition of the problem

We now formally define the connected coverage boundary

detection (CCBD) problem addressed in this paper. We start

with a few definitions.

Definition 1. A connected set of nodes is said to be a max-

imally connected set, or a cluster, if adding any other node

1 The formal definition of “boundary nodes” and “localized algorithms”

will be given in Sections 2.2 and Appendix B, respectively.

2 Stationary nodes here do not imply that the topology of the WSN is

static. Instead, the WSN may have highly dynamic topology changes

due to nodes failures, new nodes additions or nodes switching their

states between active and sleeping modes to save energy. One advantage

of our schemes lies in the efficiency to handle topology changes in

WSNs (cf. Section 3.4).

to the set will break the connectedness property. We write

Clust(si ) for the cluster containing node si .

Based on the sensing model, the sensing disk of

node si is given by Disk(si , rs) = Disk0 + si . Then the

coverage corresponding to a cluster can be defined as

follows:

Definition 2. We define the set of all points in Al that are

within radius rs from any node of Clust(si ) as the set covered

by Clust(si ). This set is denoted by

Cover(si ) =

⎛

⎝

⋃

u∈ Clust(si )

(u + Disk0)

⎞

⎠ ∩ Al . (1)

Definition 3. We define the boundary nodes of Clust(si ) as

those whose minimum distances to ∂Cover(si ) are equal to

rs , and denote them by

BN (si ) = {u ∈ Clust (si ) : min ‖u − v‖ = rs

for v ∈ ∂Cover (si )} ; .
(2)

Accordingly, interior nodes is defined by

IN (si ) = {u ∈ Clust (si ) : u /∈ BN (si )} . (3)

We denote the position of the base station as BS. Note that

the cluster Clust(si ) is connected with the BS if and only if

BS ∈ Clust(si ) ⊕ Disk(0, rc). Therefore, the connected cov-

erage with BS, which means the total area of the ROI under

the surveillance of BS due to contributions from each sensor

node connected to BS, can be formally defined as

Cover(BS) =
⋃

1≤i≤n

{

Cover(si ) :

BS ∩ (Clust(si ) ⊕ Disk(0, rc)) 
= ∅
}

. (4)

Note that Cover(BS) is uniquely decided by its bound-

ary ∂Cover(BS). Assume there are two different clus-

ters Clust(si ) and Clust(sk) connected with BS, from

Definition 2, we have Cover(si ) ∩ Cover(sk) = ∅. Therefore,

∂Cover(BS) =

{

⋃

∂Cover(si ) :

Clust(si ) is connected with BS

}

, (5)

which means CCBD problem can be simplified as finding the

coverage boundary of each cluster, i.e., ∂Cover(si ). Since the

minimum information required to describe ∂Cover(si ) is rs

and BN(si ), the CCBD problem is equivalent to finding the
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set BN(si ). Note that the CCBD problem formulated above

can be easily generalized to the cases with multiple BSs or

mobile BSs.

2.3 State of the art

The task of CCBD will be trivial if we do it in a central-

ized way and the exact locations of all nodes are available.

For example, a single node has access to locations of all

functional sensors (an “image” of the sensor distribution).

In this scenario, traditional ways of edge detection in im-

age processing are applicable. However, due to the energy

constraints, this scenario is impractical for most WSNs. Dis-

tributed solutions to the CCBD problem have already been

proposed in [11, 13, 16, 17, 32, 35]. In what follows, we

further classify these approaches according to the boundary

node identification methods they adopted.

2.3.1 Perimeter-based approaches

The first localized boundary node detection algorithm is pro-

posed in [17], which is based on the information about the

coverage of the perimeter of each node’s sensing disk. It

can be shown that node si is a boundary node if and only if

there exists at least one point v ∈ ∂Disk(si , rs) which is not

covered by any s j ∈ Neig(si ) (cf. Fig. 1(a)). Based on this

criterion, an algorithm with the complexity O(k log k) is de-

signed in [17] to locally check whether one node is a bound-

ary node, where k is the number of neighbors. A crossing-

coverage checking approach proposed in [16, 35] simpli-

fies the previous perimeter-coverage checking approach by

just checking some special points called crossings on the

perimeter. A crossing is defined as an intersection point

of two perimeters of sensing disks. A node si is a bound-

ary node if and only if there exists at least one crossing

v ∈ ∂Disk(si , rs) ∩ ∂Disk(s j , rs) which is not covered by

any other sk ∈ Neig(si ) − {s j }. Figure 1(b) shows an ex-

ample where c is a crossing determined by two perimeters

s
i

(a)

r
s

v

s
i

(b)

s
j

s
k

c r
s

u v

Fig. 1 Perimeter-based boundary node detection approaches. (a)

Perimeter-coverage checking approach proposed in [17]. The solid

curve represents the portion of perimeter of sensing disk covered by

neighbor nodes. (b) Crossing-coverage checking approach proposed

in [16, 35]. Solid and open triangles represent covered and uncovered

crossings, respectively

∂Disk(si , rs) and ∂Disk(s j , rs), which is covered by the third

sensing disk of node sk . The problem of perimeter-based

approaches is that each node needs to check positions and

status of all of its neighbors, which is inefficient when the

sensor nodes are densely deployed (cf. Section 5) so that

every time when a node dies, all its neighbors need to check

the coverage of their perimeters or crossings again.

2.3.2 Polygon-based approaches

In [11, 13, 32], Voronoi diagram (VD) is used for boundary

node detection. Briefly speaking, the VD of a node set V ,

is the partition of the Euclidean space into polygons, called

Voronoi polygons (VPs) and denoted by Vor(si ) for si ∈ V

such that all the points in Vor(si ) are closer to si than to any

other node in V . According to the closeness property of VPs,

if some portion of a VP is not covered by nodes inside the

VP, it will not be covered by any other node, which implies

a coverage hole. Therefore, it is claimed in [11, 13, 32] that

each node can locally check whether it is on the coverage

boundary under the assumption that VPs can be derived lo-

cally. However, it has been shown that in general VPs cannot

be locally computed [34]. In fact, VP-based approach is not

a real localized solution. It does not work when the survival

nodes are sparsely distributed. In this paper, we still follow

the line of polygon-based approaches, since the VP and its

derivatives provide more information about the spatial distri-

bution of one node’s neighbors, which can be used to design

more efficient detection schemes and simplify the updating

procedures when the number of neighbors changes.

There is a trend in the literature to provide some basic

functionalities of WSNs by only using directional informa-

tion [5, 23, 30]. The boundary node detection with only

directional information is an untouched topic since all the

existing schemes are based on the directional and distance

information of each node’s neighbors. We will return to this

topic in Section 4 to propose a solution for this scenario.

3 Localized Voronoi Polygons

In this section, we describe our first algorithm for identify-

ing boundary nodes based on two novel geometric concepts

called Localized Voronoi Polygon (LVP) and Tentative LVP

(TLVP) which are nontrivial generalization of Voronoi Poly-

gons (VPs) [27] from computational geometry. We must

point out that a similar concept called Localized Voronoi

Diagrams (LVDs) is introduced as the dual of Localized De-

launay Triangulations (LDTs) in the literature[18, 24]. The

edge complexity of LDT is analyzed in [18] and its applica-

tions in topology control and routing for wireless networks

are discussed in [24]. However, there is no indication on how

to relate this concept to the coverage problems in WSNs.
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Moreover, unlike our work, there is no description on how to

efficiently construct LVDs given in [18, 24]. Furthermore the

idea of using TLVP to reduce the overhead of the detection

algorithm in this paper is completely new. Finally and most

importantly, our scheme only uses the local information to

detect the boundary instead of global information commonly

used in either VP or DT.

3.1 Definition and properties of LVPs

To facilitate our illustration, we first define VPs, LVPs and

TLVPs in terms of half planes. For two distinct points si , s j ∈

V , the dominance region of si over s j is defined as the set of

points which are at least as close to si as to s j , and is denoted

by

Dom(si , s j ) = {v ∈ R
2 : ‖v − si‖ ≤ ‖v − s j‖}. (6)

Obviously, Dom(si , s j ) is a half plane bounded by the per-

pendicular bisector of si and s j , which separates all points in

the plane closer to si from those closer to s j .

Definition 4. The VP associated with si is the subset of the

place that lies in all the dominance regions of si over other

points in V , namely,

Vor (si ) =
⋂

s j ∈V −{si }
Dom(si , s j ). (7)

In the same way, the localized Voronoi polygon (LVP)

LVor(si ) and the tentative localized Voronoi polygon (TLVP)

TLVor(si ) associated with si are defined as:

LVor(si ) =
⋂

s j ∈ Neig(si )
Dom(si , s j ); (8)

TLVor(si ) =
⋂

s j ∈ SubNeig(si )
Dom(si , s j ), (9)

where SubNeig (si ) ⊂ Neig (si ) .

The collection of LVPs given by

LVor (V ) = {LVor (si ) : si ∈ V } (10)

is called the localized Voronoi diagram (LVD) generated by

the node set V. The boundary of LVor(si ), i.e., ∂LVor(si ), may

consist of line segments, half lines, or infinite lines, which

are all called local Voronoi edges.

Lemma 1. Properties of VPs, LVPs and TLVPs:

(i) LVor (si ), TLVor (si ) and Vor (si ) are convex sets;

(ii) Vor (si ) ⊆ LVor (si ) ⊂ TLVor (si );

(iii) Plane R
2 is completely covered by LVor(V ).

Proof: (i) Since a half plane is a convex set and the inter-

section of convex sets is a convex set,3 an LVP (or a TLVP)

as well as a VP is a convex set.

(ii) From (7), (8) and (9) we have

Vor(si ) = LVor(si )
⋂

(

⋂

s j ∈V,s j /∈Neig(s j )
Dom(si , s j )

)

,

LVor(si ) = TLVor(si )
⋂

(

⋂

s j ∈Neig,s j /∈SubNeig(s j )
Dom(si , s j )

)

,

which directly leads to Lemma 1(ii).

(iii) It is well known in computational geometry that

⋃

si ∈V
Vor (si ) = R

2. (11)

(cf. [27, Property V1, pp. 77] for a reference). Combining

(11) with Lemma 1(ii) that Vor (si ) ⊆ LVor (si ), we can di-

rectly obtain Lemma 1(iii). �

Therefore, the set LVor (V ) ∩ A can fully cover the arbi-

trary set A where A ⊆ R
2 . Note that this result can be easily

extended to any cluster in V , e.g., for Clust (si ) we have

⋃

s j ∈ Clust(si )
LVor(s j ) = R

2. (12)

3.2 LVP-based boundary node detection

In this subsection, we present an algorithm for each node to

detect whether it is on the coverage boundary based on its

own LVP or TLVP, which is illustrated with node si as an

example.

3.2.1 Input

Our BOND is a distributed scheme in that we only need posi-

tions of node si ’s neighbors as the input of our algorithm. We

need to consider two cases based on whether the information

about the border of Al , i.e., ∂ Al , is available. In the first case

where ∂ Al is unavailable at node si , our detection scheme is

based on the construction of LVor (si ) (or TLVor (si )); in the

second case where ∂ Al is available, we need to exploit this in-

formation by calculating LVor (si ) ∩ Al (or TLVor (si ) ∩ Al).

It can be shown that LVor (si ) ∩ Al must be a finite convex

polygon. Thus, the second case can be transformed into the

first case by introducing dummy nodes into Neig(si ). See

Fig. 2(a) for an example, in which four dummy nodes, d1

through d4, are introduced such that perpendicular bisectors

3 This sublemma can be proved as follows: Let Bi , i ∈ I, be a convex

set and B =
⋂

i∈I
Bi . If u and v are two points in B, then they are in

each Bi , so the line joining u to v lies in each Bi and therefore in B.
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Fig. 2 Illustration of LVP-based boundary node detection algorithm

between si and the dummy nodes generate the four border

edges of ROI. Then we can calculate LVor (si ) ∩ Al by fol-

lowing the same procedure for calculating LVor (si ). There-

fore, we will discuss only the first case in what follows.

We notice that dummy nodes cannot be directly applied

to the generalized cases, i.e., the border of Al consisting

of curves. However in these cases, it merely means that

the information of Al’s border cannot be efficiently ex-

ploited. But the correctness of our scheme is not affected.

There also exist two easy ways to remedy our BOND

here. First, in general a curve can be approximated with

straight line segments and thus the BOND is still appli-

cable. Second, instead of checking whether the vertices

of LVor (si ) ∩ Al are covered by Disk(si , rs) when Al is a

polygon, we can still correctly detect boundary nodes by

checking every point on ∂(LVor(si ) ∩ Al) when Al is not a

polygon.

3.2.2 Algorithm

Our goal is to construct the LVor(si ) (or TLVor(si )) which

is sufficient for the boundary node detection with the min-

imal information required about si ’s neighbors. We first di-

vide Disk (si , rc) into four4 quadrants. Then we construct the

TLVP of si by using the nearest neighbors (solid nodes in

Fig. 2(b)) in each of the four quadrants. Without loss of gen-

erality, we denote these four nearest neighbors as s1, s2, s3,

and s4. The first TLVP is calculated by

TLVor (si ) ←
⋂4

j=1
Dom(si , s j ).

If all vertices of the TLVP are covered by Disk (si , rs), the

procedure stops and this TLVP is saved. Otherwise, we need

to find new neighbors which are the nearest to the uncovered

vertices of the TLVP (cf. Fig. 2(c)), add those neighbors to

4 Other values will also work well.

SubNeig(si ), and calculate the TLVP again:

TLVor (si ) ← TLVor (si )
⋂

(

⋂

s j ∈SubNeig(si ), j 
=1,2,3,4 Dom (si , s j )
)

.

The new vertices of the new TLVP will be checked to see

whether they are covered by Disk (si , rs). This procedure

continues until all the vertices of the TLVP are covered by

Disk(si , rs) or the LVP of si is calculated and saved. We refer

to the neighbors used to construct the LVP or TLVP at the

end of this procedure as its consulting neighbors.

Note that when ∂ Al is unavailable, LVor(si ) may be infi-

nite, which means that it is possible that we cannot find any

node in one or more quadrants in the first step. See Fig. 2(d)

for an example. If a quadrant contains no neighbors, we de-

fine two sectors of angle 45◦ which are directly adjacent to

the quadrant as the assistant area, and add the nodes in this

area to SubNeig(si ) first. If all the nodes in the assistant area

cannot make TLVP finite, we can conclude that LVP must

be infinite without need to do further calculation.

3.2.3 Output

If LVor (si ) is infinite, si must be a boundary node. If LVor (si )

(or the final TLVor (si )) is finite with all the vertices covered

by si , then si ∈ IN (si ). Otherwise, si ∈ BN (si ).

3.3 Validating the algorithm

In the VD, the VPs of different nodes are mutually exclusive,

but in the LVD, the LVPs of different nodes may overlap.

This critical difference makes the validating of our algorithm

totally different with the VP-based ones.

Theorem 1. If there is a point v ∈ LVor (si ) which is not

covered by si , i.e., v /∈ Disk (si , rs), there must exist a point

h ∈ LVor (si ) that is not covered by any node, and si must be

a boundary node.
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Fig. 3 Illustration of the proof of Theorem 1

Proof: Without loss of generality, we assume that the

node nearest to si and outside Disk(si , rc) is sm , and

‖si − sm‖ = rc + δ for δ > 0. Let s ′
m be the point

on siv satisfying ‖si s
′
m‖ = ‖si sm‖, and h be another

point on siv such that ‖si h‖ = rs + δ/.2 (see Fig. 3).

By the triangular inequality, we have ‖smh‖ + ‖si h‖ ≥

‖si sm‖ = ‖si s
′
m‖ = ‖si h‖ + ‖hs ′

m‖. Therefore, ‖smh‖ ≥

‖hs ′
m‖ = ‖si s

′
m‖ − ‖si h‖ = rs + δ/.2, which means that sm

cannot cover h and neither can any other node in

Disk(si , rc)�. The reason is that, since ‖si sl‖ > ‖si sm‖ holds

for any node sl ∈ Disk(si , rs)� and sl 
= sm , we have ‖s ′
l h‖ >

‖s ′
mh‖ where point s ′

l is on the line siv and ‖si s
′
l‖ = ‖si sl‖.

Therefore, ‖slh‖ ≥ ‖s ′
l h‖ > ‖s ′

mh‖ = rs + δ/.2.

Since v ∈ LVor(si ), based on the convexity of LVor(si )

we have siv ∈ LVor(si ). Therefore, h ∈ LVor(si ), which im-

plies for any node s j ∈ Disk(si , rc) and si 
= s j , we have

‖s j h‖ ≥ ‖si h‖ > rs , i.e., no node in Disk(si , rc) can cover h.

Consequently, we can conclude that no node in the plane can

cover h because Disk(si , rc) ∪ Disk(si , rc)� = R
2. Note that

from the above proof process, we can see that h can be arbi-

trary close to v′, the intersection of circle ∂Disk(si , rs) and

siv. Therefore, si is a boundary node. �

Theorem 2. If there is a point v ∈ Al not covered by any

sensor node, for every cluster Clust(si ) there must exist at

least one sensor s j ∈ V whose LVor(s j ) is not completely

covered by Disk(s j , rs).

Proof: According to Lemma 1(iii) or (12), we have

⋃

s j ∈ Clust(si )
(LVor(s j ) ∩ Al) = Al (13)

Therefore, for any v ∈ Al , it must lie in at least one

LVor(s j ) ∩ Al for s j ∈ Clust(si ). �

Theorems 1 and 2 prove that LVor(si ) ∩ Al is completely

covered by si for all si ∈ Clust(s j ) is the sufficient and neces-

sary condition for Clust(s j ) to completely cover Al . The fol-

lowing theorem shows that when LVor(si ) or LVor(si ) ∩ Al is

finite, the coverage of vertices of LVor(si ) (or final TLVor(si ),

since LVor(si ) ⊂ TLVor(si )) by si is equivalent to the cover-

age of the whole LVor(si ) by si , which guarantees the cor-

rectness of our LVP-based algorithm.

Theorem 3. LVor(si ) is fully covered by si if and only if

LVor(si ) is finite and all the vertices are covered by si .

Proof: Let V e(si ) be the set of vertices of LVor(si ). Ob-

viously, when LVor(si ) is completely covered by si , i.e.,

LVor(si ) ⊂ Disk(si , rs), we have v ∈ Disk(si , rs) for all

v ∈ V e(si ) and LVor(si ) is finite. Since

max
u∈LVor(si )

{‖si − u‖} ≤ max
v∈V e(si )

{‖si − v‖} ,

when v ∈ Disk(si , rs) for all v ∈ V e(si ), we have u ∈

Disk(si , rs) for all u ∈ LVor(si ). �

3.4 Discussions on LVP-based detection

Our LVP-based detection is a truly localized polygon-based

solution since computing LVor(si ) (or TLVor(si )) only needs

one-hop information (this can be directly obtained from

Definition 4, which is impossible for computing Vor(si ).

Assuming that the number of trusted neighbors is k, each

node can compute its own LVor(si ) with complexity smaller

than O(k). In addition, the computation of the LVor(si ) only

involves some simple operations on polygons which can

be efficiently implemented (e.g., PolyBoolean library [22]).

We further simplify the detection process by constructing

TLVPs first. For a densely deployed WSN, we have LVor(si )

or TLVor(si ) → Vor(si ), and it is well known in computa-

tional geometry that under the homogeneous spatial Poisson

point process, the average number of vertices of Vor(si ) is

6 [27]. Therefore, when the node density is high, our LVP-

based detection on average needs only 4 to 6 nearest neigh-

bors’ information to successfully detect the boundary nodes.

Moreover, when a neighbor node dies, our LVP-based de-

tection need do nothing unless the dead node is used to

construct the final TLVor(si ) or LVor(si ) in the last turn

of LVP or TLVP construction. This unique property will

greatly simplify the update of detection results and save pre-

cious energy of each sensor node. None of these advantages

can be achieved by other localized boundary node detection

schemes in the literature, such as the perimeter-coverage

checking approach [17] and the crossing-coverage checking

approach [16, 35]. We refer to Section 5.4 for a detailed

comparison.

4 Neighbor embracing polygons

The neighbor embracing polygon (NEP) was first introduced

in computational geometry as an alternative to the Voronoi
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Fig. 4 Illustration of the convex hull of node si ’s neighbors (shaded

area) and the smallest sector Sect(si ) containing all neighbors when (a)

node si has the NEP and (b) node si does not have the NEP. Solid nodes

represent neighbors of si and dotted open nodes are the projection of

neighbors on the boundary of Disk(si , rc)

polygon [8, 10]. In this section, we will show that the local-

ized NEP can also be used as a complementary tool of the

LVP for coverage boundary detection. We will also demon-

strate the close relationship of NEPs with barrier coverage

and network connectivity.

4.1 Definition and properties of NEPs

Definition 5. Given the point set Neig(si ), we define its

convex hull, CH (Neig(si )), as the smallest convex set

containing all the points in Neig(si ). If si is in the in-

terior of CH(Neig(si )), i.e., si ∈ CH(Neig(si )) and si /∈

∂CH(Neig(si )), we call CH(Neig(si )) the NEP of si .

If si belongs to CH(Neig(si )), si has at least three neigh-

bors. By the properties of the convex hull, we also know that

CH(Neig(si )) is the unique convex polygon whose vertices

are points from Neig(si ) [4].

The idea of using NEP in boundary node detection is

rather intuitive. Figure 4 illustrates the relationship between

si and its CH(Neig(si )). We can see that si is more likely to

be far from the boundary when embraced by its neighbors.

On the other hand, when si /∈ CH(Neig(si )), we can find a

line (supporting line for the convex set) which separates si

from its neighbors, and node si is on the boundary almost

for sure.

There is a clear difference between our definition and

the existing one in [8, 10]. An NEP is constructed globally

in [8, 10]: for a given node si ∈ V , they first connect si

to the nearest node, then to the second nearest, and so on;

the process continues either when si belongs to the interior

of the convex hull of these nearest nodes or when all the

nodes in V have been tested. In this way, only the vertices

of CH(V ) do not have the NEP.5 By our definition, when

nodes without the NEP are found, some local convex points

5 NEPs are never used in coverage boundary detection in [8, 10].

other than vertices of CH(V ) (global convex points) will

also be identified, which can provide more detailed boundary

information (cf. Section 5.1). More importantly, our scheme

can be done locally.

Although efficient algorithms for computing the convex

hull of a given point set are available, we still want to avoid

using them if possible. The reason is that we only need

to know whether there is an NEP for node si and do not

care about the shape or size of the NEP. Let Sect(si ) be the

smallest sector with angle α whose apex is si and contains all

the points of Neig(si ). Note that Sect(si ) can be represented

by two points on ∂Disk(si , rc). In fact, we can project all

the points of Neig(si ) onto ∂Disk(si , rc),6 and view Sect(si )

as the “1-D convex hull” of the projected points of Neig(si )

on ∂Disk(si , rc) (see Fig. 4). Intuitively, the existence of the

NEP depends on the magnitude of angle α, which can be

formally expressed by the following lemma:

Lemma 2. For a given finite set Neig(si ), node si has an

NEP if and only if the angle α of Sect(si ) is larger than π .

Proof: See [8, Lemma 2]. Note that, different from [8],

the degenerate case in which there are only two vertices of

CH(Neig(si )) defining a line segment that contains si and

α = π , has been excluded here by Definition 5. �

Therefore, checking the existence of an NEP can be done

solely based on directional information.

4.2 NEP-based boundary node detection

Based on Lemma 2, the NEP-based boundary node detection

works as follows with node si as an example:

4.2.1 Input

The NEP-based algorithm does not require distances to si ’s

neighbors, but needs only directions to si ’s neighbors. There-

fore, we can use neighbors’ projections on ∂Disk(si , rc) as

their representations (i.e., s j is a point on ∂Disk(si , rc)). Ac-

cordingly, Sect(si ) can be determined by the two end points

on ∂Disk(si , rc). We consider only the case when ∂ Al is un-

available in this section, since this information cannot be

utilized even if it is available.

4.2.2 Algorithm

An intuitive way to check the existence of NEP is to

sort s j ∈ Neig(si ) according to their angles to si , and then

check if there is a gap greater than π in these angles. The

6 rc here can be replaced by any other value.
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Fig. 5 Illustration of the computation of Sect(si , q + 1) from

Sect(si , q)

average complexity of sorting is O(k log k), where k is the

number of neighbors. In the following, we describe how to

decide whether α > π in O(k) time by computing tenta-

tive Sect(si , n), where n is the number of neighbors used in

computing this tentative sector.

We first randomly take two points from Neig(si ), and

construct a tentative sector Sect(si , 2). Then we compute

Sect(si ) iteratively, by adding points to the tentative sec-

tor one by one. Given Sect(si , q) (q < k) and the next

point sq+1 randomly chosen from Neig(si ), if sq+1 is con-

tained in Sect(si , q), Sect(si , q + 1) = Sect(si , q). When

sq+1 /∈ Sect(si , q) and the antipodal point7 A(sq+1) of sq+1

is contained in Sect(si , q) (excluding end points), we can

immediately decide α > π without further computation.

When A(sq+1), sq+1 /∈ Sect(si , q), we update Sect(si , q) (the

shaded area in Fig. 5(a)) by adding to Sect(si , q) the sector

(the dashed area in Fig. 5(b)) which is from an endpoint of

Sect(si , q) to sq+1 and does not contain A(sq+1). This proce-

dure continues until it can be decided that α > π or Sect(si )

is computed and α is obtained.

4.2.3 Output

If α ≤ π , si ∈ BN(si ). However, when α > π , we cannot

decide whether si is a boundary node.

4.3 Validating the algorithm

We first give the relationship between LVPs and NEPs.

Theorem 4. The LVP LVor(si ) is infinite if and only if there

is no NEP for si .

Proof: We prove the first part by contradiction. Assume that

LVor (si ) is infinite. Since LVor(si ) is a convex set, LVor(si )

7 The antipodal point A(sq+1) is defined as the point on ∂Disk(si , rc)

that is on the ray staring at si and along the opposite direction of sq+1

and represented by the dotted open node in Fig. 5.
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Fig. 6 Illustration of the Proof of Theorem 4

must contain a half-infinite line starting from si and denoted

by
−→
siv in Fig. 6(a). Assuming that si ∈ CH(Neig(si )), we

can find a triangle �s j sksl such that si ∈ �s j sksl , where

s j , sk, sl ∈ Neig(si ). Without loss of generality, we assume

that
−→
siv intersects with s j sk (if

−→
siv goes through s j or sk , we

can directly get a contradiction). Since ∠s j si sk < π , then

∠s j siv or ∠vsi sk must be smaller than π/.2. If ∠s j siv <

π/.2, the bisector and perpendicular of s j si , i.e., uh, will

intersect with siv at point h. Obviously, all the points on hv

will be closer to s j than si , which contradicts the assumption

that
−→
siv ⊂ LVor(si ).

If si /∈ CH(Neig(si )), then all neighbors of si lie in a sector

with angle α < π (the shaded area in Fig. 6(b)). Let
−→
siv be

the half-infinite line starting from si with angle β where

β + α/.2 = π (cf. Fig. 6(b)). Therefore, for any point h on
−→
siv and s j ∈ Neig(si ), we can get ‖s j h‖ > ‖si h‖, because in

�si s j h we have γ ≥ β > π/.2. Hence
−→
siv ∈ LVor(si ), which

implies that LVor(si ) is infinite. �

When LVor(si ) is infinite, it cannot be fully covered by

Disk(si , rs). From Theorem 1, we can directly conclude that

si must be a boundary node if there is no NEP for si . There-

fore, the correctness of the algorithm is guaranteed.

4.4 Discussions on NEP-based detection

4.4.1 NEP-based detection for area coverage

Unlike the LVP-based algorithm, the NEP-based algorithm

cannot identify all the boundary nodes, which is the cost of

only using directional information. The two algorithms can

be combined in the following way. Since directional informa-

tion is relatively easier to obtain than distance information,

we assume that the former is available while the latter is

determined only when necessary. In the first step, a given

node checks whether it has no NEP, and if so, decides that

it is a boundary node. Otherwise, this node determines the

distances to neighboring nodes and then performs the LVP-

based algorithm. By doing so, although both algorithms need

to be executed for a few nodes, the overall energy consump-

tion and response time may be reduced in contrast to the
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case where only the LVP-based algorithm is used, as accu-

rate distance estimation may be both time-consuming and

energy-inefficient.

When each node can only obtain neighbors’s direction

information, it is easy to show that it is impossible to find

an algorithm to locally detect all the boundary nodes for

all situations. For NEP-based algorithm, it has already done

its best. However, note that only when we want to know

the coverage boundaries without any distortion, is the com-

plete information about all the boundary nodes necessary.

In practice, however, several degrees of distortion on the

“coverage image” is usually tolerable for the users to make

the decision. Moreover, the property of the coverage bound-

aries (e.g., boundaries always consist of continuous closed

curves) can be utilized for the users to recover some lost data

about boundaries. Therefore, we can still get the key infor-

mation about the coverage boundaries from partial bound-

ary nodes detected by NEP-based algorithm. The simulation

result supports our argument and is quite positive: the po-

sitions of nodes without NEPs can depict the major topol-

ogy shape of the connected coverage area (see Fig. 10 in

Section 5.1).

4.4.2 NEP-based detection for barrier coverage

If only directional information is available, only part of the

boundary nodes can be identified. In this case, how would the

coverage quality of the WSN be? Inspired by [7, 25], in the

following we will show that the NEP-based algorithm is very

useful for characterizing the WSN’s ability of detecting any

penetrating behavior of mobile object (or intruder) through

the protected area.

Definition 6. We say an intruder penetrates a polygonal

area A, if it enters the polygon from one side and leaves

from another along a continuous path. A penetrating path is

undetectable for Clust(si ) if it does not intersect Cover(si )

in area A. If there exists no penetrating path undetectable

for area A under the node set Clust(si ), we say Clust(si ) can

provide barrier coverage over area A.

Barrier coverage is weaker than area coverage (which

requires every point in A to be covered by nodes Clust(si )),

but it is widely used in many WSN applications such as

intrusion detection and border surveillance [7, 25]. The goal

in these applications is to detect intruders as they penetrate a

protected area instead of continuously surveilling every point

in the area. The following theorem shows that the information

about nodes without NEPs is sufficient to characterize the

barrier-coverage capability of a WSN.

Theorem 5. Let NNEP(si ) be the set of nodes without NEPs

in Clust(si ), then Clust(si ) can provide barrier coverage over
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Fig. 7 Illustration of the proof of Theorem 5. Solid points represent

the nodes without NEP, and solid lines represent the convex hull of all

the nodes without NEP

the polygon CH(NNEP(si )), and the largest polygon LP(si )

over which Clust(si ) can provide barrier coverage is bounded

by

CH(NNEP(si )) ⊂ LP(si ) ⊂ CH(NNEP(si )) ⊕ Disk0. (14)

Proof: We prove this theorem by contradiction. Assume

that there is an undetectable penetrating path entering the

polygon CH (NNEP(si )) from one side (side s1s3 in Fig. 7),

and leaving from another side (side s14s15 in Fig. 7). This

penetrating path divides NNEP(si ) into two nonempty sets:

{s1, s2, s4, s11, s14} and {s3, s15}. Let us randomly select a

node from each set, say s4 and s15. Then there must exist

a communication path between s4 and s15 because they be-

long to the same cluster, i.e., s4 − s5 − s9 − s6 − s10 − s15 in

Fig. 7. Due to the property of the convex hull, this path at least

intersects the penetrating path at one point in CH(NNEP(si )).

By the definition of the communication path, all the points

on it are covered by Clust(si ), including the crossing points,

which contradicts the assumption that the penetrating path is

undetectable. Therefore, there is no undetectable penetrating

path in CH(NNEP(si )).

To give tight bounds of LP(si ), we need to prove that

CH(NNEP(si )) = CH(Clust(si )). (15)

By the definition of the convex hull, node si is the ver-

tex of Clust(si ) if and only if there is a supporting

line such that si is in one side and all the other nodes

Clust(si ) − {si } are in another side [4]. Therefore, the ver-

tex of CH(Clust(si )) must be the node without an NEP and

(15) holds. We have shown that Clust(si ) can provide bar-

rier coverage over CH(NNEP(si )), thus CH(NNEP(si )) ⊂

LP(si ). Since Cover(si ) ⊆ CH(Clust(si )) ⊕ Disk0, we have

LP(si ) ⊂ CH(Clust(si )) ⊕ Disk0. Combining this result with

(15), we obtain (14). Therefore, we can bound ∂LP(si ) be-

tween ∂CH(NNEP(si )) and ∂(CH(NNEP(si )) ⊕ Disk0) (the

shaded area in Fig. 7). �
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Fig. 8 Illustration of the Proof of Theorem 6, where dashed lines

represent the convex hull of Clust(si )

Note that ∂LP(si ) is the boundary of barrier coverage of

Clust(si ). Unfortunately, for the boundary of area coverage,

i.e., ∂Cover(si ), we cannot obtain such tight bounds for all

possible situations if knowing only the nodes without NEPs.

Also note that Theorem 5 only holds when rc ≤ 2rs , which

shows a big difference between area coverage and barrier

coverage.

4.4.3 NEP-based detection for connectedness

In addition to providing some important coverage informa-

tion, NEPs are directly related to the network connectivity.

This relationship can be used to facilitate distributed topol-

ogy maintenance which is a nice feature not provided by

LVPs. We first define the sensor node on the border ∂ Al , e.g.

si , as the sensor which satisfies Disk(si , rs) ∩ ∂ Al 
= ∅.

Theorem 6. If every sensor node (except sensor nodes on

the border) has an NEP, the network is guaranteed to be

connected.

Proof: We prove this by contradiction. Suppose the network

has two partitions, as shown in Fig. 8. For a node, e.g., s j , on

the boundary of the convex hull of cluster Clust(s j ), all the

neighbors all lie in the sector with angle α that is not greater

than the angle β of the convex hull. By the definition of the

convex hull, α ≤ β < π , which contradicts the assumption

that s j has an NEP and thus α > π . �

Unfortunately, we cannot conclude that the network must

be disconnected if one of the nodes that is not on the bor-

der does not have an NEP. Different from isolation (i.e., si

has no neighbors), disconnection is a relationship between

clusters, with which the detection cannot be completely

localized. This sufficient condition, however, is still useful

in preventing disconnection. Consider topology control [21]

as an example. Ascertaining that all the active nodes have an

NEP, we can design distributed sleep scheduling algorithms

to guarantee network connectedness. As another example, in

network self-monitoring applications where the BS needs a

global view of the network, detecting nodes without an NEP

can provide the early warning of network disconnectedness

and partitions.

5 Performance evaluation

In this section, we first validate the accuracy of our algo-

rithms by simulations. It is shown by theoretical analysis

and simulations that our algorithms outperform the existing

schemes in the literature in terms of energy consumption.

5.1 Validating the accuracy with simulation results

We have implemented the LVP-based and NEP-based algo-

rithms in � [1] and tested their performance on the large-

scale WSNs. Figure 9 shows the detection example of a large

scale WSN with an intended attack (physically destruction

such as the planned bombing of the WSN). The intention of

adversary is very clear, by destroying parts of sensor nodes,

disconnecting the WSN, and making a large part of the WSN

lose its function. Figure 9 gives some snap-shots of this pro-

cess, and the detection results of each state. The ROI is a

square with the size of 14rc × 14rc and originally deployed

sensors completely covered the ROI (see Fig. 9(a)). The

boundary nodes detected by the NEP-based algorithm are

displayed as darkened dots, and the additional ones detected

by the LVP-based algorithm are displayed as lightly shaded

dots. In addition, the theoretical coverage boundary is formed

by solid lines. It can be found that all the boundary nodes

r
c

(a) (b)

(d)(c)

Fig. 9 Boundary detection results for large-scale WSNs
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(a) (b)

Base station

Fig. 10 Coverage boundary reconstruction results on the base station

with the NEP-based algorithm for the situation shown in Fig. 9(d)

are correctly detected. The effectiveness of our algorithms is

quite obvious.

As shown above, the LVP-based algorithm can detect

all the boundary nodes and give perfect information about

coverage boundaries. Although the NEP-based algorithm

cannot detect all the boundary nodes, it can still offer very

useful information. Consider Fig. 10 as an example. All the

boundary nodes determined by the NEP-based algorithm

send their positions and the directions of the areas that are

not covered to the sink, which in turn, can reconstruct the

coverage boundary based on such information. Figures 10(a)

and (b) show the “images of the boundary” when the sink

lies in the margin and center of the ROI, respectively. Such

results are quite positive because although the details of the

boundary are lost, the outline can be obtained.

5.2 Cost analysis

5.2.1 LVP-based approach vs. perimeter-based approach

After the deployment of the WSN, we assume localization

techniques are available for sensor nodes to decide their

positions. Each node then collects the position information

of its neighbors by broadcasting its own positions. Since

the connected coverage will change with time, each node

needs to check the existence of its neighbors periodically.

Our LVP-based approach and the perimeter-based approach

can both provide truly localized boundary node detection

with operational difference in the neighborhood checking

phase. In particular, the perimeter-based approach requires

each node to check the status of all its neighbors, which is

quite inefficient when sensor nodes are densely deployed.

This situation becomes worse every time when a node dies,

as all its neighbors need recheck the coverage of their perime-

ters or crossings. In contrast, our LVP-based approach only

uses consulting neighbors to perform boundary node detec-

tion. When sensor nodes are densely deployed, from Lemma

1, we have LVor(si ) or TLVor(si ) → Vor(si ), and it is well

known in computational geometry that under the homoge-

neous SPPP, the average number of vertices of Vor(si ) is 6

[27], which implies that when the node density is high, each

node on average only has 4 to 6 consulting neighbors. There-

fore, the higher the node density, the greater the benefit using

our scheme.

5.2.2 LVP-based approach vs. VP-based approach

Intuitively, LVP-based approach will have smaller com-

munication overhead or equivalently energy consumption

than the VP-based method since LVPs can be locally com-

puted. In what follows, we prove this intuition in a formal

way.

Theorem 7. If there exist boundary nodes, the costs of the

NEP-based and LVP-based algorithms are always smaller

than the cost of the VP-based one.

The proof of the theorem depends on the following lemma:

Lemma 3. For any si ∈ V , the VP Vor(si ) can be locally

computed if and only if Clust(si ) can completely cover the

plane R
2 (or Al , when the information of ∂ Al is available),

i.e., Cover(si ) = R
2 (or Cover(si ) ∩ Al = Al).

Proof: From Theorems 1 and 2, a node set can completely

cover R
2 if and only if LVor(si ) is fully covered by Disk(si , rs)

for any si ∈ V . From Lemma 1, this implies that Vor(si ) =

LVor(si ) for any si ∈ V . Therefore, Vor(si ) can be locally

computed by si just as LVor(si ).

Let d = max ‖v − si‖ for any v ∈ Vor(si ). Since Vor(si )

is a convex set, d = ∞ if Vor(si ) is infinite, otherwise d

is the distance from a vertex of Vor(si ) to si . Vor(si ) can

also be computed in a similar way as LVP with set V as

the input. We can determine that the construction of Vor(si )

is completed when all the nodes in Disk(si , 2d) have been

counted. Therefore, Vor(si ) can be locally computed, which

implies that 2d ≤ rc or d ≤ rs and thus guarantees the com-

plete coverage of Vor(si ). Since this holds for all si ∈ V , we

can ensure the complete coverage of the plane. �

Therefore, when there are boundary nodes, it is impossi-

ble to compute all Vor(si )’s locally based on only one-hop

information. Since multi-hop communications are unavoid-

able, the cost of the VP-based approach will be higher than

both LVP-based and NEP-based algorithms. Only when the

node density is so high that the ROI is completely covered

(not considering the ROI border), is the cost of the VP-based

approach equal to that of ours. However, in this case, there

is no need for coverage boundary detection at all. As a re-

sult Theorem 7 guarantees that when boundary detection

algorithms are helpful, the cost of our algorithms is defi-

nitely smaller than the VP-based one. The next question is
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how significant the cost savings are by using our algorithms,

which is answered in the rest of this section.

5.3 Evaluation of energy consumption for VP- and

LVP-based approachs

5.3.1 Evaluation settings

We assume that sensor nodes are distributed in a large

square region Al and form a homogeneous Spatial Pois-

son Point Process (SPPP) with density λ. Each node

knows its own position by GPS or existing localization

schemes such as [23]. For any measurable subset of Al with

area B,

Pr {finding i nodes in the region of area B} = (λB)i e−λB

i!
.

Each node is expected to have k = πr2
c λ neighbors on av-

erage, and the expected number of nodes in Al is given by

n = λ · Al . We also assume that each node fails indepen-

dently and uniformly with probability p. It has been shown

that functional nodes still form a homogeneous Poisson point

process with density λ′ = (1 − p)λ [31]. Therefore, the net-

work can be uniquely identified by the current node density

λ (or equivalently k).

In general, no assumption should be made about the

distribution of the sensor nodes in the environment. Our

algorithms are designed to work correctly under arbitrary

node distributions. However, here we utilize homogeneous

SPPP as the node distribution model to facilitate the theo-

retical analysis and simulations in the performance evalua-

tion of our algorithms. It is well known that this model is

a good approximation of the distribution of sensor nodes

massively or randomly deployed (e.g, via aerial scatter-

ing or artillery launching) and can be easily extended to

characterize the process that nodes fail dynamically. In

addition, we let the side length l → ∞ (which implies

n = λAl → ∞). By doing so, we can infer the characteristics

of the whole network by just analyzing some “typical nodes”

(which are far away from ∂ Al) and ignoring the “boundary

effects” [29].

Based on the continuum percolation theory [26, 29], if

k ≤ 4.5, a 2-D network will be partitioned into O(n) small

clusters, which implies that the WSN will completely fail.

Previous work [14, 21] also points out that for n → ∞, the

ROI Al is completely covered with a high probability when

λ and k satisfy

πr2
s λ = π (rc/2)2λ = k/4 = log(n) + log log(n). (16)

When k is greater than this critical value, it is guaranteed

that there is no coverage hole in the network. Therefore, in

( ) ( )( )(a) , , 2
j c i i

disk s r disk s d s⊄

rc 2d(si)

si
sj sk

( )( ), ,i j ksend s s pos s

( )( ),
i i

bcast s pos s ( )( ),k kbcast s pos s

rc

si
sj sk

( )( ), ( ),i j jbcast s d s pos s( )( ), ,i j ksend s s pos s

( )( ),i ibcast s pos s ( )( ),k kbcast s pos s

2d(si)

( ) ( )( )(b) , , 2j c i idisk s r disk s d s⊂

Fig. 11 Illustration of the communication procedure in VP/LVP com-

putation

what follows we will just consider the case when

4.5 < k < 4 log(n) + 4 log log(n). (17)

In our evaluation, in order to have a fair comparison, VPs

are computed in a similar way as LVPs with set V as the input.

Specifically, we first compute LVor(si ) as the tentative VP of

si , and then refine the tentative VP iteratively. In each itera-

tion, we add one more hop information about node positions.

Let d(si ) = max ‖v − si‖, for any v ∈ LVor(si ) (d(si ) = ∞

when LVor(si ) is infinite). Obviously, to guarantee the accu-

racy of the results, we only need to check the nodes in the

region Disk(si , 2d(si )).

To facilitate the analysis, we also assume that communi-

cations proceed in rounds (governed by a global clock) with

each round taking one time unit, and that there are effective

MAC-layer protocols supporting reliable communications.

Let ET and ER denote the energy consumed to transmit and

receive one bit, respectively, and SM be the size of message

M in bits. The procedure for computing VPs/LVPs/NEPs is

shown below (cf. Fig. 11).

Step 1. Every node si broadcasts its position si , and receives

its neighbors’ position messages. This step is enough for

computing LVPs and NEPs, and the energy consumption

of node si is (ET + k ER)Ssi
. To compute VPs, we still

need to do the the following steps:

Step 2. Node si computes its tentative VP LVor(si ) with

position of s j where s j ∈ Neig(si ), and then broadcasts

d(si ) if d(si ) > rc. The energy consumption of si in this

step is (ET + k ER)Sd(si ).

Step 3. Upon receiving any d(s j ), node si checks the posi-

tions of its neighbors. If there is a node sk such that

sk ∈ Disk(s j , rc)� ∩ Disk(s j , 2d(s j )) ∩ Disk(si , rc),

node si reports sk’s position to node s j . If Disk(si , rc) ⊂

Disk(s j , 2d(s j )), node si still needs to broadcast d(s j ) and

s j ’s position.

Step 4. repeat step 3 until Disk(si , rc) 
⊂ Disk(s j , 2d(s j )).
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If constructing a VP needs m-hop information, the total

energy consumption in steps 3 and 4 will be

(m − 1)(ET + k ER)
(

Sd(s j ) + Ss j

)

. (18)

5.3.2 Theoretical results

Given the density λ, from the proof of Lemma 3, 2d(si ) can

be computed from (16) as:

2d(si ) =

(

4 log (n) + 4 log log (n)

πλ

)1/2

. (19)

The next step is to compute the number of hops needed to

reach 2d(si ). For the homogeneous Poisson point process,

hop-distance relationship has been derived in [9]:

E (m) =

{

1, d ≤ rc

0.5 + h · c, d > rc

(20)

where d = h · rc is the distance to reach, E(m) is the corre-

sponding expected number of hops, and c is a constant that

is close to two for a small k and to one as k becomes large.

Therefore, the number of hops needed for 2d(si ) > rc can be

calculated as:

E(m) =
1

2
+

c

rc

(

4 log(n) + 4 log log(n)

πλ

)1/.2

. (21)

The energy consumption of a typical node using the LVP-

based or NEP-based algorithm is

ECLVP = (ET + k ER)Ssi
. (22)

It is difficult to precisely compute the total energy con-

sumption for transmitting position information of sensor

nodes in region Disk(si , rc)� ∩ Disk(si , 2d(si )) to si . One

way to handle this problem is to estimate it by the last hop

energy consumption:

ECL Hop = (ET + ER)
(

π (2d(si ))
2λ − πr2

c λ
)

Ssi
. (23)

Therefore, the energy consumption for a typical node using

the VP-based algorithms will not be less than

ECVP = ECLVP + E(m)(ET + k ER)Sd(si )

+ (E(m) − 1)(ET + k ER)Ssi
+ ECL Hop.

(24)

For 4.5 < k < 4 log(n) + 8 log log(n), we have E(m) ≥ 1.5.

Since d(si ) is 1-D while si ) is 2-D data, we assume that

Ss j
= 2Sd(s j ). Then we can get

ECVP

ECLVP

> 2.75. (25)

Obviously, the energy savings are significant. Note that

(25) holds for all 4.5 < k < 4 log(n) + 8 log log(n). For

a network with an inhomogeneous point distribution, we

can divide the network into a finite number of parti-

tions with different constant densities. If the densities are

all in (4.5, 4 log(n) + 8 log log(n)), the inequality (25) still

holds.

5.4 Simulation results

5.4.1 LVP-based approach vs. VP-based approach

We simulate a WSN with l = 200 m, rc = 20 m, Ss j
= 64

bytes, ER = 0.6 μJ/bits, ET = 0.8 μJ/bit, and 4.5 < k < 45

(the range of k is derived from the Eq. (17)). Figure 12

shows the average node energy consumption for the VP-

based (ECVP) and the LVP-based or NEP-based (ECLVP)

algorithms as a function of k. We can see that the theoretical

values of ECLVP are always greater than the simulation re-

sults. The reason is that we treat nodes on the ROI boundary

as typical nodes in theoretical analysis, while these nodes in

fact have much fewer neighbors and thus have less energy

consumption. In addition, both theoretical and simulation re-

sults of ECLVP slightly increase as k becomes large, as the

reception energy consumption increases with the increasing

number of neighbors. By contrast, the theoretical results of

ECVP are always lower than the simulation results because

of the approximation in (23). We can also observe that the

difference becomes smaller with the increase of k. This is

due to the fact that the number of hops needed to reach 2d(si )

will become smaller with increasing k and our approxima-

tion will make more sense. In general, it is obvious that

our LVP-based algorithms can achieve remarkable energy

savings.
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Fig. 13 Average number of neighbor nodes needed for the crossing-

coverage checking approach and LVP-based approach

5.4.2 LVP-based approach vs. perimeter-based approach

The simulation settings are the same as above. Figure 13

shows the average number of neighbor nodes needed for the

crossing-coverage checking approach and our LVP-based

approach to detect boundary nodes as a function of k. It

is of no surprise to observe that when the node density in-

creases, the number of nodes needed remains constant for

our LVP-based detection while increases dramatically for

the crossing-coverage checking approach. This means that,

in contrast to our approach, the crossing-coverage checking

approach will incur a significant overhead at the initial stage

of WSNs where sensor nodes are normally densely deployed

to provide adequate redundancy and fault-tolerance.

To sum up, the VP-based approaches only perform well

when functional nodes are densely deployed; the perimeter-

based approaches only work well when functional nodes are

sparsely deployed; and only our LVP-based approach works

equally well in both cases.

6 Conclusion

In this paper, we develop two deterministic, localized algo-

rithms for coverage boundary detection in WSNs. Our algo-

rithms are based on two novel computational geometric tech-

niques, namely, localized Voronoi and neighbor embracing

polygons. Theoretical analysis and simulation results show

that, our algorithms can be applied to WSNs of arbitrary

topologies with varying node densities and have the mini-

mal computation and communication costs, as compared to

previous proposals.

Appendix A: Remarks on disk sensing

and communication models

In this paper, we assume that both the sensing and communi-

cation ranges are regular disks (cf. Section 2.1). In practice,

however, it is well known that both the sensing and the com-

munication ranges are non-isotropic, i.e., sensors exhibit dif-

ferent ranges (in both sensing and communication) in differ-

ent directions [6]. According to [6], the sensing range of the

passive infrared (PIR) sensors in different directions roughly

conforms to a normal distribution probability model. For the

communication range, two non-isotropic models—the De-

gree of Irregularity (DOI) model and the Radio Irregularity

(RIM) model—are presented in [36].

However, regular disk models are widely used in studying

coverage and connectivity properties of WSNs as in [3, 12,

15, 20, 21, 33]. We still follow this approach for the following

two reasons:

First, in the cases where the irregular sensing and com-

munication ranges each has a lower bound, the sensing and

communication areas can be regarded as a disk with radius

equal to the lower bound. With this approach, our schemes

can provide a conservative estimation on the connected cov-

erage deterministically. For more general cases, our work

can be further extended to provide statistical coverage in-

ference. Since our BOND scheme detects boundary nodes

based on the real communications between neighbors, the

only thing we need to change is to adopt a statistical sensing

range model such as the one proposed in [6] and estimate the

corresponding statistical connected coverage.

Second, our schemes target at large-scale WSNs, where rc

and rs are relatively very small compared to the size of ROI.

Therefore, in general the inference error introduced by our

disk models is negligible compared to the total area of con-

nected coverage. The validity of disk model for large-scale

WSNs is intensively studied in the literature. It is shown in

[12] that claims about the connectivity and coverage made

under this “disk” abstraction generally also hold for more ir-

regular sensing and communication shapes found in practice.

Appendix B: Locality of boundary node detection

In this subsection we investigate further to show that it is

impossible to find localized algorithms for boundary node

detection with arbitrary node distributions when rc/rs < 2.

We first define what we mean by localized algorithms. This

definition is based on a model proposed in [28].

Definition 7. Assume that each computation step takes one

unit of time and so does every message to get from one

node to its directly connected neighbors. With this model, an
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Fig. 14 Non-locality of the boundary node detection when rc < 2rs

algorithm is called localized if its computation time is O(1),

in terms of the number of nodes n in the system.

Our LVP-based algorithm shows that when rc = 2rs , sen-

sors can locally determine if it is a boundary node. When

rc > 2rs , since the node will have more information about

other nodes around itself, it can still locally detect whether

it is a boundary node. However, in the case of rc < 2rs , in-

dividual nodes can neither locally say “yes” nor “no” to the

question of whether a given node is a boundary node. To

see this, consider sensors deployed as in Fig. 14. Obviously,

node si is an interior node. However, to confirm this, it needs

to know the existence of nodes s1 to s5 with the help of some

relay nodes (lightly shaded nodes). In Fig. 14(a), node s4 is

already 5 hops away from node si . In fact the distance be-

tween these two nodes can be arbitrary long, which is shown

in Fig. 14(b). Therefore, for arbitrary node distributions, it

is impossible to find a localized boundary node detection

algorithm that always works. In [3], the authors considered

general values of rc/rs with regular deployment patterns

such as the hexagon, square grid, rhombus, and equilateral

triangle. Unlike [3], in this paper, we prefer to make the

strict assumption on the value of rc/rs rather than on the

node distribution pattern. The reason is that even if in some

scenarios, the regular distribution of nodes is possible, it is

difficult to hold in practice due to inevitable node failures.

In contrast, even in the case of rc/rs < 2, we can still as-

sume a smaller value of rs in our algorithms while obtaining

a conservative inference of the coverage, which is desirable

for some security-critical applications.
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