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Non-propagating localized oscillating solutions are studied in the case of a discrete one-dimensional system with the 2-3 
power onsite potential. A multiple-scale asymptotic perturbation expansion is not adequate for describing the large 
amplitude oscillations we consider. Starting from an exact pulse-like solution in the continuum, we derive an approximate 
oscillating solution. Our numerical simulations reveal that, whereas the excitations are strongly damped in the strong 
intersite coupling case, they are long-lived in the discrete cases. An additional modulation phenomenon of the oscillation, 
seen in the simulation, is explained by combination of the breather oscillations with the zero group velocity phonons 
modes. Then, applying the Green's functions formalism in analogy with a previous work (S. Takeno et al., Prog. Theor. 
Phys. Suppl. 94 (1988)), we derive a very accurate expression for the discrete breather with a quasi-infinite lifetime. Lastly, 
we demonstrate how such excitations can explain why the breathers make the dominant contributions in the dynamics of a 
simple model of DNA. 

1. Introduction 

O v e r  the  pas t  severa l  years ,  it has b e c o m e  

inc reas ing ly  a p p a r e n t  tha t  spa t ia l ly  loca l ized ,  os- 

c i l la t ing  n o n l i n e a r  exc i ta t ions  con t r i bu t e  signifi- 

can t ly  to  the  b e h a v i o r  of  b io logica l  s t ruc tures .  In  

o r d e r  to m o d e l  the  f luc tua t iona l  open ing  of  

D N A ,  we are  i n t e r e s t ed  in loca l ized  osci l la t ing 

n o n l i n e a r  wave- l ike  so lu t ions  which are  pe r iod ic  

in t i m e ,  i .e .  in the  c o n t i n u u m  limit  we cons ide r  

an e q u a t i o n  of  the  fo rm 

bltt- Uxx q- f (b l )=0 ,  (1.1) 

and  we l ook  for  so lu t ions  ver i fy ing  u(x ,  T + t) = 

u ( x , t ) ,  l imlxl~ ~ u = 0  and u ~ 0 .  The  sine- 

G o r d o n  e q u a t i o n  is s ingled ou t  a m o n g  non l inea r  

wave  e q u a t i o n  of  type  (1.1)  because  it has such a 

so lu t ion :  the  b r e a t h e r  can be though t  of  as a 

" b o u n d  s t a t e "  of  a k ink  and  an an t ik ink .  On  the 

o t h e r  h a n d ,  the (j~4 m o d e l  does  not  possess  

b r e a t h e r  so lu t ions .  In a l e t t e r  [1], a p r o o f  of  

n o n e x i s t e n c e  of  sma l l - a mp l i t ude  b r e a t h e r  solu- 

t ions  to  the  we l l -known  (j~4 equa t ion  was given 

by  Segur  and  Kruska l .  S tar t ing  with a formal  

e x p a n s i o n  for  the  b r e a t h e r  so lu t ion  [2] and  using 

the  m e t h o d  of  m a t c h e d  a sympto t i c  expans ions ,  

t hey  find a co r rec t ion  to the  so lu t ion  lying 

b e y o n d  all o r d e r s  of  the  expans ion  which is not  

loca l i zed  in space .  So, even  though  the expan-  

s ion i tself  is val id  to  all o rde r s ,  054 t heo ry  admi ts  

no  t rue  b rea the r s .  Mas lov  has found  tha t ,  in the 
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cont inuum approximation,  the K le in -Gordon  

equat ion with a logarithmic nonlinearity is the 

only one which permits exact solutions of pulson 

type [31. 

However ,  one must also consider the discrete- 

ness of the lattice: it is an intrinsic feature of 

many  physical systems which is generally ignored 

for the sake of simplicity. However ,  it seems that 

the opening of base-pairs of double stranded 

D N A  are extremely localized [4,5] (typically just 

a few base-pairs are concerned),  so that discrete- 

ness effects should be very important  and could 

be the fundamental  reason of the stability of a 

localized solution as evoked in some papers [6-  

8] and confirmed by our following results. The 

discreteness effects have been essentially investi- 

gated in the prototype F renke l -Kon to rova  

model ,  and generally in systems bearing topo- 

logical nonlinear excitations. Recently,  using a 

collective-variable theory [9], Boesch and 

Peyrard  described the dynamics of discrete SG 

breather .  They derived expressions for the total 

energy of the system and the effective potential 

for the collective variable, both of which explicit- 

ly describe the competi t ion between Peierls' 

wells and the subkink interaction energy. Else- 

where ,  Campbel l  and Peyrard [10] showed that, 

in the 4) 4 theory,  the conclusions about breather  

instability derived from a continuous model can- 

not be trivially extended to a discrete system. 

They present  new numerical results which show 

an "intr icate interweaving" of stable and unstable 

brea ther  solutions on finite discrete lattices. 

We therefore  ask a basic question: how is it 

possible to exhibit a localized breather-l ike exci- 

tat ion in a discrete lattice? We are guided by the 

cont inuum SG breather  which is a sum of a kink 

and an antikink. A possibly simple way to gener- 

ate oscillating solutions is to investigate a "head-  

on"  collision between a kink and an antikink 

solution [11,12] in a nonintegrable system. This 

is fairly easy to carry out in the 4~ 4 model for 

example ,  but we consider below a model with a 

substrate potential  with only one stable equilib- 

r ium position, and therefore without topological 

solitons: the breathers cannot be thought of as a 

bound state of topological solitons. Consequent-  

ly, we have to find another  scheme to exhibit 

breather-l ike excitations. First, by analogy with 

the SG theory where the small amplitude form of 

the SG breather  can be understood in terms of a 

"mult iple-scale" perturbat ion expansion, we 

consider a NLS soliton. However ,  the resulting 

solution for our case is not valid for a large 

enough amplitude to provide a description of 

D N A  breathing modes. We therefore start from 

a static pulse-like solution obtained in the con- 

t inuum limit, multiplied by a periodic function. 

This method yields an approximate  solution for a 

breatherl ike object.  However  numerical simula- 

tions show that in the strong intersite coupling 

regime, the coupling between the oscillatory and 

phonon modes induces a strong damping of the 

oscillations. But in the discrete case the solution 

turns out to be much more stable, suggesting 

that,  if the initial conditions were carefully 

chosen, stable breathers could be formed. 

The idea that discreteness effects could stabil- 

ize a brea ther  has recently been developed in the 

context of self-localized vibrational modes in- 

duced by anharmonicity in pure crystals. Takeno 

and coworkers  [13] employed the lattice Green ' s  

functions method to show the existence of on an 

s-like symmetry  mode induced by quartic anhar- 

monicity in discrete systems, in close analogy 

with the case of a localized mode due to an 

impurity a tom or force constant defect in the 

harmonic  lattices. The localized mode obtained 

is a new kind of stable bound state, which d o e s  

n o t  exist in the continuum case. It is a particle- 

like mode  unattainable from the perturbation 

theory or the self-consistent theory, because the 

frequency of this new type of soliton-like mode 

lies outside the phonon band, so that the 

breather-l ike oscillations cannot be coupled with 

the phonons.  Following the same idea, wc as- 

sume that the discreteness could be a necessary 

condition for our system to bear such a localized 

mode  and we apply the theory of Takeno et al. 

to harmonic lattices with a nonlinear on-site 
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potential .  Seeking stationary solutions with an 

appropr ia te  shape, suggested by the numerical 

simulations, and using the lattice Green ' s  func- 

tions formalism, we exhibit solutions that are in 

an excellent agreement  with numerical results. 

The  extremely weak radiation of these approxi- 

mate  breathers  suggests that even though we 

have not imposed the condition of indestructibili- 

ty, related to the mathematical  problem of the 

complete  integrability of the system, one would 

expect to see such long-lived breather-l ike ob- 

jects in physical applications. 

Guided by the idea that nonlinear effects 

might concentrate  vibrational energy in D N A  

into a localized packet ,  as assumed by many 

models  [6,14,15], we propose breathing modes as 

a model  for the fluctuational openings suggested 

by experiments  [16-18]. The parameters  lead to 

a very discrete behavior,  which gives rise to 

static solitary excitations which are physically 

relevant  according to an estimate of the ratio of 

the energy of a brea ther  in comparison with the 

thermal  energy. We explain why the breathers 

make  the dominant  contributions in DNA,  as 

indicated by some simulations. 

The remainder  of the paper  is organized as 

follows. In section 2 we present the model,  the 

phonon  modes and the small amplitude approxi- 

mate  brea ther  solution of the discrete equation 

of motion.  In section 3, we then specialize our 

study to the cont inuum case, in order to derive 

expressions for a non-propagat ive breather.  We 

devote  section 4 entirely to the results of the 

numerical  simulations and show first how the 

discreteness could be favorable to a quasi-infinite 

brea ther  lifetime and second that we get a rather 

good static oscillating profile in the discrete 

cases. In section 5 we present an outline of the 

Green ' s  functions formalism to determine more 

precisely the static breather  and the results are 

then compared  with the previous ones. In section 

6 we discuss the possible implications of our 

analysis for the existence of breathing modes in a 

simple model  of DNA.  In the last section, we 

present  our concluding remarks.  

We limit ourselves to breather  modes which do 

not move along the lattice to avoid additional 

discreteness effects due to their propagation.  

Except  in section 3, we focus our attention on 

very localized breathers,  spanning only a few 

units of the lattice, so that our calculations treat 

intrinsically the discreteness. 

2. Model and excitations of the system 

2.1. Presentation of the system 

The discrete model that we consider consists 

of  a chain of particles of mass m, with the lattice 

spacing l along the z axis and submitted to the 

substrate potential  (cf. fig. 1) 

1 "~ 3 

V(yn) = y ; ,  - 

where D is the constant for the on-site potential 

energy,  a fixes the relative width of the well and 

Yn the transversal displacement of the nth par- 

ticle from its equilibrium position. The potential 

was chosen because it represents qualitatively a 

potential  with a hard repulsive part  and a softer 

attractive part  as in most of the chemical bonds. 

It diverges as y ,  goes to infinity, which would be 

a problem in statistical mechanics, but as we are 

interested in localized oscillating solutions, with 

an ampli tude which is beyond the breaking of 
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Fig. 1. Subs t ra te  po t en t i a l  V(a), with  the def in i t ions  of the 

t h r e e  roo ts  r~, r~, r 3 def ined  in sec t ion  3. 
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the chemical bonds, we will restrict ourselves to 

the region inside the well (i.e. ay,, E [ -0 .5 ,  1]), 

except in section 3, where we exhibit an exact 

but unstable soliton solution. 

Nearest  neighbouring particles are harmonical- 

ly coupled with elastic coefficient k so that the 

Hamiltonian of the system is 

, . 2  _ )2 + V ( y , , ) ]  (2.1) H = Z [ ~ m y ~ +  ½k(y,, y,,_, 
17 

where the first term is the kinetic energy ( y ,  dot 

denotes the time derivative). Let us define di- 

mensionless variables describing the transverse 

displacements in terms of u,, = ~ y , ,  the distance 

along the chain by {: = z / l  and the scaled time 

r = t ~ ;  the dimensionless parameter  

2 D 
6 o d =  - -  

k 

determines the ratio of the on-site potential 

energy to the elastic coupling energy. With this 

more appropriate system of units, we get the 

following form for the Hamiltonian: 

H = k~s ~2 [½ti~ + ½(u, , -  u,,_l) 2 
n 

"~ 2 I 3 
+ 6o-~(½u,,- ~u,,)]. (2.2) 

The corresponding equation of motion in dimen- 

sionless form is 

2 2 
ii - ( u , , + ,  +u, ,  I - - 2 U , , ) + 6 o d ( U , , - - U , , ) = O .  

(2.3) 

The displacive regime of (2.3) is obtained when 

the displacements field does not change drastical- 

ly over a lattice spacing (i.e. there is a strong 

intersite interaction, 6oa ~ 1) and extended lat- 

tices modes determine the physics. When % > 1, 

we are in the discrete regime where the con- 

t inuum limit approximation is not valid. 

2.2. Oscillating solutions o f  the system 

limit, which correspond to the small amplitude 

oscillations or "phonons"  in the bottom of the 

potential well. Keeping only linear terms in eq. 

(2.3), we can easily obtain the linear solutions, 

assuming they have the form of plane waves 

f ( r ) =  A e i(q . . . .  ) where A is a constant am- 

plitude (required to be infinitesimally small), q 

the wave vector and 6o the frequency. Substitut- 

ing into the harmonic limit of (2.3), we obtain 

the dispersion law for linear vibrations 

2 "~ I 
we(q )  = w d + 4 s in- (~q) .  (2.4) 

It is a dispersion relation, corresponding to an 

optical branch, in the sense limlqL~ 06o 5 0 .  The 

linear group velocity is ~ = sin(q)/6o(q). How- 

ever,  as explained, we are interested not only in 

really nonlinear solutions, but also in localized 

vibrations. Considering, as first step, only weakly 

nonlinear solutions, we can apply the classical 

multiple scale expansion [19] to provide an 

asymptotic perturbation expansion in the am- 

plitude of the breather,  working to lowest order 

in a small scaling parameter  e, and expanding 

the lowest order  solution u, ,  as thc following 

spatially localized time-periodic form: 

u , ( r )  = e[F,., ,(er) e i°'' + c.c.] 

+ ~2[F, ,,(~;) + 6 , , , (~)  ¢2% + c.c.l 

+ O(e3), (2.5) 

where we use 0,, = qn - wr. Here the expansion 

is restricted to the order O(e3), and c.c. means 

the complex conjugate. The functions Fi.,, are 

assumed to be slowly varying in time and from 

site to site: they can be determined in the con- 

tinuum limit, while the fast oscillations of the 

quasiharmonic carrier, inside the envelope, are 

t reated exactly. Following the standard reductive 

perturbation method and using the new variables 

T = e2r and S = ~ -  Vger, we obtain the well- 

known nonlinear Schr6dinger (NLS) equation: 

We first discuss the solutions of the harmonic iF1. r + PF~,ss + Q[Fl[2F1 = 0 ,  (2.6) 
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Fig. 2. (a) The  m a x i m u m  and the min imum of the amplitude for the small amplitude solutions versus the normalized wave vector. 

(b) The  frequency w b (solid curve) and the dispersion relation w(q) (dotted curve), in ~o~ unit,  versus the normalized wave vector. 

The  discreteness parameter  is w~ = I0. 

The nonlinearity and the dispersion paramete r  

are given by 

1 

x 1 -  3 +  16/fo2d " 4 1 sm ( ~ q) 

\ 7  
2 2 • 4 1 ] 1  

Q _  Wd 5foal + 3 2 s m  (~q)  × cos[2(6)n -- Wb'r)]/j + O(e3) , 
"~ - 4 I 

fo 3fo~ + 16sin (~q)  

and 

o)~ cos(q)  - 4 sin4( I q) 

20) 3 
p =  

For  negative values of P Q ,  (2.6) has a solution, 

called dark-soliton, which has not the appropri-  

ate shape to represent  breather  modes. For posi- 

tive values, the equation has an envelope-soliton 

solution. Here  Q is always positive, whereas P is 

positive for 0-< q -  q0, where q0 correspond to 

the zero-dispersion point given by 

1 + ~ 1  +4 / fo  2 
cos(q0) = 1 - 

The  small ampli tude breather  expression, ap- 

proximate  solution of (2.3) is 

u , ( z )  = 2 c A  sech[e(n - Ver ) /Le]  

× [cos (On - wbz ) 

+ e A  sech[e(n - Ve-c)/L~] 

(2.7) 

with 

~ /  2 

A = Ue -- 2UeUc __ 2P  

- ~ - ~  , L¢ ~ / u ~ -  2ueu ~ 

V~ = V~ + eu  e ,  6) = q + e u J 2 P  , 

W b = 6 0  - I -  ( g g  ~ -  U c e ) e u J 2 P ,  

u e and u c the velocities of the envelope and 

carrier waves. As we will consider discrete 

breathers  such that the center of mass of the 

brea ther  is at rest in the laboratory frame ~l (to 

prevent  discreteness effects, such as Peier ls-  

Nabar ro  additional potential) ,  we should have 

Ve = 0. Taking u c = 0, we obtain f O  b = f O  - -  V2g/ 

2 P < w .  

The solution (2.7) 

localized wave packet ,  

are not symmetric  due 

on-site potential.  Fig. 2 

describes an oscillating 

the oscillations of which 

to the asymmetry of the 

shows the amplitude and 

~ It is possible to find 

equat ion [20], but the final 

wave,  because of the choice 

a static solution of the NLS 

solution will be a propagating 

of the moving frame ( V  ~ 0). 
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frequencies of the breather  solutions as a func- 

tion of q. Large amplitude solutions can only be 

obtained when the breather  frequency % is well 

below the frequency ~o of the phonons modes.  

But this is a domain where the multiple scale 

expansion breaks down. Therefore ,  although the 

method can provide analytical solutions taking 

discreteness into account, it is not appropr!'~te 

for the type of solutions we are seeking. 

3. Large amplitude solutions 

The other  conventional approach in the pros- 

pecting for breather  modes in nonlinear equa- 

tions consists in neglecting the discreteness to 

consider, in counterpart ,  large amplitude non- 

linear excitations. We assume in this section that 

the coupling is strong enough to ensure that the 

variations of u from site to site are quite small. 

In this limit, we may replace u~ depending on the 

site index n by a continuous variable u, function 

of ~: and r. This continuum approximation re- 

places the discrete set of equations (2.3) by the 

following partial differential equation: 

u - u ~  + Wd(U -- U ~-) : 0 .  (3.1) 

An exact pulse solution of the continuum 2-3  

equat ion can be obtained directly by integration 

of the ordinary differential equation that results 

f rom assuming a traveling wave solution, with a 

speed /3. It has the form 

3 ( ) u = ~ s e c h  2 % t  
- 2 ~  ( g - / 3 r )  , 

Since the solution approaches 0 as ]~:]--~ + ~ ,  it 

describes a pulse in the u field, localized around 

s c =/3r .  We denote by u 0 the static solution of the 

equat ion (3.1). The result is shown in fig. 3 

where u is plotted against {: for different values 

o f  (O d . 

Given this exact solitary wave solution, it is 

natural  to ask how it evolves if the amplitude is 

lower than 3- So we now look for solution of the 

form u = a ( r ) u o ( ~ ) .  Inserting this expression in 

(3.1),  we get 

2 

iiUo - au,,e~ + oo-a(au o - a ua)  = O ,  

i.e. 

2 2 

iiu,, + + o , a ( u , , -  + O, d u o ( a  -- a 

= 0 .  

In this limit, the system is invariant under any 

translation along the s ~ axis. 

As the bracket  vanishes identically, we have by 

integration on the space variable from - ~  to + ~  

e ~  
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Fig.  3. Prof i le  o f  the  solu t ions•  (a) Prof i le  fo r  the  ana ly t i ca l  so lu t i ons  u o as f u n c t i o n  o f  un i t  o f  the  la t t ice  (w~ = 10, 1, 0 .5 ) .  (b)  

B r e a t h e r  osc i l l a t ions  in the  case  wa = 1. N o t e  the  a s y m m e t r y  o f  t he  osc i l la t ions .  
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ii + co2a(a - a 2) = O. (3.2) 

Finally,  upon  mult ip lying bo th  sides of  equa t ion  

(3.2)  by ~i and pe r fo rming  the t ime integral  we 

have  

1 . 2  ~ ~ 1 2 e , ~a = ~co~(a - ~a 2 + C) = 3COd (a) (3.3) 

where  C is just a cons tant  of  integrat ion.  This  

equa t ion  is just a virial t h e o r e m  for  an analogue  

par t ic le .  With  this mechanica l  analogy,  we can 

cons ider  that  the part icle sees a potent ia l  U(a) = 

2 R(a)  with a local m a x i m u m  at a = 1 and a - -  ~cod 

local m i n i m u m  at a = 0. Fur ther ,  we are inter- 

es ted  in a localized b r ea the r  mode ,  which must  

have  a finite energy  and a localized energy  den- 

sity. In view of the fo rm of the potent ia l ,  its field 

a mus t  be long  to ] - 0 . 5 ,  1[. We call r t -< r 2 I< r 3 

the  th ree  real roots  of  the th ree  o rder  polyno-  

mial  R(a) ,  when  0 <  C <  1. Once  the particle 

leaves  f rom a = r ~ ,  it rolls up to a = r  2, and 

begins  a per iodic  mot ion ,  except  when  a = r~ = 

- 0 . 5 ,  where  the part icle  tends only asymptot i -  

cally to a = r 2 = r 3 = 1. The  mechanica l  analogy 

helps us to conclude also that  the static solution,  

which co r r e sponds  to a = 1, is an uns table  soliton 

solut ion.  A p a r t  f rom this genera l  considera t ions ,  

one  can also explicitly solve (3.3) by quadra tu re ;  

we have  

X / ( a - r ~ ) / ( r 2 - r ~ ) .  If sn is the elliptic sine- 

funct ion [21], the a p p r o x i m a t e  solution of (3.1) 

is finally 

1 c o d ~ ) [ r l  u ( s  ~, r)  = ~ sech2(2 + (r e r , )  

(3.4) 

Be fo re  test ing this solution numerical ly ,  we 

calculate  two impor tan t  physical quanti t ies:  the 

f r equency  and the energy  of  this solution.  The  

funct ion sn ~ is per iodic  in 2K,  where  K is the 

comple t e  elliptic integral  of  modulus  k: 

Tr/2 

f dO 
K = X/1 - k 2 sin 2 0 

0 

= K ( k ) .  

So s n 2 ( w a ~ / ~ ( r 3 - r , ) u )  has a per iod of 2 K /  

coj\/]~ (r  3 - r l ) ,  and the re fore  a f requency  

77"0) d ~ --  r I 
co"- K ~ (3.5) 

Let  us now calculate,  the limiting values:  

r 3 = r 2 ~ co b = 0 , 

r 2 = r  I = 0 a n d r  3 =  3 ~ c o b = I  

dga= 
d r  +-Wd~/3R(a) " 

Suppos ing  a = r ~  at r = 0 ,  and using a = r ~ +  

( r  2 - -  r 1) s 2 for  the sake  of conven ience  in per-  

fo rming  the in tegra t ion ,  we get 

a 

f ds 
R ~  - ~ £Od~//~ T 

r I 

5 a 

! 2ds 

r i ) (1  - s2)(1 - k2s 2) 

2 l 
sn (s., k ) ,  

where  k 2 = ( r 2 - r l ) / ( r 3 - r i ) E [ O ,  1] and s , ,= 

As shown by the fig. 4a, the vibrat ional  m o d e  

is charac te r ized  by a f requency ,  which decreases  

rapidly  near  the critical ampl i tude  a = 1. We 

have  some th ing  like a sof t -mode,  which cannot  

be coup led  with phonons ,  because  its f requency  

is a lways in the gap.  

W h e n  one  exci ta t ion of the preceding  type is 

p resen t  on the chain,  the con t inuum expression 

of  the H a m i l t o n i a n  (2.2) can be c o m p u t e d  at 

r = 0. It reads  

E =  

+~ 

J k2 IU2 ~- 1 2 211 2 1 
d~: - -  [~ , Sue -1- O)dt~/d  -- j u g ) ]  

2 

a 
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Fig. 4. Compar i son  of the NLS solution of section 2 (doncd  curve) and the one obtained in the cont inuum limit of section 3 (solid 

curve). The  dots are obtained using the Green ' s  functions method.  (a) The breather  frequency versus the max imum amplitude of 

oscillation. The  frequency is in w d unit,  so the lower band edge of the phonons  band corresponds to 1. (b) The breather  energy 

versus the max imum  amplitude of oscillation. The solid line energy is poor because the solution (3.4) is not the exact breather  

shape mode.  The energy is in arbitrary units. 

Fig. 4b shows the evolution of the energy versus 

the maximum of the amplitude of the solution 

and makes  the comparison with the small am- 

plitude one obtained in the preceding section. 

4. Dynamics of a discrete breather 

Our aim in this section is to study the prop- 

erties of the solutions obtained analytically in 

section 3 and particularly their stability. We have 

developed a computer  simulation program to 

study the behavior  of the breather  solutions in 

the system. In order  to allow for an intrinsic 

t rea tment  of the discreteness effects, numerical 

exper iments  are per formed on the discrete sys- 

tem. Differential equations (2.3) with periodic 

conditions and specified initial conditions are 

solved using a fourth-order  R u n g e - K u t t a  

method.  

In addition to the intrinsic spatial discretiza- 

tion such a numerical experimental  involves a 

t ime discretization. The criterion for an appro- 

priate choice of the t ime-step At and to test the 

accuracy of the integration method is that the 

total energy of the Hamil tonian system should 

remain constant during the computat ion.  For At 

varying in the range (/. 1-0.005, depending on the 

choice of w a, the change of the energy is less 

than 4 x 10 5 in relative value. The initial condi- 

tions for the displacements u,,(0) and the vel- 

ocities are deduced from the analytical solution 

(3.4). Since we are interested in nonlinear exci- 

tations the width of which is of the order of the 

lattice spacing, the preceding study in the con- 

t inuum limit can only provide approximate solu- 

tions for a numerical study. We have considered 

here breather  solutions such that the center of 

mass of the pulse is at rest in the laboratory 

f rame,  to avoid Pe ie r l s -Nabar ro  potential ef- 

fects. We focus on the internal breathing motion, 

and not on the center of mass motion. 
3 First of all, the solution with amplitude ~ is 

clearly unstable in the numerical simulation, as 

expected.  Therefore ,  limiting ourselves to solu- 

tions with an amplitude lower than 1, we obtain 

asymmetr ic  oscillating solutions, whose localiza- 

tion is a function of the discreteness parameter  

% .  The asymmetry  is due to the potential: the 

potential  slope (force) is smaller in magnitude 

for positive values than for negative ones. Fig. 

3b. Shows the profile of the solution at different 

times: its profile seems to b r e a t h e .  The evolution 

of the solutions are shown in fig. 5. According to 

our results, we surprisingly found that the more 
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Fig. 5. The maxima of the wave amplitude as function of time• (a) For different initial amplitudes which are determined by the 
choice of C. In the decreasing order, the curves correspond to C = 0.74, 0.65, 0.56, 0.5. (b) For different values of w~, but the 
same C = 0.7. In the decreasing order, the curves correspond to oJ:d = 15, 5, I. 

discrete is the chain,  the more  stable is the 

solut ion ob ta ined  in the con t inuum limit (in fact, 

we can notice that  each solution reaches a quasi- 

s teady state,  but  in more  discrete chains, the 

final ampl i tude  is larger). One  can ask whether  

discreteness effects could stabilize a t ime-depen-  

dent  solut ion like the breather .  In fact, the decay 

of  the ampl i tude  of  the brea ther  is caused by the 

radia t ion of  energy  out of  the center.  However ,  

in a discrete model ,  the waves that can prop-  

agate have well defined frequencies  lying in a 

finite width phonon  band  and thus a wave that 

should  p ropaga te  in a con t inuum med ium may 

decay  exponent ia l ly  in the cor responding  dis- 

crete  model .  Fu r the rmore ,  in ag reement  with 

what  was found  in section 3 and confirmed by 

our  numerica l  results, the brea ther  f requency  lies 

always in the p h o n o n  gap, but because of  the 

nonl inear i ty ,  all the multiples of  the brea ther  

f r equency  will be present  causing the brea ther  

mo t ion  to be damped .  Never theless ,  for  a more  

discrete system, the dispersion band  is th inner  so 

that  the n u m b e r  of  harmonics  which can be 

coup led  to phonons  decreases,  giving a larger 

b rea the r  lifetime. 

Cons ider  for example  the solution in the case 
2 

w a = 10 and C = 0.7. In a very short  time (just a 

few oscillations), the ampl i tude  goes f rom 0.955 

to an average  ampl i tude  a round  0.88. This drop  

is a ccompan ied  by the emission of  a wave packet  

of  ra ther  large ampli tude (called p rompt  radia- 

t ion),  simply because the initial state is not  ap- 

propr ia te  for  the discrete chain. Therefore ,  it 

relaxes very fast to a modified shape,  corre- 

sponding  to a discrete breather .  The resulting 

wave is sharply localized and only about  5 par- 

ticles part icipate in the breathing motion.  Af te r  

this initial t ransient ,  small ampl i tude wave pac- 

kets (called decay radiation) are symmetrical ly 

emi t ted  f rom the pulse, which gives rise to a 

small damping  of  the breather ,  weak enough so 

that  the brea ther  can reach a quasi-steady state 

which cor responds  to a rapid oscillation of  fre- 

quency  w b = w d (0.836 -+ 0.006), slightly less than 

the initial condi t ion,  modula ted  by a smaller one 

of  f requency  w m = w d (0 .152-+0.006) .  So the 

max imum ampli tude pulsates with time at fre- 

quency  ~0 .... but a round  an apparent  equil ibrium 

ampli tude,  

The  maxima of  the ampli tude at the center  of  

the brea ther  are shown in fig. 5a, as a function of  

t ime for  different values of  the initial ampli tude.  

The  difference be tween initial and final equilib- 

r ium ampl i tude  decreases with the initial am- 

pli tude,  whereas  the f requency ¢o~ increases. A 

careful  study of  the f requency  w b and the corre-  

sponding  one Wm, showed us that w b + ~o m = w a 

(0.99-+ 0.01). It suggested to us that  the phe- 

n o m e n o n  of  modula t ion  is just a consequence  of  

the inexact expression chosen as initial condi- 
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tion. The hypothesis is that the difference be- 

tween the approximate solution and an exact 

hypothetical solution can be decomposed in 

terms of long wavelength phonon modes. 

Among these modes, the mode situated exactly 

at the bot tom of the phonon band cannot be 

radiated away because its group velocity is 

zero #2. Therefore  it stays and combines with the 

breather  frequency through the nonlinear part of 

the equation to generate the frequencies % + w~, 

and % -  wt,, and generally all the combination 

modes,  i.e. (no~ d + rnwb) with (n, r n ) E Z .  Be- 

cause we plot the envelope of the breathing 

oscillation, the frequencies lower than w~, are 

emphasized, whereas the largest ones seem to 

disappear: that is why we noticed the modulation 

phenomena ,  characterized by the frequency 

% -  w b. The temporal Fourier transform (c.f. 

fig. 6) of the motion of the center of the excita- 

tion confirms this hypothesis by the presence of 

the different frequency peaks. The same phe- 

nomenon was found, but not explained in an 

earlier paper [22]: the present explanation is 

valid for this case too. 

It seems then clear that by extracting the 

undesirable frequency (analogue to the filtering 

in electronics) in the spectrum, and by leaving 

only the frequency w h and its harmonics, we can 

find the exact breather mode by performing the 

inverse Fourier transform of the resulting spec- 

trum. We preferred however an analytical deri- 

vation of the solution. 

displacements u,, were considered to be smooth 

functions in section 3, so that it was possible to 

use the continuum approximation directly. This 

is not the case for the excitations obtained when 

the discreteness parameter  % is large enough. 

This means that we must treat the u,, exactly. A 

technique for solving (2.3) is the Green's  func- 

tions method. Much attention has been focused 

recently [13,23,24] on self-localized vibrational 

modes induced by the anharmonicity in pure 

crystal lattices. By introducing lattice Green's  

functions and using rotating wave approxima- 

tion, analytical expressions were obtained. The 

profile of the anharmonic localized mode looks 

like an envelope soliton, but its naturc is differ- 

ent from the conventional one, described for 

example by the NLS equation, because its exist- 

ence becomes meaningless if we consider the 

continuum limit of the crystal lattice, and the 

theory is capable of elucidating the existence of a 

new type of modes with eigenfrequencies outside 

the harmonic frequency band. 

In the previous section, we showed that the 

harmonic crystal lattice with nonlinear on-site 

potential can exhibit a self-localized mode below 

the harmonic frequency band unattainable from 

the multiple scales expansion. It is the purpose 

of this section to apply the lattice-Green func- 

tions theory of an s-like stationary self-localized 

mode in a one-dimensional ( ID)  lattice with 

nonlinear on-site potential. We seek brag-lived 

oscillatory solutions to eq. (2.3). Stationary- 

mode solutions can be sought by putting 

5. Discrete breather solution 

5. 1. The formalism of the Green's functions 

method 

The breathers modes considered above are 

very localized oscillating solutions whereas the 

e_, Since the excitation of all the particles by the breather  

occurs essentially s imultaneously (in phase) the excitation of 

the other  static phonon frequencies (w = w(+'rr)) is extreme- 

ly weak.  and indistinguishable on the Fourier spectrum. 

u,, ~ 4, ~,, COS(iwbt ) , (5.1) 
i tl 

where ~o b is the eigenfrequency of the fundamen- 

tal model ( i =  1) and 4~i, are time independent 

amplitude of the ith mode (the ansatz has a dc 

part simply because of the asymmetry of the 

potential).  We insert this ansatz in eq. (2.3), and 

set the coefficients of cos(iw~,t) equal to each 

other,  retaining only the first three terms (we will 

show below that this is a good approximation). 
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W e  ob t a in  
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'OdO. - ( + , , + 1  + 4, ,_ ,  - 2 0 , )  

2 f * ( }  2 l 1 2 2 2 

= °9dtCP,, + ~(4, ,  ÷ 4,, ) ] ,  

( O ) ~  2 I 1 q-  4 ) 1 - 1 -  2 4 t . )  - - (4, ,+,  

2 ~ ~ 
2 _ 4 W b ) 4 , , -  (47,+, + 47, , - 2 4 7 , )  (c0d 

2 l , . ~ 0  ~ 2 1 4 1 2  ] 
= W d ~ , ' L ( J ) n ( P n  q-  2 'q~n  ) " 

(5.2)  

(5.3) 

(5.4)  

H e r e  the  G r e e n ' s  func t ion  is i nvoked  to rewr i te  

the  e q u a t i o n s  in t e rms  of  1D la t t ice  G r e e n ' s  

func t ion ,  which  m a y  be wr i t t en  in t e rms  of  the  

n o r m a l i z e d  so lu t ions  of  the  l inear  par t  of  the  

a b o v e  equa t i ons ,  

2 1 e i q ( n - m )  

G ( n  m,  O)b) (l) d ~ w2( q ) _ Wb (5.5) 

w h e r e  q is the  wave  vec to r  inside the  first Bri l-  

louin  zone ,  and  N the n u m b e r  of  a toms .  Wi th  

q = O, +-2n'r/N, + 2 . 2 ~ r / N , . . .  , ~r ( respec t ive ly  

q = 0 ,  + 2 w / N ,  +-2"2~r/N . . . . .  + - ( N - 1 ) 2 " r r / N )  

if N is even  in teger  ( respec t ive ly  o d d ) ,  it is easy  

to  check  tha t  VN,  ~q ~n ei(q q ' ) n  = N. Then ,  we 

ge t  

= I ( . /k  12 
4~ ~,  G(n  - m ,  0 ) [ 4 ' £  + 2 V'm + 4 2 ) 1 ,  

m (5.6)  

2 1 
4~ = ~'~ G(n  - m, ~ b ) ( 2 4  ° + 4 m ) 4 m  , (5.7)  

m 

2 (} 2 12 
4 2 n = ~ G ( n - m ,  O ) b ) ( 2 4 m 6 m +  1 4 m  ) . ( 5 . 8 )  

m 

T h e s e  e q u a t i o n s  cons t i tu te  a set of  s imu l t aneous  

n o n l i n e a r  e igenva lue  equa t ions  d e t e r m i n i n g  the 

e i g e n f r e q u e n c y  % and  the e igenfunc t ions  4in. 
1 2 2 

= - -  COb)  , I n t r o d u c i n g  the  new var i ab le  y 1 + ~ (wd 

we have  

1 e iqn 
G(, , ,  ,o.) = 

2 _ web + 2[1 - cos (q ) ]  
(D d 

Wd X" COs(qn) 

2N y :  c--oss(q) " 

We are  c o n c e r n e d  he re  with a local ized m o d e  

lying b e l o w  the b o t t o m  of  the  h a r m o n i c  fre- 

quency  band  ( %  < % ) .  T h e  na tu re  of  this par -  

t icle l ike m o d e  is en t i re ly  d i f fe ren t  f rom that  of  

the  c onve n t i ona l  wave- l ike  p h o n o n s  modes .  F o r  

y lying ou t s ide  [ - 1 , 1 ]  ( i .e .  w b be low the 

p h o n o n - b a n d )  the  la t t ice  G r e e n ' s  funct ion 

G(n ,  % )  is non-s ingular .  The  ca lcu la t ion  of  

G(n, 2¢..Ob) is d i f fe ren t  because  in that  case y < 1. 

But  for  ( 2 % )  2 > wZ(~r) = O~d 2 + 4, we have  y < 

- 1 ;  so 1 / [y  c os (q ) ]  has no pole .  Physical ly  the  

cond i t i on  m e a n s  that  the  ha rmon ic s  o f  the  fun- 

d a m e n t a l  osc i l la t ions  wt~ should  be out  of  the 

p h o n o n s  band .  

It is poss ib le  to ob ta in  a s imple r  form in the  

case  of  large  N, r ep lac ing  the sum by an in tegra l  

(see a p p e n d i x  A) .  The  va lues  o b t a i n e d  with the  

Table 1 
Results for the W2d = 10 and ~o b = 0.837 w d. Values of y, the 
Green's functions and the time-independent amplitude of the 
first three modes (S, F and G are respectively referring to the 
results of the Fourier transform (cf. fig. 6), the Fourier series 
of the solution (5.1) and the Green's functions formalism. 
Note that the first method does not give us the sign of the 
coefficients, although we can obtain it by Bayard and Bode's 
theorem. 

0 1 2 

y(iw,) 6 2.50 8.00 
G(0, iWb) 0.8452 2.1834 --0.6296 
G( 1, i oJ h ) 0.0709 0.4559 0.0395 
G(2, i%) 0.0060 0.0952 -0.0025 
G(3, iWb) 0.0005 0.0199 0.0002 
4~i} S 0.28 +0.5 -+0. I 1 
&i, F 0.2794 0.8185 -0.1131 
4~i~ G 0.2794 0.7196 -0.1191 
q5 '~ S 0.039 -+0.114 -+0.0002 
q~'~ F 0.0435 0.1276 -0.0176 
q5 't G 0.0435 0.1786 - 0.0024 
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exact discrete expression for G(n, OOb) (when 

N = 100) and the one obtained in the continuum 

limit G~(n, a)b) are accurate up to 10 4 and we 

obtain the results of table 1 (~o b = 0.837 % ) .  The 

Green ' s  function are rapidly decreasing functions 

of In[. Therefore ,  for a one-localized mode prob- 

lem, we need only consider the central position 

of the localized mode and a few of its neigh- 

bouts ,  in solving eqs. (5.6), (5.7) and (5.8). As 

we confined ourselves to a single-localized mode 

problem,  let us assume that a localized mode 

exists at the origin n = 0 of the 1D lattice, its 

ampli tude extending over its neighbouring 

atoms.  A solution to the equation of physical 

interest is the s-like mode having the symmetry 

property:  ~bl, = &i,,.  

5.2. Numerical results 

First we have to solve eqs. (5.6), (5.7) and 

(5.8) by iteration, starting with appropriate  ini- 

tial conditions. Using the result of the Fourier 

spectrum (fig. 6), we can determine the am- 

plitude of each frequency in the resulting quasi- 

steady state found. The direct determination of 

the 0',,, knowing the frequency w u is theoretically 

possible, but we always find numerically the 

other  (trivial) solution: u,, = 0, Vn. To avoid this 

p roblem,  we fix the dc term and determine the 

0.3 

0.2 

z 

=~ 0.1 

~" 0.0 

i I 

0 2 
FREQUENCY 

Fig.  6. F o u r i e r  t r a n s f o r m  of  t he  b r e a t h e r  osc i l la t ions .  T h e  

f r e q u e n c y  axis  is in % uni ts .  N o t i c e d  the  dc  c o m p o n e n t  at  

co = 0, the  f r e q u e n c y  ~o b, its first a n d  ( w e a k l y )  s e c o n d  ha r -  

m o n i c ,  a n d  f inal ly  s o m e  of  the  (rim d + moab). 

two sets of variables, &l, and qS~, with eqs. (5.7) 

and (5.8). Only 15 iterations are necessary to 

determine the values with an accuracy of 10 4, 

and because of the localization of the pulse and 

of the symmetry  with respect to n = 0, it is only 

necessary to know a few values to obtain the 

result. In table 1, it is possible to compare  the 

ampli tude of each component  of the Fourier 

spectrum,  found in performing the Fourier trans- 

form of the simulation results, the Fourier series 

of the continuum solution and the result of the 

Green ' s  function theory,  for the oscillation's mo- 

tion of the center of the breather  and its first 

neighbour.  This case corresponds to a breather  

frequency of ~% = % (0 .836±0.006) .  From a 
I11 i t  x l ' f l  ~1 x 

value of u 0 0.88 + 0.04, we get u 0 0.885 

as result of the method.  We are now in position 

to make a numerical test of eq. (5.1) as approxi- 

mate  solution to cq. (2.3), by choosing as initial 

conditions u,,(t = 0) = 4'11 + &), + qS~ and ,i,,(t = 

0) = 0. This is done by solving the last equation 

numerically with the same procedure as in sec- 

tion 4. 

In fig. 7, we plot the maxima and the minima 

of the wave amplitude for the first three atoms 

(n = 0, 1, 2). Fig. 7a (respectively fig. 7b) corre- 

sponds to the evolution of the solution, de- 

termined with the continuum limit approxi- 

mation (respectively Green ' s  functions method) .  

The comparison clearly shows that we are now 

extremely close to the exact discrete breather,  

whose existence is confirmed. The frequency of 

the brea ther  is now w b = (0.837 ± 0.003)m~. We 

can notice only a frequency difference, lower 

than 0.1% for the breather  oscillation, which 

attests that the ansatz (5.1) approximates  re- 

markably  well the discrete breather  profile. It is 

of course possible to take into account the third 

order  term in the expansion, but the changes are 

less than 10 4. To test the accuracy of the solu- 

tion, we plot in fig. 8 the amplitude of the u,, at a 

distance of 5(1 units away from the center of the 

breather .  We can see that the burst due to 

adaptat ion is clearly smaller in the second case'  

we note also that the amplitude is always 5 x 1(t 2 

smaller than the maxima of oscillation of the 
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center.  So, the modes obtained here are not 

exact eigenstates of the system, because we trun- 

cated the series, but we have obtained oscillating 

nonlinear localized modes with a very long 

lifetime. 

6. Application to DNA 

Let us now turn to the potential physical impli- 

cations of our analysis, especially to model of 

DNA's  breathing modes. The vibrational modes 

of stretching in DNA have been observed ex- 

perimentally [16-18] and studied later theoreti- 

cally [25,26], because they can induce melting by 

excessive stretching of the bonds. The striking 

connections between the properties of these 

openings and nonlinear phenomena studied be- 

fore,  has led to some related publications in the 

past ten years. These investigations have divided 

the biologist's community [27-29]; some of them 

recognized that this new and original approach 

was interesting and should be carried on. 

As explained in a recent review [14], four 

significant variables (conformational, rotational, 

longitudinal and transverse changes) have been 

introduced in order to describe the main struc- 

tural changes in DNA. Knowing the results of 
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new experiments ,  it has been recognized that the 

application of continuum methodology in the 

investigation of the nonlinear phenomena  was 

maybe inadequate for the biological molecule of 

interest. The manifestations of the underlying 

discreteness cannot be predicted within the 

f ramework  of the continuum approximation.  In 

previous works [6,22], a model was introduced 

where each nucleotide of the double helix is 

presented by a point mass. The coupling, con- 

necting those of the same strand were chosen to 

be harmonic,  while the extremely stretched 

bonds between the two strands were modeled by 

a nonlinear potential.  Using the motion about 

the center of mass of a nucleotide pair, we found 

the discrete nonlinear Hamiltonian (2.1). The 

original study used the Morse potential; the new 

one, having qualitatively the same profile for 

values lower than the local maximum of the 2-3  

power  potential  [30,31] and keeping the asym- 

metry ,  allows us to define a stable state and an 

unstable state, whereas the Morse plateau pre- 

vents the breaking of the transversal bonds. The 

separat ion of the strands that is observed on 

heating the molecule shows that, when the ther- 

mal fluctuations are taken into account, the ef- 

fective potential  between the strands has a repul- 

sive part  when the strand separation exceeds 

some threshold. The 2 -3  power potential is the 

first step in that direction before having a more 

suitable potential.  Moreover ,  its curvature gives 

an oscillation's frequency which is a decreasing 

function of the amplitude. So the motion slows 

down, especially when the amplitude tends to 

the top of the potential,  to stop when it reaches 

it. It is qualitatively in agreement  with the soft- 

mode  behavior  of the breathing motion in DNA.  

The  estimate of model parameters  adapted to 

the theory discussed in previous sections is not 

an easy step, but we have to check whether  it is 

relevant  to apply it to DNA.  Consensually, the 

value relative to the nonlinear potential are fixed 

around the following values; the energy neces- 

sary to break the interstrand coupling is of the 

order  of E 0 = 0.1 eV, whereas its limiting stretch 

is around c~ 1 = 0.5 /~. Some previous studies 

used a more energetic interstrand coupling, tak- 

ing into account only the H-bonds.  But the 

nonlinear potential  represents also the repulsive 

interactions which clearly diminish the potential 

barrier.  The choice of the harmonic constant k is 

more  controversial ,  and the values oscillate from 

0.01 to 10 eV,~ 2. We have chosen k =0 .3  

eV ,~ 2, knowing the importance of discreteness 

effects in the macromolecule.  This value gives a 

discreteness paramete r  of w~ - 6c~ ZE(./k - 8. The 

resulting behavior  of the breathing motions will 

therefore  be the one presented in the previous 

section. We obtain a very localized pulse, with a 

quasi-infinite lifetime and its stabilization is pos- 

sible only because of the discreteness of the 

lattice as shown in the previous sections, in 

agreement  with recent experimental  results [4,5]. 

Finally, it is very important  to know whether 

the dynamics of such modes is relevant to statis- 

tical mechanics of DNA,  and the first thing we 

have to know is what is the ratio of the energy of 

one breather  to kBT. Taking always the same 

example  we get E = 0 . 2 e V  and the breather  

energy = 6 k ~ T .  Neglecting the asymmetry of the 

D N A  chain, we can show [15,22] that u,, could 

represent  the motion about the center of mass of 

a nucleotide pair. Keeping in mind that the 

mot ion in the phase of the two masses seems to 

be extremely small in comparison with the 

stretching, we can assume that the energy per 

site corresponds to ~-kBT. Therefore ,  knowing 

fur thermore  that the pulse is localized over a few 

particles, this result explains why the breather  

dynamics makes  the dominant  contributions in 

D N A ,  as indicated by the simulations of a simi- 

lar model  [8,32], and why this study is probably 

relevant  for DNA.  

7. Summary  and conclusion 

In this paper ,  we have concentrated on the 4) 3 

model ,  when the effects of the discreteness are 
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important.  By studying the equations of motion 

of the system in the continuum limit we have 

obtained approximate expressions for the 

breather  solutions. Numerical simulations have 

shown that these breathing modes are rather 

stable in the discrete cases, whereas an addition- 

al modulation phenomenon is present. From our 

results, it appears that the latter is due to the 

inexactitude of the solution. Owing to the impor- 

tance of breathing motions in many physical 

applications, and particularly in DNA, we have 

developed a Green 's  function method to take 

account of the discreteness effects in detail. Sear- 

ching long-lived oscillatory solutions, we find an 

accurate expression without the modulation. The 

agreement  with the simulation, both qualitative 

and quantitative is a strong demonstration of the 

reliability of the formalism when the extent of 

the breather 's  length is of the order of the sub- 

strate lattice spacing. The main conclusion which 

emerges from our results is that the discreteness 

of the chain could be of great importance for a 

model,  particularly when breather modes are 

involved. It confirms the hypothesis that it could 

be the fundamental  reason of the stability of a 

localized solution. 

Another  point is that we have confined our- 

selves to the time evolution of harmonic lattices 

with a nonlinear on-site potential, associated 

with static localized modes. Propagative breather 

modes in this model are under consideration and 

will need the introduction of the collective vari- 

able approach [33,34]. Nontrivial combination 

effects of the additional Peier ls-Nabarro poten- 

tial and the breather  oscillation will give rise to 

rich physics in this system. 

Appendix. Calculation of the Green's functions 

in the limit N--> + ~  

Replacing the sum over q by an integral over 

the first Brillouin zone, in the limit N---~ +~ ,  and 

denoting by GO(n, % )  the expression of the 

Green 's  function obtained in the continuum 

limit, we get 

2 i Old dq cos(nq) 
Gc( n, Olb) = ~ -  27r y - cos(q) 

-Tr 

Olj d q cos(nq) 

2 ~- y ---c-0~-s(q) " ( a .1 )  

A . I .  Frequency in the gap 

The integrand 

G may be easily 

1 i ~ e  Xtdt 
X 

0 

in eq. (7.1) is nonsingular and 

evaluated by using the identity 

we get therefore 

GO( n, Olb)- Old 1 dq cos(nq) 
2 ~r 

0 

× e - t l y - c ° s ( q ) ]  dt 

0 

2f OI d 

2 dt e yt In( t) .  

0 

(A.2) 

It is the Laplace transform of the Bessel function 

of imaginary argument I,  (see ref. [35]), i.e. 
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1 
OlO - 2 ( y  - V / -  1) • 

(A.3) 

The merit of the use of the method of lattice 

Green 's  function is easily seen from the explicit 

expression for GO(n, Olb)" 
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A . 2 ,  Case o f  the f irs t  harmonic  

T h e  c a l c u l a t i o n  o f  GO(n, 2oob) is d i f f e r e n t  be -  

c a u s e  in tha t  case  y < l .  B u t  fo r  ( 2 W b ) 2 >  

O.}b('rr):o-}2d+4, we  h a v e  y < - l ;  so  1/ 

[ y -  c o s ( q ) ]  has  no  po l e :  

2f w d dq cos(nq) 
G~(n '  2wb) : 2 -  T -  y - c o s ( q )  

0 

~2  a ( dO cos(nO)  

= ( - 1 ) "  T J ~ y+cos (0 )  
0 

_ w~ 1 (y  + ~ 1)1,, I 

2 X/yT- 1 

( A . 4 )  
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