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Localized Classical Waves Created by Defects 
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We study acoustic and electromagnetic waves in a periodic medium (or any 
other background medium with a spectral gap) disturbed by a single defect, i.e., 
a local disturbance analogous to a well potential in solid state physics. We show 
that defects do not change the essential spectrum of the associated nonnegative 
operators and can only create isolated eigenvalues of finite multiplicity in a gap 
of the periodic medium, with the eigenmodes decaying exponentially. We give a 
constructive and simple description of defects in acoustic and dielectric media, 
including a simple condition on the parameters of the medium and of the detect, 
which ensures the rise of a localized eigenmode with the corresponding eigen- 
value in a specified subinterval of the given gap of the periodic medium. 

KEY WORDS: Electromagnetic waves; acoustic waves: localization; photonic 
localization; periodic medium; spectral gap; photonic crystals; photonic band 
gaps: defects. 

1. I N T R O D U C T I O N  

Localization of classical waves, acoustic and electromagnetic, has received 
much attention in recent years (e.g., [refs. 2, 4, 11-13, 16 and 17] and 
references therein). This phenomenon arises from coherent multiple scatter- 
ing and interference and occurs when the scale of the coherent multiple 
scattering reduces to the wavelength itself. Numerous potential applications 
(e.g., [refs. 4, 12, and 17]), for instance, the optical transistor, and the 
fundamental significance of localization of classical waves motivate the 
interest in this.phenomenon. 

In this paper we study localization phenomena due to a single defect 
on a periodic medium (or any other background medium with a spectral 
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gap). We have previously given rigorous proofs of Anderson localization 
due to a random array of defects, both in the lattice case, ~5"6~ and in the 
true continuum caseJ 7" 8~ 

It is a well known fact in solid state physics that a well potential in 
three-dimensional space of depth U and of radius a generates an exponen- 
tially localized state if a2U> rdh'-/8m, where m is the mass of the quantum 
particle (e.g., ref. 15). In this paper we give a similar condition on a single 
defect in a periodic medium with a gap in the spectrum (more generally, in 
any background medium with a gap in the spectrum) which ensures the 
rise of exponentially localized eigenmodes for classical acoustic and elec- 
tromagnetic waves, with the eigenvalue in any specified closed subinterval 
of a given gap of the background medium. 

We study acoustic and electromagnetic waves which are described by 
the formally self-adjoint operators 

1 
A = A ( e ) = - V . - = - - - : V  on L2(~ 2) (1) 

and 

1 V•  M = M ( e ) = V •  on 5 (2) 

where 5, the space of solenoidal fields, is the closure in L2(1~3; C 3) of the 
linear subset { ~ e  C~(R3; C3); V. ~P=0}. We use the notation 

V • ~ = V x ~ = curl ~; V. ~ = div ~P 

We also set 

M = M ( e )  = V  x e(x) on L2(~3; C 3) (3) 

The function e(x) describes the medium; it is the position-dependent 
mass density for acoustic waves, and the position-dependent dielectric con- 
stant for electromagnetic waves. We deliberately pick the same notation 
e(x) for the coefficients of the above operators; even so they have different 
physical meaning, in order to emphasize their similarity and describe 
uniformly their common spectral properties. 

We ahvays assume that e(x) is a measurable real-valued function 
satisfying 

0 < e <~ e(x) ~ e+ < c~ a.e. for some constants e_ and e + (4) 
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Localized acoustic or electromagnetic waves are finite-energy solutions 
of the acoustic or Maxwell equations with the property that almost all of 
the wave's energy remains in a fixed bounded region of space at all times. 
They can be constructed from exponentially localized eigenmodes of the 
acoustic operator A or the Maxwell operator M. (See the discussion in refs. 
7 and 8). 

A defect is a perturbation of a given medium in a finite domain. 
Defects in the medium are expected to generate localized waves by creating 
localized eigenmodes of A or M. This phenomenon is analogous to the rise 
of the localized eigenmodes for electrons described by Schr6dinger 
operators, due to defects such as a well potential satisfying some simple 
conditions on its width and depth (e.g., ref. 15). 

In spite of the fundamental similarity between the creation of localized 
eigenmodes for classical and electron waves, there are some important dif- 
ferences. First of all, for the electron it suffices to perturb a homogeneous 
medium (i.e., a constant potential) locally in order to generate a localized 
eigenmode. For  classical waves a local perturbation of a homogenous 
medium (i.e., e(x) is constant) cannot generate a localized eigenmode. This 
can be easily seen from the consideration of a one dimensional model. 
Indeed, in that case we consider the eigenvalue problem 

- u'(x) = ;tu'(x), x ~ R  

where e(x) = const if Ix[ > R for some R and 2 is a positive number. It is 
clear that this equation cannot have square-integrable solutions. Since, in 
general, the one-dimensional case is the most favorable for localization, we 
should not expect localization under this circumstances in the multidimen- 
sional case. 

The reason for this difference between classical waves and electrons 
can be explained as follows. The motion of an electron in a homogenous 
medium is described by the Schr6dinger operator H 0 = - - A  + Vo with a 
constant potential Vo(x) - Vo. Clearly the spectrum tr(Ho) = [ Vo, oo), so we 
may consider the infinite interval ( - 0% Vo) as a gap in the spectrum of the 
operator H o .  Notice that the edge Vo of the gap depends on the 
homogeneous medium. Hence, if we perturb this homogeneous medium by 
a defect, say by a potential well, the spectrum could expand in the interior 
of the gap ( -  0% Vo), and if this happens the corresponding eigenmodes 
will be exponentially localized. For classical waves in a homogeneous 
medium, described by an acoustic operator A or Maxwell operator M with 
constant e(x), we always have a(A)  = a(M) = [0, oo ), so, as for Schr6dinger, 
we may consider the infinite interval ( -  oo, 0) as a gap in the spectrum. 

82Z 86, I-2q2 
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But for classical waves the bottom 0 of the spectrum does not depend on 
the e(x) of the medium at all. This is why any local perturbation of any 
medium by a defect does not expand the spectrum into the gap ( -oo ,  0), 
as we saw in the one-dimensional model. 

Thus, in order to employ a mechanism for localization of classical 
waves similar to the one for electronic localization, we start with a medium 
described by a coefficient Co(X) such that the corresponding acoustic or 
Maxwell operator has a gap inside its spectrum and the edges of the gaps 
must depend on the medium, i.e., on the coefficient Co(X). Such media with 
medium dependent gaps can be perturbed locally by a defect and generate 
exponentially localized eigenmodes with corresponding eigenvalues in the 
interior of the gaps. 

The most natural way to obtain media with gaps in the spectrum is to 
consider periodic media, i.e., media described by periodic Co(X). In this 
case, the spectra of the operators Ao and Mo, according to Floquet-Bloch 
theory, have band-gap structure and can have gaps. The existence of gaps 
for some periodic dielectric and acoustic media has been proved in refs. 9 
and 10. 

In this paper we show that defects satisfying rather simple conditions 
do generate localized eigenmodes with corresponding eigenvalues in the 
gaps, and that the interior of the gaps contains no points of accumulation 
of those eigenvalues. We give a constructive description of defects in 
acoustic and dielectric media, including a simple condition on the 
parameters of the medium and of the defect, that deposit localized eigen- 
values (i.e., with exponentially localized eigenmodes) in any specified closed 
subinterval of a gap. 

2. STATEMENT OF RESULTS 

A and M are rigorously defined as as the nonnegative self-adjoint 
operators on L2(R '1) and Lz(R3: C3), respectively, uniquely defined by the 
quadratic forms given by the closure of the nonnegative densely defined 
quadratic forms 

. / =  I 

and 

with   co, o3 c3  
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We recall Weyl's decomposition 131, L2(R3, C3)=5(~G, where G, the 
space of potential fields, is the closure in L2(R3; C 3) of the linear subset 
{~ueC~(R3; C3); ~u=Vcp with q~eC~,(R3)}. The spaces 5 and G are left 
invariant by M, with G c ~ ( M )  and MI ,~ = 0. We define M as the restric- 
tion of M to 5, i.e., ~ ( M )  = ~ ( M )  n 5 and M = MI ~CMI~ S. Thus 

M = P~ MI~. = MI~ (7) 

with P~ the orthogonal projection onto 5 and I~: 5---~L2(R3; C 3) the 
restriction of the identity map. Notice that M = M @ 0.~, so we can work 
with M to answer questions about the spectrum of M. 

In this paper we discuss results common to both acoustic and Maxwell 
operators. Since most of the discussion will apply to both cases, where it 
simplifies the discussion we will use W to denote either A or M, and g~ to 
denote either A or M. 

In this paper the background medium will be described by Co(X) [as in 
(4)], and the corresponding operators will be denoted by Ao, Mo, M0, 

w., gZo. 
We will say that the medium described by e(x) [as in (4)] was 

obtained from the background medium by the insertion of  a deject if e(x) and 
co(x) differ only in a bounded domain, i.e., e(x)-eo(X) has compact sup- 
port. In this case we will say that e(x) and Co(X) differ by a defect. 

The operator W o will be said to have a gap in the spectrum if there 
exist numbers 0 < a < a < b </~ such that 

 (Wo) n = [a,  a ]  u 

The interval (a, b) is then called a gap in a(Wo). 
Our first result starts by saying that the insertion of a defect does not 

change the essential spectrum of our operators; this fact is a corollary to 
Weyl's Theorem on the stability of the essential spectrum (ref. 14, Section 
XIII.4). If the background operator W o has a gap in the spectrum, we show 
that, in the medium obtained by the insertion of a defect, eigenmodes 
corresponding to eigenvalues created inside the gap must decay exponen- 
tially fast. In this paper we say that a function q~ decays exponentially fast 
if it has has exponentially decaying local L2-norms, i.e., HZ.,.q~[[2 decays 
exponentially as Ixl ~ or, where Z.,- is the characteristic function of a cube 
of unit side centered at x. [Notice that if 4' is an eigenmode for an acoustic 
operator A, then if 4' decays exponentially fast, it also decays exponentially 
fast pointwise, i.e. 14'(x)l decays exponentially as Ixl---, ~ ,  with at least the 
same rate of decay as the local L2-norms (ref. 1, Theorem 5.1)] If 4' is an 
eigenmode for an acoustic operator A or a Maxwell operator M, then if 4' 
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decays exponentially fast we also have that its gradient, in the acoustic 
case, or its curl, in the Maxwell case, also decays exponentially fast, so the 
energy density of the associated solution of the acoustic equation or 
Maxwell's equations also decays exponentially f a s t .  17" 81 

T h e o r e m  1 (Stability of essential spectrum). Suppose e(x) and 
eo(X) differ by a defect. Then 

~ss(w) = (r.s.,(I4'o) (8) 

If (a, b) is a gap in the spectrum of Wo, the spectrum of W in (a, b) consists 
at most of isolated eigenvalues with finite multiplicity, with the correspond- 
ing eigenmodes decaying exponentially fast, with a rate depending on the 
distance from the eigenvalue to the edges of the gap. 

At this point we should ask if there is a way to ensure the rise of at 
least one eigenvalue in a gap of Wo by introducing a defect. By Theorem 1 
such an eigenvalue will be localized. (An eigenvalue will be said to be 
localized if it is isolated with finite multiplicity, with the corresponding 
eigenmodes decaying exponentially fast.) The next theorem shows that one 
can introduce simply defined defects which generate localized eigenvalues 
in any gap of Wo. 

A simple way to tailor these defects is as follows. Let Y2 be a bounded 
subset of R a with nonempty interior /2~ without loss of generality we 
assume 0 ~ ~2 ~ Typically, we take ~2 to be the cube A of side 1 centered at 
the origin, or the ball B of radius 1 centered at the origin. We set ~2~- l~2 
for l > 0 ,  so A~ is the cube of side /centered at the origin, etc. We insert a 
defect by changing the value of eo(X) inside ~t  to a given constant e > 0, 
i.e., we set 

e(x)=e~l(x)={ e if x ~ 2 /  
" eo(x) otherwise 

(9) 

If (a, b) is a gap in the spectrum of Wo, we will show that we can 
deposit a localized eigenvalue of W inside any specified closed subinterval 
of (a, b), by inserting such a defect with l'-e large enough, how large 
depending only on the geometry of/2 and on the specified closed subinter- 
val. We write Co(~,~)={~eCo(R't,~); s u p p ~ c ~  ~ and use Sd to 
denote the unit sphere in R d. 

Theorem 2 (Creation of localized eigenvalues). Let (a, b) be a gap 
in the spectrum of Wo, s e l e c t / ~ ( a ,  b), and pick 0 < 7 <  l such that the 
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interval [ /2(1-  7), /2(1+ y)] is contained in the gap, i.e., [ /2(1-7),  
/2(1 +~,)] c (a ,  b). If e(x)=e~.t(x ) is as in (9), with 

2 { [ ( IlV~ll = ,2,'/=]]) Jf 
12e> inf  ][~.V~l[ 2 1 +  l+4[[ t~ ,V~[[49 ( I0)  

/2~2 ~E C'g(/Z R), [I,~11 = 1 
g'~ Sd 

the corresponding operator W has at least one localized eigenvalue inside 
the interval [/2(1-y),/2(1 + 7)]. The eigenmodes corresponding to such 
eigenvalues decay exponentially fast, with a rate of exponential decay 
greater than or equal to 

rl"'b'i"Y (I1) 
m"h'" '  Y":') . . . .  = 4[(min{eo. _, e}) -~ +/2(I +7) +~l,,.h.u.~,] 

where r/,,. h.t,. ~, = min{/2(1 - y ) - a ,  b-/2(1 + ~,)}. 

Remark  3. The lower bound for 12e given in (10) to guarantee 
the existence of a localized eigenvalue depends only on the geometry 
of the support of the defect, the location/2, and the relative half-width y of 
the specified interval. To guarantee the creation of at least one localized 
eigenvalue in the gap (a, b), it suffices to take /2 = ( a + b ) / 2  and y =  
( b - a ) / ( a + b )  in (10). 

Remark 4. If f2 is the unit cube A in R d, we can take 
r = ~(x)/ll.~(x)ll,  where S(x) = I-I~ l ((Xi) with 

otherwise (12) 

and ~ to be the unit vector in the direction of a coordinate axis, so (I0) 
is guaranteed by 

For Maxwell operators we always have d = 3, in which case (13) is just 

H e > ~ 2 [ 1  ( 1 + ~ ? " )  1/2] + (14) 

Since we have 7 < 1, a simpler sufficient condition for the creation of 
eigenvalues for Maxwell and three dimensional acoustic operators is given by 

79 
1 2 e >  - (15) 

/272 
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Remark  5. There are a couple of concrete examples for which there 
is a rigorous proof of the existence of gaps in the underlying periodic 
medium so, in view of Remark 4, exponentially localized eigenmodes exist 
for suitable defects: 

3D acoust ic  waves. Consider a two-component periodic acoustic 
medium with the position-dependent mass density po(x) ,  x ~ R 3. Let Q be 
a periodic array of unit cubes separated from each other by the distance ~, 
0 < ~ < 1. Suppose that for a number p > 1 

l if x~  Q 
po(x) = ~o otherwise 

In ref. 9 it is proven that ~ >> 1 and QOz ,~ I, then the acoustic operator A~ 
of the form (1), which describes the propagation of acoustic waves in the 
medium, has gaps in that spectrum. (There are indications that for Q > 20 
and appropriately chosen ~, the operator A already has gaps in the spec- 
trum.) If we perturb the medium by a defect satisfying the conditions in 
Remark 4, say (15), we will definitely have at least one localized eigen- 
mode. 

2D pho ton ic  c r y s t a l  Let us consider a two-component 2D photonic 
crystal consisting of a periodic array of air columns of square cross section 
imbedded into an optically dense substance of dielectric constant e > I. It 
is shown in ref. 9 and 10 that the propagation of H-polarized electro- 
magnetic waves in governed by the 2D divergence operator of the form (1). 
It is proven in ref, 1 that for e J ~  l and e6-',~ 1 the operator Ao has gaps. 
(Apparently, if e > 12 and 6 is appropriately chosen, there are already gaps 
in the spectrum.) A defect satisfying the conditions in Remark 4, say (15), 
will create a localized eigenmode which is an /-/-polarized electromagnetic 
wave. 

3. S T A B I L I T Y  OF THE E S S E N T I A L  S P E C T R U M  

In this section we prove Theorem 1. We start by proving (g). Let 
r/(x) = I/e(x) - 1/~o(x); by our hypotheses it is a bounded measurable func- 
tion with compact support. We write r/(x)= q + ( x ) - r / _ ( x ) ,  with ~/_+(x)= 
max{ ___v/(x), 0}, and define nonnegative self-adjoint operators A,I_= 
- V . ~? +_( x ) V and M ,I ~ = V • q +_( x ) V x by the respective quadratic forms, as 
in (5) and (6) [with I / ~ ( x ) = g + _ ( x ) ] .  We also set M n • 1 7 7  
M,I+I5  as in (7). Using W,~+ to denote either A,~• or Mr• we clearly 
have W = ( Wo + W,~. ) + ( - W,~_ ) as quadratic forms. Since Wo + W,~§ = 
W(e~), with e ~ = e o / ( l + r / + e o )  satisfying (4), it suffices to prove (8) 
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when either q(x)>_-O or q(x)<~O for all x. Thus (8) follows from ref. 14, 
Corollary 4 to Theorem XIII.14, if we can show that, for ~/(x) >/0, we have 
( W o + I ) - " W , ~ ( W o + I ) - "  compact for some positive integer n. This is 
proven in the following lemma. 

I . e m m a  6. For any e(x) as in (4), any bounded measurable function 
r/(x) >/0 with compact support, and any n/> 1, ( W +  I) -"  W,~( W +  I) -"  is 
a Hilbert-Schmidt operator for either W =  M, or, if we have n > d/4, for 
W = A .  

Proof. Notice that if 0 ~< Ht ~< H2, where H~, H2 are two self-adjoint 
operators with H2 Hilbert-Schmidt, then H~ is also Hilbert-Schmidt. Thus, 
since we can always find a continuously differentiable function 0 with com- 
pact support such that q(x)e(x)<~ O(x) for all x, it suffices to consider the 
case when q = 0/e, with 0 a continuously differentiable function with com- 
pact support; X,, will denote the characteristic function of its support. 
Notice that we then have 

(1 ,) 
= - Z , s  O V . - V + ( V O ) . - V  (16) 

8 

1V• 1V• M,, = OV • - + (VO) x - 
8 8 

= - z,, (0v • le v• + (v,7) • le V *) (17) 

In addition, we have 

and 

V . - 1 V ( A + I ) -  , ~<1, 
e 

V• 1 V •  - '  ~<1 (18) 
8 

IIV(A + I ) - '  II ~< x ~ + ,  IIV• (19) 

The estimates (18) are obvious; we prove (19) for M, the other case being 
similar. To do so, we just notice that, for any ~UeLZ(Rs; C3), we have 

[]V• + I)-t~]I2 <~ e + ( ( M  + I)-~7',  M ( M  + I ) - ~ t  ) 

< ~ e + ( ~ , ( M + I ) - ' ~ )  <~e+ll~ll 2 (20) 
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Since Trx,~(A +I ) - "Z ,~<  ~ for n>d/2 (ref. 7, Proposition 42), it 
follows that (A + I ) - "  Z,~ is a Hilbert-Schmidt operator for d >  d/4, so the 
lernma follows from (16), (18), and (19) for W=A. If W = M ,  we have 

( M + I )  -I M,~(M + I) -~ =P~(M+I)  -t M,~(M+I) -t I~ (21) 

so the lemma follows from (17)-(19), since Ps(M+I)- tX,~ is Hilbert-  
Schmidt (ref. 8, Theorem 18). | 

Let (a ,b)  be a gap in the spectrum of Wo, and suppose 
2 e  a(14I) c~ (a, b). It follows from (8) that ;t must be an isolated eigenvalues 
with finite multiplicity; let ~b be a corresponding eigenmode: ff ~ @(W) with 
W~b = )4b. In the case of Maxwell operators, (a, b) is also a gap in the spec- 
trum of Mo, ~b ~ ~ (M) ,  and M~k = 2~k. Let us use I~ to denote either A or 
M. For  any ~p ~ 9 (  I,V o) we have 

(~o, ( l ,Vo- 2 I  ) ~,) = - (q~ ,  I,V,,~) (22) 

so, taking cp = (I,T" o - 2 I ) -  i (, we get 

< r ~, > = - <( g g , -  ~ )  - '  r g',, ~, > = - E < z , , v ' (  g ' o -  ~i)  - '  r ,Tv~,> 
(23) 

where either V ~= V and E = - 1  if I76= A, or V ~= V • and e = 1 if I,~'= M. 
Choosing ~ = Z.,-~' we get 

IIz,. r II 2 ~< [Iz,, W (  I,~'o - 21) - ' x.,.ll" II ~b II. I1~ V~r II 

~ 2v/~-+ IIr/ll ~ IIz~ V ~ ( l ~ o - ; t I ) - '  z.,ll �9 I1r (24) 

Since we have (ref. 7, Lemma 13; ref. 8, Lemma 16) 

�9 t C 1 + 2 e . . . .  ~ I . , - . , '1  liz,. V~( l,Vo - ,~I) - z,-It ~ ~0. (25) 

where C <  oo is some constant (depending only on %. _+ and the dimension d), 
2,,.b = m i n { 2 - a ,  b -~ .} ,  and 

2,,.b (26) 
m~ = 4left. J_ + 2 + 2 , . i , ]  

it follows from (24) that ff decays exponentially fast, with a rate depending 
on the distance 2,. h from the eigenvalue to the edges of the gap. Theorem 1 
is proven. 
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4. C R E A T I O N  OF L O C A L I Z E D  E I G E N V A L U E S  

We now prove Theorem 2. In view of Theorem 1, if we can show that 
W has spectrum in the gap (a ,b)  in the spectrum of Wo [i.e., 
a(IV) n (a, b) ~ ~ ] ,  this spectrum must consist of localized eigenvalues 
only. 

So let us select p e(a ,  b) and pick 0 <~,< I such that the interval 
[ p ( 1 - ) , ) ,  p(1 +),)]  is contained in the gap, i.e., [ p ( l - ) , ) ,  
p( l+7)]c(a ,b) .  Since a ( M ) = a ( M ) ,  to show a ( W ) n C p ( 1 - ~ , ) ,  
p(1 +) , ) ]  ~ ~ it suffices to show that 

(27) 

Recall 

dist(p, a(gO) = min H(lTV-Id) ~11 (28) 
, ~ , ' ~ ,  I1~11 

In particular, if we can find q~ e ~ (  gO such that 

(29) 

then (28) and (29) will imply (27), and we can conclude that the operator 
W has at least one localized eigenvalue in the interval [p(1 - ) , ) ,  p( l  + ),)]. 

So let e(x)=e,.~(x) be as in (9). We will construct a function 
~oe@( gO with [[q~[[ = 1 and support in s such that (29) holds. In this 
case the inequality (29) takes the following simple form: 

[[(e-'F-pI) ~11 ~ ~,,u (30) 

where F - - - V . V = - A  in the acoustic case, and F - - V •  * in the 
Maxwell case. Notice that (30) is the same as 

[ [ ( F - p ' I )  ~o[[ ~<3' (31) 

with p' =pe and d' -- 7pc. 
We start" with generalized eigenfunctions for the operator F. If 

F - -  --A, we pick ~- e 1~ a such that [~'[ = p '  and set f.~(x) = e ~'~ " e C~-(12d). If 
F - - V •  • we pick x, txeR 3 such that [K[2=p ', [a[ = I, h ' - a = 0 ,  and set 
f, vt(x) = e i~ '"a = f,~(x) a e C~( R3; C3). We will write fr(x)  for either f~(x) 
or f,v(x); notice that, pointwise, we have 

(Ffr)(x) = p ~ r ( x )  (32) 
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To produce the desired ~o satisfying (29), we will restrict f v  to s in a 
suitable manner, and prove (31). We now take 

q~r(X) = ~/(x) f r ( x )  (33) 

where r is a real-valued C 2 function with support in f2)', with II~.~ll = 1. 
Notice that q~m(x) = cpm(x) a. It is clear that cpr E @(IT,') c~ N(F),  with sup- 
port in f2~, and 

I1~o,-11 = I1~,11 = 1 (34) 

We consider first the acoustic case. We have 

--dcpi =~, ( - -dr . , )  + ( - - A r  f A -  2(VCz)- (Vf.~) (35) 

= elt'q~:, + ( - d { , ) f A  -- 2tJ~,x. (V~,) (36) 

SO 

Thus 

( - -d  --/.z'I) cp,~ = (--d{,)  f , , -  2(V{,). (Vfa) 

= ( - d { , -  2ih-. V{,) f.~ 

(37) 

(38) 

so we have (27) if 

Thus (10) implies (27). 

+ ( 1 +  4 IJA[J 2 ,'~'/-'l 1 
i[~. Vr ),- J J ;  (41) 

We now turn to the electromagnetic case. Now d =  3 and we have 

V • V x ~oa, 1 = ( - V .  V~o,~) a (42) 

I t ( - m  - ~ ' / )  ~%, II -~ = I1~,112 + 4 d  lie. V~tll 2 (39) 

where ~ = [1,1- J h-. 
We now use a scaling argument [i.e., write ~ / (x )=~( l -~x) ]  to con- 

clude that to obtain (31), it suffices to find ~ ~ C~(s [~) with I1~. II = 1, and 
a unit vector ~, such that 

1 - - 4  Ila~l12 + 4 l  -2kt' lie-V~t[[ "~ ~6,2 (40) 
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Thus 

I I ( e - ' v  • • - / ~ I )  ~,~,, II = I1( - e - ' v .  v - - / t I )  cp,, II (43) 

so in the electromagnetic case we also have (27) if (10) holds with d =  3. 
Since (11) follows from (26), Theorem 2 is proven. 
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