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Abstract. We propose a novel localized algorithm that constructs a bounded degree and planar spanner for wireless ad hoc networks

modeled by unit disk graph (UDG). Every node only has to know its 2-hop neighbors to find the edges in this new structure. Our method

applies the Yao structure on the local Delaunay graph [1] in an ordering that are computed locally. This new structure has the following

attractive properties: (1) it is a planar graph; (2) its node degree is bounded from above by a positive constant 19+⌈ 2π
α

⌉; (3) it is a t-spanner

(given any two nodes u and v, there is a path connecting them in the structure such that its length is no more than t ≤ max{π
2
, π sin α

2
+ 1} ·

Cdel times of the shortest path in the unit disk graph); (4) it can be constructed locally and is easy to maintain when the nodes move around;

(5) moreover, we show that the total communication cost is O(n log n) bits, where n is the number of wireless nodes, and the computation

cost of each node is at most O(d log d), where d is its 2-hop neighbors in the original unit disk graph. Here Cdel is the spanning ratio of the

Delaunay triangulation, which is at most 4
√

3
9

π . And the adjustable parameter α satisfies 0 < α ≤ π /3.
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1. Introduction

We consider a wireless ad hoc network (or sensor network)

consisting of a set V of n wireless nodes distributed in a

two-dimensional plane. Each node has some computation

power and an omni-directional antenna. This is attractive

because a single transmission of a node can be received by

all nodes within its vicinity. By a proper scaling, we assume

that all nodes have the maximum transmission range equal

to one unit. These wireless nodes define a unit disk graph

UDG(V) in which there is an edge between two nodes if

and only if their Euclidean distance is at most one. The unit

disk graph could have O(n2) edges. Hereafter, we always

assume that UDG(V) is a connected graph. We also assume

that all wireless nodes have distinctive identities and each

wireless node knows its position information either through a

low-power Global Position System (GPS) receiver or through

a localization service. By one-hop broadcasting, each node

u can gather the location information of all nodes within

the transmission range of u. Notice, throughout this paper, a

broadcast by a node u means u sends the message to all nodes

within its transmission range. Remember that, in wireless ad

hoc networks, the radio signal sent out by a node u can be

received by all nodes within the transmission range of u.

Unlike wired networks, in wireless ad hoc networks,

each node can move and thus change the topology of the

network. In this case, we need to adjust the transmission

power to keep some properties of the network topology

such as connectivity or power efficiency. The lifetime of a

wireless network, which depends on battery power, is usually

restricted because of limited capacity and resources on each

node. Thus a main goal of topology control is to increase

the longevity of such networks which can be obtained by

designing power efficient algorithms [3–8].

One effective approach [4–6,8–14] is to maintain only a

linear number of links using a localized construction method.

In other words, we construct a sparse distributed structure

as network topology for the wireless network. However,

this sparseness of the constructed network topology should

not compromise too much on the power consumptions of

communications. So we hope that in the sparse topology

every shortest route in the constructed network topology is

efficient. Here a route is efficient if its length is no more

than a constant factor of the least length needed to connect

the source and the destination. A trade-off can be made

between the sparseness of the topology and the efficiency.

Obviously, not all sparse subgraphs are good candidates for

the underlying network topologies.

Consequently, in this paper, we will focus on the construc-

tion of a sparse network topology, i.e., a subgraph of UDG(V),

which has the following desirable features.

• Connectivity. Connectivity is the most basic feature of the

network topology. It guarantees that there exists at least
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one path from one node to any other nodes. Notice that

here we require that the subgraph of UDG(V) is connected

if UDG(V) is connected.

• Sparseness. The topology should be a sparse graph, i.e.,

with O(n) links. This makes numerous algorithms, e.g.,

routing algorithm based on the shortest path, running on

this topology more efficient for both time and power con-

sumption.

• Spanner. We want the subgraph to be a spanner of

UDG(V). Here a subgraph G′ is a spanner of a graph G

if there is a positive real constant t such that for any two

nodes, the length of the shortest path in G′ is at most t

times the length of the shortest path in G. The constant t is

called the length stretch factor. A spanner is always power

efficient for unicast routing.

• Bounded degree. It is also desirable that the node degree in

the constructed topology is small and bounded from above

by a constant. A small node degree reduces the MAC-level

contention and interference, and also may help to mitigate

the well known hidden and exposed terminal problems. In

addition, a structure with small degree will improve the

overall throughput [15].

• Planar. The topology is a planar graph (no two edges

crossing each other in the graph). Some routing algo-

rithms require the topology to be planar, such as right hand

routing, Greedy Perimeter Stateless Routing (GPSR) [16],

Greedy Face Routing (GFG) [17], Adaptive Face Rout-

ing(AFR) [18]. and Gready Other Adaptive Face Routing

(GOAFR) [19].

• Efficient localized construction. Due to the limited re-

sources of the wireless nodes, it is preferred that the under-

lying network topology can be constructed and maintained

in a localized manner. Here a distributed algorithm con-

structing a graph G is a localized algorithm if every node

u can exactly decide all edges incident on u based only on

the information of all nodes within a constant hops of u.

More importantly, we expect that the time complexity of

each node running the algorithm constructing the underly-

ing topology is at most O(d log d), where d is the number

of 1-hop or 2-hop neighbors.

In [16,17], two planar subgraphs relative neighborhood

graph (RNG) and Gabriel graph (GG) are used as underlying

network topologies. However, Bose et al. [20] proved that

the length stretch factors of these two graphs are �(n) and

�(
√

n) respectively. They are precisely n−1 and
√

n − 1

actually [31]. Recently, some researchers [8,12] proposed to

construct the wireless network topology based on the Yao

graph [28] (also called θ -graph [35]). It is known that the

length stretch factor and the node out-degree of Yao graph

are bounded by some positive constants. But as Li et al.

mentioned in [12], all these three graphs can not guarantee a

bounded node degree (for Yao graph, the node in-degree could

be as large as �(n)). In [12,13], Li et al. further proposed to

use another sparse topology, Yao and Sink, that has both a

constant bounded node degree and a constant bounded length

stretch factor. However, all these graphs [8,12,13] are not

guaranteed to be planar. Li et al. [1] proposed a planar spanner

localized Delaunay triangulations (LDel), and Gao et al. [21]

proposed a planar spanner Restricted Delaunay Graph for

wireless ad hoc networks. However both of them can have

unbounded node degree. The planar structure constructed

by Hu [22] may not be a spanner. Previously, no localized

methods were known for constructing a bounded degree and

planar spanner.

Recently Bose et al. [2] proposed a centralized O(n log n)-

time algorithm that constructs a planar t-spanner for a given

node set V, for t = (1 + π ) · Cdel ≃ 10.02, such that the node

degree is bounded from above by 27. Hereafter, we use Cdel to

denote the spanning ratio of the Delaunay triangulation [23–

25]. As far as we know, their algorithm is the first method

to compute a planar spanner of bounded degree. However

the distributed implementation of their centralized method

takes O(n2) communications in the worst case for a set V of

n nodes. Recently, Li and Wang [26] improved this by giving

a centralized method that constructs a planar structure with

degree bounded by at most 19 +⌈ 2π
α

⌉ and a spanning ratio of

at most t ≤ max{π
2
, π sinα

2
+1} · Cdel. Here α is an adjustable

parameter satisfying 0 < α ≤ π /2.

In this paper, we propose the first efficient localized al-

gorithm to construct a bounded degree and planar spanner

for wireless ad hoc networks. The contributions of this pa-

per include: (i) the node degree of the new planar spanner

is bounded by 19 + ⌈ 2π
α

⌉, (ii) its length stretch factor is

t ≤ max{π
2
, π sinα

2
+ 1} · Cdel, where 0 < α ≤ π /3, and

(iii) it can be constructed locally using O(n) messages (each

message with O(log n) bits) and is easy to maintain when the

nodes move around.

The rest of the paper is organized as follows. In Section 2,

we review the centralized method constructing bounded de-

gree planar t-spanner for a unit disk graph. We then give the

first localized method, in Section 3, to construct a bounded

degree planar t-spanner for UDG(V) with total communica-

tion cost O(n) under the broadcasting communication model.

In Section 4, experiments are conducted to show the new

topology is efficient in practice, comparing to other well-

known topologies used in wireless ad hoc networks. Finally,

we briefly conclude our paper in Section 5.

2. Prior Art: Centralized Construction for UDG

Our localized algorithm is developed based on the centralized

algorithm developed in [26], which constructs a planar span-

ner with bounded node degree for UDG(V). The basic idea of

the centralized method is to combine Delaunay triangulation

and the ordered Yao structure [28]. Our localized method

is significantly different from this centralized method: our

method uses a novel combination of the Yao structure and

the local Delaunay graph. For completeness of presentation,

we review the centralized method (shown in Algorithm 1)
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here. We assume that every node u has a unique ID, denoted

by ID(u).

Algorithm 1: Centralized construction of planar spanner

with bounded degree

(1) First, compute the Delaunay triangulation Del(V) of the

set V of n wireless nodes.

(2) Remove the edges longer than 1 in Del(V). Call the

remaining graph unit Delaunay triangulation UDel(V).

For every node u, we know its unit Delaunay neighbors

NUDel(u) and its node degree d(u) in UDel(V).

(3) Find an order π of V as follows: Let i = 1, G1 = UDel(V)

and dG(u) be the node degree of u in graph G. Remove

the node u with the smallest degree dGi(u) (smaller ID

breaks tie) from graph Gi, and call the remaining graph

Gi+1. Set πu = n − i + 1. Repeat this procedure for 1 ≤
i ≤ n. Let Pv denote the predecessors of v in π , i.e., Pv

= {u ∈ V: πu < π v}. Since Gi is always a planar graph,

the smallest value of dGi(u) is at most 5. Then, in order

π , node u has at most 5 edges to its predecessors Pu.

(4) Let E be the edge set of UDel(V), E′ be the edge set of the

desired spanner. Initialize E′ to an empty set and mark all

nodes in V unprocessed. Following the increasing order

π , run the following steps to add some edges from E to

E′ (only consider the unit Delaunay neighbors NUDel(u)

of u):

(a) For the unprocessed node u with the smallest order

πu, let v1, v2, . . . , vk be the processed neighbors

of u in UDel(V) (see Figure 1). Here k ≤ 5. Then

k open sectors centered at node u are defined by

rays emanated from u to the processed nodes vi in

UDel(V). For each sector centered at u, we divide it

into a minimum number of open cones of degree at

most α, where α ≤ π /3 is a parameter.

(b) For each cone, let s1, s2, . . . , sm be the geometri-

cally ordered neighbors of u in NUDel(u) in this cone.

Notice s1, s2, . . . , sm are all unprocessed nodes. For

each cone, first add the shortest edge usi in E to E′,

then add to E′ all the edges sj sj+1, 1 ≤ j < m. Notice

that here such edges sj sj+1 are not necessarily in

UDel(V). One such example is that node u has a De-

launay neighbor x such that ux intersects edge si si+1

and |ux| > 1. In this case, edge si si+1 is not Delaunay

edge, but si and si+1 are consecutive neighbors of u

in UDel since ux is removed.

(c) Mark node u processed.

Repeat this procedure in the increasing order of π , until

all nodes are processed. Let BPS1(V) denote the final graph

formed by edge set E′.

Notice that in the algorithm we use open sectors, which

means that we do not consider adding the edges on the bound-

aries (any edge involved previously processed neighbors). For

example, in Figure 1, the cones do not include any edges uvi.

This guarantees that the algorithm does not add any edges to

Figure 1. Constructing Planar Spanner with Bounded Degree for UDG(V):

Process node u. Here nodes vi represents these nodes have already been

processed by our method.

node vi after vi has been processed. This approach, as we will

show later, bounds the node degree.

Our localized algorithm borrows some idea from our cen-

tralized method, and the proof of the correctness and the

property of the structure constructed locally also uses some

statements proved for centralized method. The following re-

sults were proven in [26].

Theorem 1. Graph BPS1(V) is a planar graph. The

maximum node degree of the graph BPS1(V) is at most

19 + ⌈ 2π
α

⌉. The spanning ratio of BPS1(V) is at most t =
max{π

2
, π sinα

2
+ 1} · Cdel. Here 0 < α ≤ π /3.

The proof of the spanner property is attached in the ap-

pendix (Section 7) since we will use it in the proof of our

localized method. When α = π /3, then the maximum node

degree is at most 25. It improves the previous bound 27

on the maximum node degree by Bose et al. [2]. When α

= π /3, the spanning ratio is at most (π
2

+ 1) · Cdel; when

α = 2 arcsin( 1
2

− 1
π

) ≃ 20.9◦, then the spanning ratio is at

most π
2

· Cdel.

Notice that the time complexity of the centralized algo-

rithm is O(n log n), the same as with the method by Bose

et al. [2]. However, this centralized algorithm has a smaller

bounded node degree, and (more importantly) this algorithm

has the potential to be turned into a localized algorithm as we

will describe in this paper.

3. Localized Construction

In [14], Wang et al. showed that an algorithm presented

in [30] does construct a bounded degree spanner for UDG

with O(n) messages (with unit log n bits) under the broad-

cast communication model, i.e., a signal sent by a node u

can be received by all nodes within its transmission range.

Li et al. [1] presented the first algorithm that constructs a

planar spanner using only O(n) messages under the broad-

cast communication model. No localized method is known
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before for constructing a planar spanner with bounded node

degree.

In this section, we show how to extend the centralized

algorithm [26] reviewed in the previous section to generate a

bounded degree and planar spanner for UDG in a localized

manner. Remember that a distributed algorithm constructing

a graph G is a localized algorithm if every node u can exactly

decide all edges incident on u based only on the information of

all nodes within a constant hops of u. Our algorithm is based

on the efficient localized construction of a planar spanner

LDel(2)(V) for UDG defined by Li et al. [1]. For completeness

of the presentation, we first review the definitions and the

efficient localized construction of LDel(2)(V) in O(n) total

communications.

3.1. Construct LDel(2)(V) Locally

We first introduce some geometric structures and notations

to be used in this section. Let Nk(u) be the set of nodes of

V that are within k hops distance of u in the unit-disk graph

UDG(V). All angles are measured in radians and take values

in the range [0, π ]. For any three points p1, p2, and p3, the

angle between the two rays p1 p2 and p1 p3 is denoted by ∠p3

p1 p2 or ∠p2 p1 p3. The closed infinite area inside the angle

∠p3 p1 p2, also referred to as a sector, is denoted by ∢p3 p1

p2. The triangle determined by p1, p2, and p3 is denoted by

△p1 p2 p3.

An edge uv is called constrained Gabriel edge (or simply

Gabriel edge here) if ||uv||≤1 and the open disk using uv as di-

ameter does not contain any node from V. It is well known [32]

that the constrained Gabriel graph is a subgraph of the Delau-

nay triangulation, more precisely, GG(V) ⊆ UDel(V). Recall

that a triangle △uvw belongs to the Delaunay triangulation

Del(V) if its circum-disk, denoted as disk(u,v,w), does not

contain any other node of V in its interior. Here we often

assume that there are no four nodes of V co-circumcircle.

The following definition is one of the key ingredients of the

localized algorithm constructing LDel(2)(V).

Definition 1. A triangle △uvw satisfies the k-localized De-

launay property if the interior of the circumcircle disk(u,v,w)

does not contain any node of V that is a k-neighbor of u, v,

or w; and all edges of the triangle △uvw have length no more

than one unit. Triangle △uvw is called a k-localized Delaunay

triangle.

Definition 2. The k-localized Delaunay graph over a node

set V, denoted by LDel(k)(V), has exactly all Gabriel edges

and edges of all k-localized Delaunay triangles.

Given a set of points V, the unit Delaunay triangulation,

denoted by UDel(V), is the graph obtained by removing all

edges of the Delaunay triangulation Del(V) that are longer

than one unit. It was proved in [21,36] that UDel(V) is a t-

spanner of UDG(V). Li et al. [1] proved that graph UDel(V)

is a subgraph of the k-localized Delaunay graph LDel(k)(V).

Graph LDel(1)(V) is not a planar graph, and LDel(k)(V) is

planar for k > 1. In [1], Li et al. proposed a communication

efficient method to construct LDel(1)(V) and then make it

planar in total O(n) messages. Here each message has O(log

n) bits.

In this paper, by plugging in the work from [33], we give

the first method to construct LDel(2)(V) using O(n) messages.

Algorithm 2: Localized construction of planar spanner

LDel(2)(V)

(1) Every node u collects the location information of N2(u)

based on an efficient method [33] (reviewed later). It

computes the Delaunay triangulation Del(N2(u)) of its

2-neighbors N2(u), including u itself.

(2) For each edge uv of Del(N2(u)), let △uvw and △uvz be

two triangles incident on uv. Edge uv is a Gabriel edge if

both angles ∠uwv and ∠uzv are less than π /2 and ||uv|| ≤
1. Node u marks all Gabriel edges uv, which will never be

deleted.

3) Each node u finds all triangles △uvw from Del(N2(u)) such

that all three edges of △uvw have length at most one unit.

If angle ∠wuv≥π
3

, node u broadcasts a message proposal

(u, v, w) to N1(u) to form a localized Delaunay triangle

△uvw in LDel(2)(V), and listens to the messages from its

neighboring nodes.

4) When a node u receives a message proposal(u,v,w), u ac-

cepts the proposal of constructing △uvw if △uvw belongs

to Del(N2(u)) by broadcasting accept (u, v, w) to N1(u);

otherwise, it rejects the proposal by broadcasting reject

(u,v,w) to N1(u).

5) A node u adds the edges uv and uw to its set of incident

edges if the triangle △uvw is in Del(N2(u)) and both v and

w have sent either accept (u, v, w) or proposal (u, v, w).

First, we prove the following lemma which will be used

in the analysis of our new algorithm. The proof of the lemma

is included in the Appendix (Section 7).

Lemma 2. An edge uv is in LDel(2)(V) iff ‖uv‖ ≤ 1 and there

is a disk passing through u, and v, which does not contain a

node from N2(u) ∪ N2(v) inside.

We then review the communication efficient method pro-

posed by Calinescu [33] to collect N2(u) for every node u

when the geometry information is known. Computing the set

of 1-hop neighbors with O(n) messages is trivial: every node

broadcasts a message announcing its ID. Computing the 2-

hop neighborhood is not trivial, as the UDG can be dense.

The broadcast nature of the communication in ad hoc wire-

less networks is however very useful when computing local

information.

The approach by Calinescu [33] is based on the specific

connected dominating set introduced by Alzoubi, Wan, and
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Frieder [34]. This connected dominating set is based on a

maximal independent set (MIS). In the algorithm, each node

uses its adjacent node(s) in the MIS to broadcast over a

larger area relevant information. Listening to the informa-

tion about other nodes broadcast by the MIS nodes enables a

node to compute its 2-hop neighborhood. The algorithm uses

heavily the nodes in the connected dominating set, an exam-

ple in [33] shows that overloading certain nodes might be

unavoidable.

We start from the moment the virtual backbone is already

constructed, and every node knows the ID and the position of

its neighbors. The idea of the algorithm is for every node to

efficiently announce its ID and position to a subset of nodes

which includes its 2-hop neighbors. The responsibility for

announcing the ID and position of a node v is taken by the

MIS nodes adjacent to v. Each such MIS node assembles a

packet containing: <ID; position; counter>, with the ID and

position of v, and a counter variable being set to 2. The MIS

node then broadcasts the packet.

A connector node is used to establish a link in between

several pairs of virtually-adjacent MIS nodes, and will not

retransmit packets which do not travel in between these pairs

of MIS nodes. The connector node will rebroadcast packets

with nonzero counter originated by one of the nodes in a pair

of virtually-adjacent MIS nodes, thus making sure the packet

advances towards the other MIS node in the pair. Recall that

the path in between a pair of virtually-adjacent MIS nodes

has one or two connector nodes.

When receiving a packet of type < ID; position; counter >,

a MIS node checks whether this is the first message with this

ID, and if yes decreases the counter variable and rebroadcasts

the packet. A node listens to the packets broadcasted by all

the adjacent MIS nodes (here it is convenient to assume a

MIS is adjacent to itself), and, using its internal list of 1-hop

neighbors, checks if the node announced in the packet is a

2-hop neighbor or not — thus constructing the list of 2-hop

neighbors.

The number of messages taken by this method is

O(n), which is proved in [33] by using the proper-

ties of the specific connected dominating set in [34].

Using the area argument, we can show that the

constant in O(n) is at most 3 × (2 × 7 + 1)2

= 675, since in this method the message from node u

can only be re-broadcast by the MIS nodes which are in

7-hops of u and their connectors. The constant can be

improved by a tighter analysis.

3.2. Bound the degree locally

In the previous section, we have described a localized algo-

rithm that can construct a planar spanner using O(n) messages

for wireless ad hoc networks when every node has the same

maximum transmission range. However, some node in struc-

ture LDel(2)(V) could have degree as large as O(n). We then

give an efficient method to bound the node degree, as shown

in Algorithm 3.

Algorithm 3: Localized construction of planar spanner

with bounded degree

(1) First, compute the planar localized Delaunay trian-

gulation LDel(2)(V), so that every node u knows all

its neighbors NLDel(2) (u) and its node degree d(u) in

LDel(2)(V). Assume a synchronized method is used to

collect NLDel(2) (u) for every node u.

(2) Build a local order π of V as follows: (Every node u

initializes πu = 0, i.e., unordered.)

(a) If node u has πu = 0 and d(u) ≤ 5, then u queries1

each node v, from its unordered neighbors, the current

degree d(v). If node u has the smallest ID among all

unordered neighbors v with d(v) ≤ 5, node u sets

πu = max{πv | v ∈ NLDel(2) (u)} + 1,

and broadcasts πu to its neighbors NLDel(2) (u).

(b) If node u receives a message from its neighbor v

saying that π v = k for the first time, it updates its

d(u) = d(u) − 1 and also updates the order π v stored

locally. So d(u) represents how many neighbors are

not ordered so far.

If node u finds that d(u) ≤ 5 and πu = 0, it goes to

Step 2(a).

When node u finds that d(u) = 0 and πu > 0, it can

go to step 3.

(3) Build structures based on local order π as follows: (Ini-

tialize all nodes unprocessed)

(a) If an unprocessed node u has the highest local or-

der in its unprocessed neighbors Nu in LDel(2)(V),

let k be the number of processed neighbors2 of u

in LDel(2)(V). Node u divides its transmission range

into k open sectors cut by the rays from u to these

processed neighbors. Then divide each sector into a

minimum number of open cones of degree at most α

with α ≤ π /3. For each cone, let s1, s2, . . . , sm be the

ordered unprocessed neighbors of u in NLDel(2) (u).

For this cone, node u first adds an edge usi, where si

is the nearest neighbor among s1, s2, . . . , sm. Node u

then tells s1, s2, . . . , sm to add all the edges sj sj+1, 1

≤ j < m. Node u marks itself processed, and tells all

nodes in NLDel(2) (u) that it is processed.

(b) If an unprocessed node v receives a message for

adding edge vv′ from its neighbor u, it adds edge

vv′.

When all nodes are processed, the final network topology

is denoted by BPS2(V).

1If some unordered neighbor v with d(v)≤ 5 has smaller ID, we call such

query round a failed round. Node u performs a new round of queries only if

it finds that the number of its unordered neighbors has been reduced (d(u)

has reduced in step 2(b)). So there are at most 5 rounds of queries.
2There are at most 5 processed neighbors of u in LDel(2)(V) when u is being

processed, because of the way the ordering is constructed and the fact that

the graph LDel(2)(V) is planar.
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3.3. Analysis of localized algorithm

We first show that the algorithm does process all nodes. First

of all, the algorithm cannot stop at the stage of ordering nodes

locally. This can be shown by contradiction. Assume that

there are some nodes that are unordered. The graph formed

by these unordered nodes is planar, and thus it contains some

nodes with at most 5 unordered neighbors. Among these

nodes, the node with the smallest ID will perform step 2(a),

and reduce the number of unordered nodes consequently.

Notice that the ordering computed by our method is not

a global ordering. Some nodes may have the same order.

However, no two neighboring nodes in LDel(2)(V) receive

the same order. Thus, after all nodes are ordered, the al-

gorithm will process all nodes. Observe that the algorithm

does not process two neighboring nodes at the same time.

Assume that there are two nodes, say u and v are pro-

cessed at the same time. Remember that we process a node

only if it has the highest ordering among its unprocessed

neighbors. Thus, nodes u and v must receive the same or-

der, i.e., πu = π v, which is impossible in our ordering

method.

Additionally, remember that our algorithm checks if d(u)

≤ 5 for computing an ordering locally. Here number 5 can

be replaced by any integer that is not less than 5. Using

a larger integer may make the algorithm run faster, but on

the other hand, it worsens the theoretical bound on the node

degree.

We first show that the localized algorithm is communica-

tion efficient.

Theorem 3. Algorithm 3 uses at most O(n) messages, where

each message has O(log n) bits.

Proof: Notice that it was shown in [33] that we can collect the

2-hop neighbor information for all nodes using a total of O(n)

messages. The communication cost of building LDel(2)(V) is

O(n) since every node only has to propose at most 6 triangles

and each proposal is replied to by two nodes.

The second step (local ordering) takes O(n) messages,

since every node only queries at most 5 rounds, and at the

ith round of query the node sends at most 6−i query mes-

sages. For each query, only the queried node replies. Af-

ter it was ordered, it broadcasts once to inform its neigh-

bors.

The third step (bounded degree) also takes O(n) mes-

sages, because every node only broadcasts twice: (i) to tell

its neighbors to add some edges, and (ii) to claim that it is

processed. The total number of messages of telling neigh-

bors to add some edges is O(n) since the total number of

added edges is O(n) from the planar property of the fi-

nal topology. So the total communication cost is bounded

by O(n).

In addition, it is easy to show that the computation cost of

each node is at most O(d2 log d2), where d2 is the number of

its 2-hop neighbors in the original unit disk graph. This can

be improved to O(d1 log d1 +d2), where d1 is the number of

its 1-hop neighbors in the original unit disk graph. The im-

provement is based on the fact that we only need the triangles

△ wuv in LDel(2)(V) that has angle ∠wuv ≥ π /3. All such

triangles are definitely in LDel(1)(V) from the definition of

local Delaunay. Thus, we can construct the Delaunay trian-

gulation Del(N1(u)) of N1(u) in the first step of Algorithm 2.

Then check the candidate triangles to see if they contain any

node from N2(u) inside its circumcircle. If it does not, then it

belongs to Del(N2(u)) too.

Observe that, after each node u collects the 2-hop neigh-

bors N2(u) (Step 1 of Algorithm 2), our algorithms can be

performed asynchronously. However, collecting N2(u) needs

synchronized communication since otherwise, a node cannot

determine if it has indeed collected N2(u).

BOUNDED DEGREE, PLANARITY AND SPANNING RATIO:

Next, we show that the constructed final topology is still a

planar spanner and has bounded node degree.

Theorem 4. The maximum node degree of the graph

BPS2(V) is at most 19 + ⌈ 2π
α

⌉.

Proof: Notice that for a node u there are 2 cases that an

edge uv is added to the BPS2(V). Let us discuss them one by

one.

Case 1: When we process node u, some edges uv have already

been added by some processed nodes w before. There are two

subcases for this case.

Subcase 1.1: The edge uv has been added by a processed

node v (w = v). For example, in figure 1, node u has

edges from v2, v3 and v5 before it is processed. For each

predecessor v, it only adds one edge to node u.

Subcase 1.2: The edge uv has been added by a processed

node w (w �= v). Node v is an unprocessed node when

processing w. For example, in figure 1, node s2 has edges

from s1 and s3 added by processing node u before node s2

is processed. Notice that both v and u are neighbors of this

processed node w. For each predecessor w, it at most adds

two edges to node u.

Notice that each u can have at most 5 predecessor neighbors

(i.e., processed neighbors), and each of the predecessors can

add at most 3 edges to u (either Subcase 1.1 or Subcase 1.2, or

both). Thus, the number of this kind of edges (edges added by

its predecessors before u is processed) is bounded by 10+5

= 15.

Case 2: When node u is processed, we can add one edge uv

for each cone. Since we have at most 5 sectors emanating

from u and each cone must have an angle of at most α, it

is easy to show that we can have at most 4 + ⌈ 2π
α

⌉ cones at

u. So the number of this kind of edges is also bounded by

4 + ⌈ 2π
α

⌉.
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Figure 2. Two diagonal edges uy and vx intersect. The circum-disk disk

(u, v, x) of the triangle △uvx is decomposed of three regions I, II, and III.

Notice that after node u is processed, no edges will be

added to it. Consequently, the degree of each node u is

bounded by 19 + ⌈ 2π
α

⌉, when the structure is generated by

above algorithm.

Notice that the algorithms in [2] and [26] always add the

edges in the Delaunay triangulation to construct a bounded

degree planar spanner for a set of points. Thus, the planarity

of the final structure is straightforward. The algorithm we

discussed in Section 2 may add some edges (such as edges si

si+1 added in step 4(b) of Algorithm 1) that do not belong to

the UDel(V). To prove the planarity of the structure BPS1(V),

in [26] we showed that no two added diagonal edges intersect.

The property that edges (which possibly intersect si si+1 in

the centralized algorithm) are all Delaunay edges is crucial

for the centralized algorithm. However, this property does not

hold anymore in the localized algorithm. We will show that

BPS2(V) is a planar graph using a different approach.

Theorem 5. BPS2(V) is a planar graph.

Proof: Notice that Algorithm 3 only adds some edges in

LDel(2)(V) or edge si si+1 such that usi and usi+1 are edges

of LDel(2)(V) and si, si+1 are consecutive neighbors of u in

LDel(2)(V) and ∠si usi+1 < π /3. We call such an edge si

si+1 the diagonal edge of the graph LDel(2)(V). Notice that3

these diagonal edges cannot intersect with any edge from

LDel(2)(V). Thus, the only possible intersections, if there is

any, in BPS2(V) are caused by two diagonal edges. Without

loss of generality, we assume that two diagonal edges uy and

vx intersect with each other. Since uy is a diagonal edge,

u and y are consecutive neighbors of some node, say p, in

LDel(2)(V). From our previous discussion, the only possible

intersection to the diagonal edge uy must be some diagonal

edge incident at node p. Thus, p is either x or v here. See

Figure 2 for an illustration of such two intersected diagonal

edges uy and vx. Here we assume that p is v. In other words,

edges vu and vy are consecutive neighboring edges in graph

LDel(2)(V). Assume that ∠uyv < ∠uxv. Notice that ∠uyv

= ∠uxv will not happen by assuming that the nodes are in

3This is due to the following reason. The graph LDel(2)(V) is a planar graph.

For each diagonal edge si si+1, nodes si and si+1 are consecutive neighbors

of a node u. This means that si, si+1 and u belong to the same polygon face

of LDel(2)(V). Thus, si si+1 cannot intersect any edge from LDel(2)(V).

Figure 3. (a) z0 is inside the cap cut by segment vy; (b) z0 belongs to the

sector ∢ uvy.

general position, i.e., no four vertices are co-circular. Then

y is outside of the circumcircle disk(u,v,x) of the triangle △
uvx.

If the disk disk(u,v,x) does not contain a node from N2(x)

∪ N2(v) inside, then edge xv belongs to the graph LDel(2)(V).

This is a contradiction to the fact that edges vu and vy are

consecutive neighboring edges in graph LDel(2)(V). Thus,

there must be some node, say z, from N2(x) ∪ N2(v) inside

the disk disk(u,v,x). We then discuss the possible locations of

z case by case.

If there is a node z that is inside the region II, then

z cannot be from N2(v). Otherwise, we cannot find an

empty circle passing through u and v that is free of nodes

of N2(u) ∪ N2(v) inside. This contradicts the fact that

edge uv belongs to the graph LDel(2)(V). Thus, node z

must be from N2(x), but not from N1(x) (otherwise z ∈
N2(v) again). Assume that there is a 2-hop path xwz con-

necting x and z. We then show that w /∈ disk(u,v,x). If

node w is inside the region I or III, then ‖uw‖ ≤ 1.

Thus, any circle passing through u and v will contain w or z

inside. Since w ǫ N1(u) and zǫ N2(u), edge uv cannot belong to

graph LDel(2)(V). It is a contradiction. Similarly, if node w is

inside the region II, nodes x and w will cause a contradiction

to the fact uv ǫ LDel(2)(V).

Thus node w /∈ disk(u, v, x). Then similar to the proof of

Lemma 2, we can show that to have a node z ∈ N2(x) in region

II is impossible. Similarly, region I cannot contain any node

from N2(u) ∪ N2(x). Therefore, only region III can possibly

contain some node z inside. Then ‖vz‖ ≤ 1. This is proved as

follows: if z is inside the triangle △ vux, it is obvious since

the three sides of this triangle have length at most 1; if z is

inside the cap defined by arc xv, ‖vz‖ ≤ ‖vx‖ since ∠vux <

π /3.

Let c be the circumcenter of disk disk(u, v, x). Let D

be a disk passing through v with center on the segment vc.

Clearly, D is inside the disk disk(u,v,x), since D is disk(u,v,x)

when c is the center of D. Among all such disks, we find

the largest disk D0 that does not have any nodes inside, i.e.,

the disk that passes through some node z0 and node v. Then

edge vz0 belongs to graph LDel(2)(V). We then show that z0

must belong to the sector ∢ uvy. If z0 is inside the cap cut by

segment vy, then any disk passing through v and y will contain

u or z0 inside since ∠yuv + ∠yz0 v > π . See Figure 3(a) for
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Figure 4. (a) All the neighbors wi should be in the circumcircle disk(u, v, x), and no edges other than Delaunay edges are added to u between ux and uv;

(b) No edge wi wi+1 can have length longer than one.

illustrations. It contradicts to the existence of edge vy in graph

LDel(2)(V).

As shown in Figure 3(b), if z0 belongs to the sector ∢ uvy,

and vz0 ǫ LDel(2)(V), then nodes y and u cannot be consecutive

neighbors of v in LDel(2)(V). It is a contradiction.

Then we prove that the graph BPS2(V) has a bounded

spanning ratio.

Theorem 6. Graph BPS2(V) is a t-spanner, where t =
max{π

2
, π sinα

2
+ 1} · Cdel.

Proof: To prove the spanning property, we only need to

study the bound on the spanning ratio for each individual

edge instead of the bound on the spanning ratio for each

shortest path. This can be simply proved. A similar proof is

given in [12] as the proof of Lemma 1. Notice that4 for any

edge uv ǫ UDG(V) we can find a path in UDel(V) with length

at most Cdel‖uv‖, where Cdel = 4
√

3
9

π , and every edge of the

path is shorter than ‖uv‖. So we only need to show that for any

edge uv ǫ UDel(V), there exists a path in BPS2(V) between u

and v whose length is at most a constant ℓ times ‖uv‖. Then

BPS2(V) is a ℓ · Cdel-spanner.

Now we prove the above claim. Consider an edge uv in

UDel(V). If uv ∈ BPS2(V), the claim holds. So assume that

uv /∈ BPS2(V).

Assume w.l.o.g. that πu > π v. It follows from the algo-

rithm that, when we process node u, there must exist a node x

in the same cone with v such that ‖uv‖ > ‖ux‖, ux ∈ BPS2(V),

and ∠xuv < α ≤ π /3. There are two cases: ux is in UDel(V)

or not.

Case 1: ux ∈ UDel(V). We will show that no edges other than

Delaunay edges are added to u between ux and uv. Then we

can use the same proof as in Theorem 7 (in the Appendix) to

prove that there is a path in BPS2(V) connecting u and v with

length at most max{π
2
, π sinα

2
+ 1} · ‖uv‖.

Let w1, w2, . . . s, wm be the sequence of Delaunay neigh-

bors of u in Del(V) from v to x. See Figure 4(a) for illustra-

4Please refer to the proofs of Lemma 4 and Theorem 5 in [36]. They proved

that UDel(V) is a t-spanner of UDG(V).

tions. First, all the neighbors wi should be inside the circum-

circle disk(u,v,x) of the triangle △ uvx, since otherwise any

circle passing through u and wi will contain either x or v inside

which is a contradiction with the fact that uwi is Delaunay

triangle. Then we prove that all the edges wi wi+1 are shorter

than one unit.

Remember that if ‖uv‖ ≤ 1, ‖ux‖ ≤ 1 and ∠xuv ≤ π /3,

then we have ‖xv‖ ≤ 1. If wi and wi+1 are both inside the

triangle △ vux or the cap cut by segment vx, ‖wi wi+1‖ < 1.

Therefore, the only case that edge wi wi+1 is longer than one

unit is shown in Figure 4(b). Assume that ≤ngthwi wi+1 >

1. Since ‖xwi+1‖ < 1 and ‖xwi‖ < 1, we have ∠wi wi+1 x <

π /2. Thus, ∠xuv + ∠wi wi+1 x < π /3 + π /2 < π . It implies

node x is inside the circumcircle disk(u,wi,wi+1). This is a

contradiction and finishes the proof of no long edges among

all the edges wi wi+1.

Thus, we know all edges wi wi+1ǫ UDel(V), and in addi-

tion, they are also in LDel(2)(V) (since UDel(V) ⊆LDel(2)(V)).

Therefore we can not have an additional edge uy added to

LDel(2)(V) in sector ∢ vux, since such an edge breaks the pla-

nar property of LDel(2)(V). See Figure 4(a) for illustrations.

Case 2: ux /∈ UDel(V). Assume ux is added to LDel(2)(V) in the

sector ∢ w1 uw2, where w1 and w2 are consecutive Delaunay

neighbors of node u. There are three cases for Delaunay

edges w1u and w2u. We prove that all of them do not exist by

contradiction.

Subcase 2.1: both edges w1 u and w2 u are no more than one

unit, shown in Figure 5(a). From the property of Delaunay,

x must be outside of the circumcircle disk(u,w1,w2) of the

triangle △ uw1 w2. Thus,∠uw1 x +∠uw2 x > π . Any circle

passing through u and x will contain either w1 or w2 inside.

Notice that w1,w2 ǫ N1(u). It contradicts the existence of

edge ux in LDel(2)(V).

Subcase 2.2: both edges w1 u and w2 u are longer than one

unit, shown in Figure 5(b). Since ‖uw1‖ > 1 ≥ ‖ux‖, ∠uw1

x < π /2. Similarly, ∠uw2 x < π /2. Then we have ∠uw1 x

+ ∠uw2 x < π , which contradicts the assumption that x is

outside of the circumcircle disk(u, w1, w2).

Subcase 2.3: ux is added to LDel(2)(V) when one of w1 u

and w2 u is shorter than one unit and the other is longer
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Figure 5. All subcases in Case 2 do not exist.

than one unit. Assume that ‖w1 u‖ > 1. See Figure 5(c) as

illustrations.

Since edge ux ∈ LDel(2)(V), we know ‖xw1‖ > 1. Other-

wise, if w1 and w2 are in N2(u), then any circle passing though

u and x will contain either w1 or w2 inside. Plus ‖uw1‖ > 1

and ‖ux‖ ≤ 1, we have ∠uw1 x < π /3. From x is outside

the circumcircle disk(u, w1, w2), ∠uw1 x + ∠uw2 x > π .

Thus,∠uw2 x > 2π /3, which implies ‖ux‖ > ‖uw2‖. There-

fore, in Algorithm 3, no edge uv from UDel(V) which is below

edge ux will select ux as the shortest neighbor in the same

cone, because it will select uw2.

Consider that an edge uv ǫ UDel(V), which is above edge

ux, selects ux as the shortest neighbor. Since ‖uv‖ ≤ 1, ‖ux‖ ≤
1 and ∠vux < π /3, we have ‖vx‖ ≤ 1. Notice that w1 /∈ △ uvx

because of ‖uw1‖ > 1. Again from the property of Delaunay,

v and x must be outside of the circumcircle disk(u,w1,w2). It

implies that ∠vw1 x + ∠vux > π . Thus, ∠vw1 x > π − ∠vux

> 2π /3. Then 1 ≥ ‖vx‖ > ‖xw1‖ > 1 causes a contradiction.

Therefore Subcase 2.3 shown in figure 5(c) does not exist too.

Consequently, it is impossible that any node u will add

an edge ux /∈ UDel as the shortest link to BPS2(V) in a cone

that has some edges uv from UDel. Together with the proof

of Case 1, it finishes our proof of the spanner property of

BPS2(V).

3.4. Dynamic update

After the construction of the topology, dynamic maintenance

is also an important issue, since an ad hoc network could be

highly dynamic. Three major events may cause the topology

obsoleted: due to

(1) node moving,

(2) node joining or leaving, and

(3) node failure.

Therefore, a dynamic update method for our proposed

topology is needed. Usually, there are two kinds of update

methods: on-demand update or periodical update. Most of

the existing topology control algorithms are invoked periodi-

cally, while some algorithms perform the updating only when

it is required (i.e., on-demand). Our algorithm can adapt and

combine both of these two update methods. If no major topol-

ogy changes (for example, some small node movements do

not affect the topology), no update will be performed until

some pre-set timer expires. In other words, we perform our

algorithm periodically with a pre-set time. The time could be

set quite long depending on the types of the applications. But

for some major topology change (such as a node’s death or a

tremendous movement of nodes), an on-demand update will

be performed. Notice that since our algorithm is a localized

algorithm, the update process can be performed only in a

local area (within 2-hop neighborhood) where the topology

change occurs. For example, When a node u moves around,

if a triangle △ xyz in the local Delaunay disappears or a new

triangle △ xyz appears in the new local Delaunay, then u is

a (2-hop) neighbor of either x or y or z (if LDel2 is used). In

other words, the movement of a node u only affects its local

neighborhood of the local Delaunay triangulation, thus also

the structure defined in this paper.

4. Experiments

In this section we measure the performance of the new

bounded degree and planar spanner by conducting some ex-

periments. In our experiments, we randomly generate a set V

of n wireless nodes and its UDG(V), and test the connectivity

of UDG(V). If it is connected, we construct different local-

ized topologies from V, including our proposed topologies

(BPS1(V) and BPS2(V)), some well-known planar topologies

(Gabriel graph GG(V), relative neighborhood graph RNG(V)

and localized Delaunay triangulations LDel(V)), and some

bounded degree spanners (Yao graph YG(V) and Yao and

Sink YG∗(V)). Then we measure the sparseness, the power

efficiency and the communication cost of these topologies.

In the experimental results presented here, we generate 50

random wireless nodes in a 10 × 10 square; the number of

cones is set to 8 when we construct YG(V) and YG∗(V); the

angle parameter α = π /3 when we construct BPS1(V) and

BPS2(V); the transmission range is set as 8. We generate 100

vertex sets V (each with 50 vertices) and then generate the
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Figure 6. Different topologies from the same UDG(V).

graphs for each of these 100 vertex sets. The average and

the maximum are computed over all of these 100 vertex sets.

Figure 6 gives all seven different topologies for the unit disk

graph illustrated by the first figure of Figure 6. It shows that

all of these topologies except YG(V) and YG∗(V) are planar.

4.1. Node Degree

The node degree of the wireless networks should not be too

large. Otherwise a node with a large degree has to communi-

cate with many nodes directly. This increases the interference

and the overhead at this node. The node degree should neither

be too small: a small node degree usually implies that the net-

work has a lower fault tolerance and it also tends to increase

the overall network power consumption as longer paths may

have to be taken. Thus, the node degree is an important per-

formance metric for the wireless network topology. The node

degrees of each topology are shown in Table 1. Here davg/dmax

is the average/maximum node degree. It shows that BPS1(V)

and BPS2(V) have a less number of edges (average node de-

grees) than LDel(V), YG(V) and YG∗(V). In other words, these

graphs are sparser, which is also verified by Figure 6. Recall

that theoretically, only YG∗(V), BPS1(V) and BPS2(V) have

bounded node degree (both for in-degree and out-degree).

In [12,13], Li et al. gave an example to show that RNG(V),

GG(V), YG(V) and LDel(V) can have large node degree (in-

degree for YG(V)). Notice that in our experiments, since the

wireless nodes are randomly distributed in 2-d space, the

maximum node degree of these graphs is not as big as the ex-

Table 1

Node degrees and stretch factors of different topologies.

davg dmax tavg tmax ρavg ρmax

UDG 16.83 35 1.000 1.000 1.000 1.000

RNG 2.27 5 1.320 5.049 1.059 2.942

GG 3.36 8 1.120 2.131 1.000 1.000

LDel 5.25 11 1.048 1.405 1.000 1.000

YG 8.11 19 1.040 1.681 1.002 1.459

YG∗ 4.81 11 1.070 1.990 1.003 1.459

BPS1 4.44 9 1.075 1.965 1.004 1.755

BPS2 4.45 9 1.074 1.965 1.004 1.823

ample. It is proved that the node degree of YG∗(V) is bounded

from above by (k + 1)2 − 1 (the in-degree is at most k(k +
1), the out-degree is at most k), where k = 8 is the number of

cones. In this paper, we prove that BPS1(V) and BPS2(V) have

a bounded node degree of at most 19 +⌈ 2π
α

⌉ = 25 when α =
π /3. All of these theoretical bounds on the node degree can

be verified by the maximum node degrees in Table 1. Both

BPS1(V) and BPS2(V) have smaller maximum node degrees

than YG(V).

4.2. Spanner Properties

Besides the bounded node degree, the most important design

metric of wireless networks is perhaps the power efficiency,

as it directly affects both the node and the network lifetime. So

while our new topologies increase the sparseness, how does

it affect the power efficiency of the constructed network? We

then define the power stretch factor for measuring the power

efficiency. A subgraph G′ is a power spanner of a Graph G if

there is a positive real constant ρ such that for any two nodes

u and v, the minimum power consumed by all paths between

u and v in G′ is at most ρ times of the minimum power con-

sumed by all paths between them in G. The constant ρ is called

the power stretch factor. Here we assume that the total trans-

mission power consumed by path v0,v1, . . . ,vk is
∑k

i=1||vi−1

vi||β , where the power attenuation constant β is a real constant

depended on the wireless environment. In our simulations β

= 2. Table 1 also summarizes our experimental results of the

length and power stretch factors of all of these topologies.

Here, tavg/tmax is the average/maximum length stretch factor;

ρavg/ρmax is the average/maximum power stretch factor. It is

not surprising that the average/maximum power stretch fac-

tors of BPS1(V) and BPS2(V) are small and at the same level

of those of the YG(V) and YG∗(V) while they are planar and

much sparser. Notice that Yao graph does perform a little bit

better in our simulations in term of spanner properties, but

it is not a planar structure and also cannot bound the nodal

degree.

4.3. Communication Cost

In Section 3 we proved that the localized algorithm construct-

ing BSP2(V) uses at most O(n) messages. We found that when
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Table 2

Performances and communication costs of BPS2(V).

num of nodes 50 100 150 200 250 300

davg(UDG) 16.81 34.98 51.79 68.25 85.89 103.87

dmax(UDG) 35 63 93 114 141 177

davg 4.43 4.49 4.53 4.61 4.58 4.63

dmax 9 9 11 11 10 9

tavg 1.079 1.091 1.090 1.092 1.093 1.089

tmax 1.958 1.964 1.949 1.965 1.968 1.963

ρavg 1.005 1.007 1.006 1.005 1.005 1.006

ρmax 1.865 1.891 1.850 1.872 1.861 1.873

tot msgavg 443 912 1379 1855 2340 2798

tot msgmax 448 921 1394 1870 2326 2812

nod msgavg 8.86 9.13 9.19 9.27 9.30 9.32

nod msgmax 13 14 16 15 17 15

the number of wireless nodes increases the average messages

used by each node for constructing BPS2(V) is still in the

same level. In this experiment, we generate from 50 to 300

random wireless nodes in a 10 × 10 square and run our local-

ized algorithm to build BSP2(V). The average and the maxi-

mum are computed over 50 vertex sets. All other parameters

and settings are the same as those in previous experiments.

Table 2 summarizes our experimental results of the node

degree, length and power stretch factors, and communication

costs of BPS2(V). Here, davg(UDG)/dmax(UDG) is the aver-

age/maximum node degree for the original unit disk graph;

tot msgavg/tot msgmax is the average/maximum total mes-

sages cost for constructing BPS2(V); nod msgavg/nod msgmax

is the average/maximum messages cost in each node during

the construction. Notice that here we do not count the mes-

sages used in building LDel(2)(V). In other words, we only

consider the messages used in the second and third steps

of Algorithm 3. Remember that by plugging in the work

from [33], we can construct LDel(2)(V) using O(n) messages.

However, the hidden constant is pretty large. Therefore, in

this experiment, we use a naive method (in which each node

broadcasts its one-hop neighbor information to its all neigh-

bors) to collect 2-hop neighbor information and directly build

LDel(2)(V) based on the information. The first two rows of Ta-

ble 2 show the network becomes more and more dense while

the number of wireless nodes increases. Experimental results

of communication costs on each node show that the localized

method does not cost more messages on each node even the

graph becomes more dense. Simulations in Table 2 also show

that the performances of our new topology BPS2(V) are stable

when the number of nodes changes.

5. Conclusion

In this paper, we proposed a localized algorithm to construct

planar spanners with bounded node degree for wireless ad

hoc networks based on a centralized method we developed.

The localized algorithm can be implemented using O(n) mes-

sages under the broadcast communication model for wireless

networks. The basic idea of this new method is to use a lo-

calized Delaunay graph to construct a planar spanner graph,

and then to apply some ordered Yao graph to bound the node

degree. It is carefully designed not to lose all the good prop-

erties when combining them. To the best of our knowledge,

this is the first localized algorithm for constructing a bounded

degree and planar spanner. We also conducted experiments to

show that this topology is efficient in practice compared with

other well-known topologies for wireless ad hoc networks. It

is still an open problem of how to bound the total edge length

of our localized structure BPS2(V).
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7. Appendix

7.1. Proof of Spanner Property for Centralized Method

Here we review the proof of spanner property for the central-

ized method, since the proof of localized method uses some

techniques presented here.

Theorem 7. Graph BPS1(V) is a t-spanner, where t ≤
max{π

2
, π sinα

2
+ 1} · Cdel.

Proof: For completeness, we review the proof here. Keil and

Gutwin [25] showed that the Delaunay triangulation is a t-

spanner for a constant Cdel = 4
√

3
9

π using induction on the

increasing order of the lengths of all pairs of nodes. We can

show that the path connecting nodes u and v constructed

in [25] also satisfies that the length of each edge of that path

is at most ‖uv‖. Consequently, for any edge uv ǫ UDG(V) we

can find a path in UDel(V) with length at most a t = 4
√

3
9

π

times ‖uv‖, and all edges of the path is shorter than ‖uv‖.

So we only need to show that for any edge uv ǫ UDel(V),

there exists a path in BPS1(V) between u and v whose length

is at most a constant ℓ times ‖uv‖. Then BPS1(V) is a ℓ ·
Cdel-spanner.

Now we prove the claim above. Consider an edge uv in

UDel(V). If uv ∈ BPS1(V), the claim holds. So assume that

uv /∈ BPS1(V).

Assume w.l.o.g. that πu < π v. It follows from the algo-

rithm that, when we process node u, there must exist a node

v′ in the same cone with v such that ‖uv‖ > ‖uv′‖, uv′ ǫ

BPS1(V), and ∠v′ uv < α ≤ π /3. Let v′ = s1, s2, . . . , sl = v

be this sequence of nodes in the ordered unprocessed neigh-

borhood of u in UDel(V) from v′ to v. Let v′ = w1, w2, . . . ,wk

= v be the sequence of neighbors of u in Del(V) from v′ to v.

Obviously, the set {s1, s2, . . . , sl} is a subset of {w1, w2, . . . ,

wk }.
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Figure 7. The shortest path in polygon P.

Similar to [2], consider the polygon P, formed by edge

uw1, uwk and path w1 w2 . . . wk. We will show that the path

w1 w2 . . . wk has length that is at most a small constant factor

of the length ‖uv‖. Let us consider the shortest path from

w1 to wk that is totally inside the polygon P. Let S(w1, wk)

denote such a path. This path consists of diagonals of P and is

contained inside △uw1 wk. For example, in Figure 7, S(w1,wk)

= w1 w7 w9.

Assume that ‖uv′‖ = x. Let w be the point on segment uv

such that ‖uw‖ = ‖uv′‖. Assume that ‖uv‖ = y, then ‖wv‖ =
y−x. Notice that node v′ is the closest Delaunay neighbor in

such cone. Obviously, all Delaunay neighbors wi in this cone

are outside of the sector defined by segments uw and uv′. We

will show that such path S(w1, wk) is contained inside the

triangle △ww1 wk. First, if no Delaunay neighbors are inside

△ww1 wk, then S (w1,wk) = w1 wk. Thus, the claim trivially

holds. If there are some Delaunay neighbors inside △ww1

wk, then w1 will connect to the one wi forming the smallest

angle ∠uw1 wi. Similarly, node wk will connect to the one wj

forming the smallest angle ∠uwk wj. Obviously wi and wj are

inside △ww1 wk, thus, the shortest path connecting them is

also inside △ww1 wk. Since path S(w1,wk) is the shortest path

inside the polygon P to connect w1 and wk, by convexity, the

length of S(w1,wk) is at most ‖v′ w‖+ ‖wv‖ = 2x sin θ
2
+y−x.

Here θ = ∠v′ uv < α.

An edge wi wj of S(w1,wk) has endpoints wi and wj in the

neighborhood of u. Let D(wi,wj) be the sequence of edges

between wi and wj in the ordered neighborhood of u, which

are added by processing u. For example, in Figure 7, D(w1,

w7) = w1 w2 w3 w4 w5 w6 w7. We can bound the length of

D(wi, wj) by π /2 ‖wi wj‖ by the argument in [2,29]. In [29],

it is shown that the length of D(wi,wj) is at most π /2 times

‖wi wj‖, provided that (1) the straight-line segment between

wi and wj lies outside the Voronoi region induced by u, and

(2) that the path lies on one side of the line through wi and

wj. In other words, we need D(wi,wj) to be one-sided Direct

Delaunay path5 [23]. In [2], they showed6 that both of these

5For any pair of nodes u and v, let u = w1, w2, · · · , wk = v be the sequence of

nodes whose Voronoi region intersect segment uv and the Voronoi regions

at wi and wj share a common boundary segment. The the Direct Delaunay

path DT(u,v) is w1w2· · ·wk.

6Firstly, the Voronoi region centered at u will not intersect the segment wiwj.

This can be proved by showing that ‖up‖ > max {‖wi p ‖,‖ wj p‖ } for

Figure 8. Disk D2 touches a node w from N2(u) ∪ N2(v).

two conditions hold when ∠wi uwj < π /2. This is trivially

satisfied since ∠wi uwj < α ≤ π /2.

Thus, we have a path uw1, w2, . . . , wk to connect u and v

with length at most

x +
(

2x sin
θ

2
+ y − x

)

· π/2

≤ y ·
(

π

2
+

x

y
·
(

π sin
α

2
−

π

2
+ 1

)

)

≤ y · max
{π

2
, π sin

α

2
+ 1

}

Since any such node wi is not inside the polygon Q formed

by the Unit Delaunay neighbors of u (see [26] for more detail),

the path us1, s2, . . . , s1 (which is in BPS1(V)) is not longer

than the length of path uw1w2· · ·wk.

Consequently, BPS1(V) is a spanner with length stretch

factor at most max {π
2
, π sinα

2
+ 1} · Cdel.

7.2. Proof of Lemma 2

Lemma 2. An edge uv is in LDel(2)(V) iff ‖uv‖≤ 1 and there

is a disk passing through u and v which does not contain a

node from N2(u) ∪ N2(v) inside.

Proof: It is trivial that if an edge uv is in LDel(2)(V) then that

kind of disk exists, since either uv is a Gabriel edge or uv is

an edge from a 2-localized Delaunay triangle. Then we prove

the other direction.

Assume that there is a disk D1 passing through u and v, and

there is no node from N2(u) ∪ N2(v) inside this circle D1. If

uv is the diameter of circle D1, then it is a Gabriel edge which

must be in LDel(2)(V). Otherwise, let D3 be the disk whose

diameter is uv (with center c3). Disk D3 must contain some

node, say w, inside as shown in Figure 8. Disk D1 cannot

any point p on segment wiwj, which is due to ∠uwip + ∠uwj p > ∠wi

up + ∠wjup = ∠wi uwj. Notice that ∠wi uwj < α ≤ π /2. Secondly,

the path D(wi,wj) is on one-side of wi wj because it is part of the shortest

path connecting w1 and wk. Thirdly, the path D(wi,wj) is Direct Delaunay

path DT(wi,wj). This can be proved by showing that Vor(wq) intersects the

segment wi wj for any i ≤ q ≤ j. This is obvious since the circumcenter

(belonging to Vor(wq)) of any triangle uwq−1 wq is on the same side of wi

wj as u.
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Figure 9. Two cases in the proof: x is on the same side or different side of

uv as y.

contain w inside. Assume D1 has center c1. Let D be a disk

centered at some point c on the segment c1 c3 and passing

through u and v. Then we can move the center c of disk D

along c1 c3 from c1 to c3 and set the radius of D be ‖cu‖,

until the disk touches the first node w from N2(u)∪ N2(v) or

becomes D3.

If the disk becomes D3, then uv is a Gabriel edge and

in LDel(2)(V). Otherwise, the disk D touches some node w,

which is shown in Figure 8 as disk D2. Then D becomes

the circumcircle disk(u,v,w) of u, v and w. Since D2 does

not contain any node from N2(u) ∪ N2(v) inside, we only

need show it is empty from N2(w) to prove that △ uvw is a

2-localized Delaunay triangle and thus uv is in LDel(2)(V).

We prove this by contradiction.

Assume that there is a node y from N2(w) inside

disk(u,v,w). Clearly, node y cannot be from N2(u) ∪ N2(v),

since D2 does not contain any node from N2(u) ∪ N2(v) in-

side. Node y must be two hops away from w, otherwise y ∈
N2(u). In addition, node y cannot be inside the cap defined by

arc uwv since ‖uw‖≤ 1 and ‖uv‖≤ 1. Assume that a node x

is one hop neighbor of both y and w. Notice that x cannot be

a one hop neighbor of u or v, otherwise, y will become the

two-hop neighbor of u or v, which is a contradiction to the

property of disk D. Then we know that edges uw, uv, vw, xy

and xw are shorter than one unit, while edges uy, vy, wy, xu

and xv are longer than one unit. There are two cases about

the location of node x: on the different side of uv as y and on

the same side of uv as y, as shown in Figure 9. Clearly, node

x is outside of the disk D, otherwise, D will contain a 2-hop

neighbor x of u inside (through path uwx).

For the first case, we divide the half-space bounded by

line uv, which contains w and excludes the cap uwv, into

three regions as shown in Figure 9(a).

If x is inside the region I, see Figure 10(a) for an illustra-

tion. Since ‖xw‖≤ 1, ‖uw‖≤ 1, and ‖xu‖ > 1, we have ∠xwu

> π /3. Thus, ∠xuw < 2π /3. Since ‖xy‖≤ 1, ‖xu‖ > 1, and

‖uy‖ > 1, we have ∠yux < π /3. Thus, ∠wuy = 2π− ∠xuw

− ∠yux > π , which is impossible.

If x is inside the region II, see Figure 10(b) for an illus-

tration. Since ‖xu‖ > 1, ‖yu‖ > 1, and ‖xy‖≤ 1, we have

∠xuy < π /3. Similarly, we have ∠uxv < π /3, ∠xvy < π /3,

Figure 10. Node x is inside region I or region II.

Figure 11. Node x is inside region I or region II.

and ∠xvy < π /3. Thus, 2π = ∠xuy + ∠uxv + ∠xvy + ∠xvy

< 4π /3, which is a contradiction.

When node x is inside region III, the proof is the same as

it is in region I.

For the second case, we further divide it into four subcases

when node x is inside region I, II, III, or V. Obviously, ∠uyv

+ ∠uwv > π and ∠uyv < π /3. Thus, ∠uwv > 2π /3, which

implies ∠uvw < π /3.

If node x is inside the region I, see Figure 11(a) for an

illustration. Since ∠uwv > 2π /3, we have ∠wuv < π − ∠uwv

< π /3. Notice that ∠wux + ∠wuv > π , so ∠wux > 2π /3.

This implies that 1 ≥ ‖wx‖ > ‖ux‖ > 1. It is a contradiction.

If node x is inside the region II, see Figure 11(b) for an

illustration. Here c is the circumcenter of the disk D. Notice

that when node x is on the diagonal wc and just outside the

circle, ∠wux has the minimum value slightly larger than π /2.

Thus, ∠wux > π /2. This implies that 1 ≥ ‖wx‖ > ‖ux‖ > 1.

It is a contradiction.

When node x is inside the region III, or V, the proofs are

similar to the cases II, or I respectively.

Then we know that the circumcircle disk(u,v,w) of the

triangle △uvw does not contain any node from N2(u) ∪ N2(v)

∪ N2(w) inside. Thus uv is in LDel(2)(V). This finishes the

proof.
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