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ABSTRACT
Classic Content-Based Image Retrieval (CBIR) takes as in-
put a single query image provided by the user, and retrieves
similar images from an image repository. Inherently, such
a search must rely upon a holistic (or global) view of the
image. Yet often the desired content of an image is not
holistic, but is localized. Specifically, we define Localized

Content-Based Image Retrieval as a CBIR task where the
user is only interested in a portion of the image and the rest
of the image is irrelevant. While many classic CBIR sys-
tems use relevance feedback to obtain labeled images that
are used to refine the search, most such systems rank im-
ages using a global similarity measure. In Localized CBIR,
labeled images must be used to do more than re-weighting
the features (e.g. color, texture). In this paper we present
a localized CBIR system, Accio! , that uses labeled images
in conjunction with a multiple-instance learning algorithm
to first identify the desired object, and then to rank images
in the database by their content. We evaluate our system
using a five category natural scenes image repository, and
benchmark data set that we have constructed of 25 image
categories.

General Terms
Image Retrieval, Relevance Feedback

Keywords
Content Based Image Retrieval, Multiple Instance Learning

1. INTRODUCTION
Classic Content-Based Image Retrieval (CBIR) takes a sin-
gle query image provided by the user, and retrieves similar
images from an image repository. Since the user typically
provides a single image with no indication of which portion
of the image is of interest, inherently, such a search must
rely upon a holistic (or global) view of the image. Yet often
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the desired content of an image is not holistic, but is local-
ized. Specifically, we define Localized Content-Based Image

Retrieval as a CBIR task where the user is only interested in
a portion of the image and the rest of the image is irrelevant.

Unless the user explicitly marks the region of interest or the
region of interest is at a fixed location, localized CBIR must
rely on multiple labeled images to learn which portion of
the image is of interest to the user. We define the query

image set as a set of images labeled by the user as positive
or negative depending on whether or not they contain the
desired content. The query image set can either be directly
provided by a user or can be obtained using relevance feed-
back by adding labeled feedback images from the result of a
search to a single, initial query image (labeled as positive).
While many classic CBIR systems use relevance feedback to
refine the search, most such systems still rank images using
a global similarity measure that is re-weighted based on the
feedback images. In Localized CBIR, the query image set
must be used to identify the portion of the image that is rele-
vant to the user’s search, as well to determine an appropriate
weighting of the features (e.g. color, texture). Furthermore,
the relevant portion of the image is often an object that
may vary in size and location. In this paper we present a
Localized CBIR system, Accio! . Accio! uses a small query
image set in conjunction with a multiple-instance learning
algorithm to identify the desired local content, to re-weight
the features, and then to rank images in the image reposi-
tory by their content.

The image representation used within Accio! enables it to
obtain good performance even when the desired content
is a complex object defined by many parts. Furthermore,
Accio! ’s ranking algorithm is general enough for the sit-
uation in which the desired images are defined by many
different objects. Thus Accio! can be applied to standard
CBIR tasks as illustrated by its performance on recognizing
natural scenes.

We evaluate Accio! using a natural scenes image reposi-
tory with five categories containing 900 images, and using a
benchmark data set that we have constructed with 25 image
categories containing 4650 images. This data set emphasizes
the task of Localized CBIR. The categories consist of images
of single objects photographed against highly diverse back-
grounds. The objects may occur anywhere spatially in the
image and also may be photographed at a wide-angle or close
up. Often the object of interest occupies less than 10% of



the image area.

We demonstrate the performance of Accio! by showing the
top ranked images for a sample query image set. We also
present some recall and recall-precision plots for some query
sets. However, one motivation for providing a benchmark
data set is to enable systematic comparison between differ-
ent systems. In order to achieve this goal, a single numeric
measure of performance is needed to compare across a large
number of tasks, and to determine when differences in per-
formance are statistically significant. There are many mea-
sures that could be used as the measure of performance,
such as the value where recall=precision or the area under
the ROC curve. In this paper, the measure we use is frac-
tion of the images that are properly labeled as positive or
negative (i.e. the accuracy) when the top p images in the
ranking are classified as positive where p is the number of
positive images in the test set. We use 30-fold cross vali-
dation, where for each category, a fixed number of positive
and negative images are randomly selected from the image
repository to be used for the query image set. The remaining
images, called the test set are used to measure the perfor-
mance. This process is repeated 30 times.

We compare the performance of Accio! under different levels
of granularity for the image segmentation and also against
the performance of a variation of Simplicity [16] that is de-
signed to use a query image set (of any size), as opposed to
using a single image. [[[Reviewers: Additional text will be
added summarize our findings.]]]

The remainder of this paper is organized as follows. Sec-
tion 2 discussed previous work that is most relevant to our
work. Accio! is described in Section 3 starting from the
system architecture followed by a discussion of all the com-
ponents. Experimental results are presented in Section 4.
Finally, our conclusions and a discussion of future work is
in Section 5.

2. PREVIOUS WORK
Content-Based Image Retrieval (CBIR), is the problem of
retrieving semantically relevant images from a large image
database. In a typical CBIR application, there is a query
language used by the human user to specify a set of images
that are desired. Relevance feedback is defined as having the
the user to label images from the results of a query as either
relevant or irrelevant. These labeled images are commonly
referred to as the feedback images. The feedback images are
typically used to weight the features of the query image and
then to refine the results [5, 10, 2, 7, 8, 14].

While traditional relevance feedback weights the global fea-
tures of the image [5, 10], in recent years several papers
have focused on weighting spatially local features. Tian et
al. [15] introduced two relevance feedback techniques for re-
trieving images by local content – Region-of-Interest (ROI)
and Spatial Layout . Both techniques partition all images
into a uniform N ×N grid of image blocks, where N is typ-
ically between 2 and 5. Spatial Layout employs standard
relevance feedback at the block level by weighting each fea-
ture of each blocks of the query image using the spatially
corresponding blocks of the feedback images. The images

in the image repository are ranked based on the combined
similarity of its blocks to the spatially corresponding blocks
of the weighted query image. Images with a rank above
a given threshold are classified as positive (i.e. desirable).
ROI is an extension to Spatial Layout in which the user is
asked to draw a bounding box around the region of interest
in the query image. ROI then weights each block relative to
how much of its area is in the region of interest box. Both
ROI and Spatial Layout can be viewed as an approach for
localized CBIR that is based on an image-independent parti-
tioning of the image into regions. Furthermore, they assume
that the content of interest appears in the same region in the
query image, feedback images, and relevant images from the
repository.

Kim, Park, and Kim [9] describe an image segmentation
technique for a task they call central object extraction. Their
technique aims to segment a possibly complex object that
occurs in the center of the image from the background in
which it occurs. They then discard the background and
employs standard relevance feedback using only the central
object. When applied to localized CBIR, this technique re-
quires the the object of interest is in the center of the image.
Thus, as with ROI and Spatial Layout, it does not gener-
alize to retrieval of local content that may occur anywhere
within the image.

Maron and Ratan [11] proposed a different approach to Lo-
calized CBIR that applies multiple-instance (MI) learning
to the task of recognizing a person from a series of images
that are labeled positive if they contain the person and neg-
ative otherwise. Their technique first divides all images into
nine fixed, uniform-size, overlapping regions that consist of
a single central block and four neighboring blocks. A new
multiple-instance learning algorithm, Diverse Density, was
used to both learn which block was of interest, and to weight
the features. The same technique was used to learn descrip-
tions of natural scene images (such as a waterfalls) and to
retrieve similar images from a large image repository using
the learned concept [12]. (See Section 3.3 for for further
discussion of the MI model.) The benefit provided by the
multiple-instance learning algorithm is that the content of
interest need not be in the same block in all images. How-
ever, since pre-defined blocks are used to divide the image,
difficulties arise when the object(s) of interest has important
pieces that cross two blocks, or if it is too small to signifi-
cantly affect the average feature values in a block. As with
ROI and Spatial Layout, the work of Maron et al., use an
image-independent partitioning into blocks.

Zhang and Goldman [18] applied multiple-instance learning
to localized CBIR using a segmentation algorithm to par-
tition the image into segments (that can vary in size and
shape). In addition, they introduced features to capture
texture, and used the EMDD multiple-instance learning al-
gorithm [19]. However, unlike the work of Maron et al, which
uses neighboring blocks to provide information about the
context of each block, Zhang and Goldman did not use any
such neighboring information, which is much less straightfor-
ward when the image is not divided into pre-defined blocks.

Huang et al. [8] presented a variation of Zhang and Gold-
man’s work that incorporated a different segmentation scheme,



and a neural network based multiple-instance algorithm.
Hofmann et al. [1] also applied the MI model to natural
scene selection through two new algorithms which combined
the multiple instance model and support vector machines.

3. ACCIO!
In this section we describe Accio! . We first describe the
overall architecture for our system that is outlined in Fig-
ure 1. The user provides a query image set to Accio! . As
discussed in Section 1, the query image set could be ob-
tained by adding the feedback set from relevance feedback
to a single, initial query image (labeled as positive). There
are some settings in which the user may directly create a
query image set. For example, frames from surveillance
video could be available for times when suspicious activ-
ity occurred (labeled as positive), and others for times when
nothing out of the ordinary occurred (labeled as negative).
The image repository would contain unlabeled video frames.
Accio! could be used to to search for frames in the image
repository that have some object in common with those in
which there was suspicious activity.

Each image used by Accio! is first pre-processed and seg-
mented as described further in Section 3.1. While the cur-
rently used segmentation algorithm produces contiguous seg-
ments 1, Accio! is designed to use any segmentation algo-
rithm. Next the bag generator is used to convert the seg-
mented image into the format used by the multiple-instance
learning algorithm. During this phase, each segment in the
image has feature information (color and texture) added for
both it and its neighboring segments. Section 3.1 describes
this in further detail. To reduce overhead during the ranking
phase, all images in the repository have already been pro-
cessed. Their representation as a bag is stored in the image
repository along with their corresponding raw images and
segmented images. Whenever an image in the query set is
from the image repository, the segmentation algorithm and
bag generator are by-passed. Instead, the stored bag for
that image is used.

The next step is to provide the labeled bags from the query
image set to the multiple-instance learning algorithm. Cur-
rently, Accio! uses the EMDD algorithm (as discussed in
Section 3.4). EMDD performs a gradient search with mul-
tiple starting points to obtain multiple hypotheses that are
consistent with both the positive and negative images in the
query image set. While, one could select the “best” hypoth-
esis returned from among all runs of the gradient search, it
is beneficial to use all hypotheses when the desired content
involves more than one object or a single object that can
be defined in multiple ways. This provides a more robust
localized CBIR system. Thus the multiple-instance learning
algorithm returns a set of hypotheses which together can be
used to rank the images in the repository.

Finally, a ranking algorithm combines the set of hypothe-
ses output by the learning algorithm to obtain an overall
ranking of all images in the repository. (See Section 3.5.)
These ranked images are shown to the user. As with clas-
sic CBIR systems that use relevance feedback, if the user is

1A segment x said to be contiguous if there exists a con-
nected path of pixels in x between any two pixels of x.

Figure 1: The system architecture of Accio! . The
query set can consist of a single image or multiple
images. The image repository holds the raw images,
as well as the representation as a bag used by the
multiple-instance learning algorithm.

satisfied with his results, the current search has been com-
pleted. Otherwise, the user has the option of marking some
of the ranked images as “desired” or “not desired,” and ei-
ther augmenting the query images by this additional set, or
by using these labeled images as a new query image set.

3.1 Image Representation
All images are transformed into the YCrCb color space2 and
then pre-processed using a wavelet texture filter. After pre-
processing, each pixel in the image has six features consisting
of three color values and three texture values. (The texture
values are defined using a neighborhood around the pixel.)
If desired, other features such as those based on shape could
also be included. Next, the Improved Hierarchical Segmen-

tation (IHS) algorithm [17] is used to segment the image into
a specified number of segments as set by the user. Including
more segments generally leads to better performance, but
at the cost of increased computational complexity for the
learning algorithm.

The IHS algorithm uses a bottom-up approach that can
make use of any desired similarity measure between two
segments. The current implementation uses the Euclidean-
distance for this similarity measure. IHS begins with a seg-
mentation where each pixel is an individual segment. Until
a stopping condition is reached, IHS groups adjacent regions
that are the most similar. The output of IHS is a tree in
which there is a leaf for each pixel and an internal node
represents two or more merged regions (segments) from the
next lower level of hierarchy. Thus IHS creates a hierarchy
where the top level of the hierarchy is the final segmentation,
and each level defines a finer-grained segmentation. Several
parameters can be used in IHS to define a stopping condi-
tion. The option currently used by Accio! is the number
of segments. Another option that would be appropriate for
Accio! is to use a feature distance threshold for a stopping

2Accio! could be easily modified to use a different color
space, if desired.



Neighbors(I)
For each x ∈ I //x is a segment in I

For each p ∈ x //p is a pixel in x

For each j ∈ {North, East, South, West}
If Nj(p) ∈ y for y 6= x ⇒ vote for y

If Nj(p) ∈ image border ⇒ vote for x

If Nj(p) ∈ x ⇒ do not vote
For each direction j

Nj(x) = segment with the most votes

Figure 2: Pseudo-code for Neighbors. Let I be the
set of all segments in the image, and let Nj(p) be the
pixel that neighbors pixel p in cardinal direction j.

condition. Thus while the stopping condition currently used
by Accio! results in all images having the same number of
segments, IHS could result in images having a varying num-
ber of segments.

The content desired by a user cannot always be defined by
a single segment. For example, a flower is a set of petals
adjacent to green leaves. A mountain is snow and rock ad-
jacent to a blue sky. There is a semantic gap between the
information provided by a single segment and the high level
content the user perceives. The petals in and of themselves
do not define the flower, nor does the snow define the moun-
tain. Often it is the immediate surroundings that allow for a
more complex and descriptive definition of the desired con-
tents in the image. Thus our final representation augments
the feature information for each segment with the difference
between the corresponding feature of their neighbors.

Since Accio! is designed to use any segmentation algorithm,
it is necessary provide a well-defined notion of a neighbor
even when segments may or may not border the image on
any side, can have any number of adjacent segments, and
may not even define a contiguous regions (such as for the
k-means segmentation algorithm [6]). Figure 2 presents our
algorithm to compute four neighbors for every segment, one
in each cardinal direction. Intuitively, the algorithm selects
the most prominent neighbor in each cardinal direction.

Figure 3 illustrates this algorithm on an image of a bird
flying past a mountain which has a dirt road leading to it.
The segment for the mountain selects the sky as its northern,
western, and eastern neighbor. It ignores the clouds, and
the bird. The ground is selected as the southern neighbor,
and the smaller road is ignored. The segment for the bird,
selects the the mountain and the sky as its neighbors. So, a
mountain is defined as a sky above and the ground below.
And a bird is defined as being an object surrounded by the
sky or by a mountain.

The feature vector for each segment is augmented with the
difference between its neighbors’ value and its value for each
of the six features, for all four neighbors. We use the dif-
ference between these feature values to allow for robust-
ness against global changes in the image, such as changes
in brightness and hues that result from different lighting.

Throughout the remainder of this paper, we use the follow-
ing geometric view for the image representation. Let I be
a segmented image. Each segment x ∈ I can be viewed as
a point in a 30-dimensional feature space. Specifically, the
first 6 features hold the average color and texture values
for x. The next 6 features hold the difference between the
average color and texture values of the northern neighbor
and x. Similarly there are 6 features for the difference infor-
mation between x and its other 3 cardinal neighbors. Thus
there are a total of 6 + 6 · 4 = 30 features. Each image is
thus a set (or bag) of points. For example, an image that is
segmented into 8 components, is represented as a bag hold-
ing 8, 30-dimensional points. While it is important that all
points have the same number of dimensions, the size of the
bag can vary between images. That is |I | need not be the
same for all images. Finally, the query image set is stored
and provided to the learning algorithm as a set of labeled
bags, with one bag for each image in the query set.

3.2 Hypothesis Representation
Accio! uses a multiple-instance learning algorithm to learn
a set of hypothesis that are then used to rank the images.
Each hypothesis captures the “ideal” feature values for the
desired object along with a weighting of the features to in-
dicate the degree of importance to the user’s query. Each
hypothesis is represented by two 30-dimensional feature the

vectors, ~h and ~s, where ~h represents the point in the 30-
dimensional space that corresponds to the “ideal” feature
vector, and ~s is a weight vector used to define the weighted
Euclidean metric that is used as a similarity measure be-
tween points.

For example, suppose the image query set contained several
red, yellow, and orange flowers labeled as positive, along
with some non-flower images (which may also contain yel-
low, orange, or red objects in them) labeled as negative.
A ideal hypothesis describing these flowers may be a fea-
ture vector that has brightly colored features for the central
segment (representing the petals) and dimmer, roughly tex-
tured features for the neighbor segments (representing the
leaves and stem). The importance of the bright colors and
the surrounding rough texture is embodied by the scale vec-
tor.

In this example, it may not be possible to find a single hy-
pothesis that distinguishes flowers from non-flowers. How-
ever, it may be possible to find a hypothesis that distin-
guishes red flowers from non-flowers, and one that distin-
guishes orange flowers from non-flowers, and so on. It is
in such cases that Accio! can benefit from the multiple hy-
pothesis returned from the multiple-instance learning algo-
rithm. Each hypothesis might describe one flower color and
then they are combined by the ranking algorithm (see Sec-
tion 3.5).

3.3 Multiple-Instance Learning Model
The multiple-instance (MI) learning model was first formal-
ized by Dietterich et al. [4] for the problem of drug discovery.
Unlike standard supervised learning in which each instance
is labeled in the training data, in this model each example



Figure 3: Illustration of the neighbor algorithm of Figure 2.

{〈p1,1, ℓ1,1〉, . . . 〈p1,|B1|, ℓ1,|B1|〉
| {z }

, 〈p2,1, ℓ2,1〉, . . . 〈p2,|B2|, ℓ2,|B2|〉
| {z }

, . . . } standard supervised learning

{〈B1, ℓ1〉, 〈B2, ℓ2〉, . . . } multiple-instance learning

Figure 4: An illustration of the distinction between multiple-instance learning and standard supervised
learning.

is a set (or bag)3 of instances which is labeled as to whether
any single instance within the bag is positive. The individ-
ual instances are not given a label. The goal of the learner
is to generate a hypothesis to accurately predict the label of
previously unseen bags.

We now formally define the MI learning model and relate
it to standard supervised learning. For ease of exposition,
we define this model for learning a target concept that is a
d-dimensional weighted hypothesis where each instance is a
d-dimensional point. In particular, the target concept (~t,~s)
consists of point ~t = (t1, . . . , td) and scale (weight) vector
~s = (s1, . . . , sd). For an arbitrary point ~p = (p1, . . . , pd), we
define

dist~s(~t, ~p) =

v
u
u
t

dX

i=1

(si(pi − ti))2. (1)

The label for ~p is given by ℓ~p = e
−dist~s(~t,~p)2 . Observe that

when the weighted Euclidean distance (based on ~s) between
~p and the target is 0, then the label is 1, and as the weighted
Euclidean-distance between ~p and the target approaches ∞,
the label approaches 0. Furthermore, the label decays expo-
nential with respect to the distance. For concept learning in
which boolean labels are expected, we say that ~pi is positive
if and only if ℓpi

>= 0.5.

In standard supervised learning, the learner would receive
the label for each point:

〈(~p1, ℓp1
), (~p2, ℓ~p2

), . . . , (~pm, ℓ~pm
)〉

For example, consider an application to CBIR in which a
global feature vector such as a color histogram is used. In
this setting, each image would be represented as a single
point. For this situation, ~t is the feature vector correspond-
ing to the ideal value for each color in the histogram and ~s

as the ideal weighting of the features. Here each image is
a single point with a label of positive (if the user likes the
image) or negative otherwise. Such an approach captures
how relevance feedback is used for re-weighting in standard
CBIR. If there is such a target concept so that all desirable

3We use the standard terminology of the field, in which a
bag of points is a set, not a mathematical bag, of points.

images are closer to ~t (when weighted by ~s) than all un-
desirable images, then color histogramming will yield good
results.

We now define the MI model. Here the target is still de-
fined by ~t and ~s, and the label for an individual point ~p is as
in the standard supervised learning model. The difference
in MI learning is that the examples are not single points
but rather bags of points. More formally, the training data
is {〈B1, ℓ1〉, 〈B2, ℓ2〉, . . . 〈Bm, ℓm〉} where ℓi is the label of
bag Bi. Bi = {~pi,1, ~pi,2, . . . ~pi,|Bi|}. Let ℓi,j be the label
of point ~pi,j ∈ Bi. Then ∀i ℓi = max{ℓi,1, ℓi,2, . . . , ℓi,|Bi|}.
In standard supervised learning, the learning algorithm re-
ceives the label of each point, whereas in multiple-instance
learning, the learner only receives labels of the bags. (This
distinction is illustrated in Figure 3.3.)

Observe that the assumptions of the MI model match the re-
quirements of Localized CBIR when using the representation
described in Section 3.1. In the MI model each example is a
bag of points, and we represent each image as set of points
with one point for each segment. In a desirable image, many
or most of the points represent irrelevant content – content
that is not interesting to the user. However, we assume that
at least one point is of interest (i.e. is similar to the target).
In images that were labeled as negative in the query image
set, all of the points are assumed to not be similar to the
target.

3.4 EMDD
In order to describe EMDD, the MI algorithm used to learn
our hypothesis, we first must describe the Density (DD)
algorithm [11] upon which EMDD is based. The diverse
density at a point ~p in the feature space is a probabilistic
measure of both how many different positive bags have an
instance near ~p, and how far the negative instances are from

~p. Intuitively, the diversity density of a hypothesis ~h is just

the likelihood (with respect to the data) that ~h is the tar-
get. A high diverse density indicates a good candidate for
a “true” concept. They then add a scale factor (weighting)
for each dimension, and use a gradient search (with multiple
starting values) to find the point that maximizes the diverse
density.

EMDD views the knowledge of which instance corresponds



to the label of the bag as a missing attribute and applies
the Expectation-Maximization (EM) algorithm of Demp-
ster, Laird, and Rubin [3] to convert the multiple-instance
learning problem to a standard supervised learning problem.

EMDD starts with some initial guess of a target point ~h and
scale vector ~s, and then repeatedly performs the following

two steps. In the first step (E-step), the current ~h and ~s

are used to pick one instance from each bag which is most
likely (given the generative model) to be the one responsible
for the label. In the second step (M -step), a single-instance
variation of the diverse density algorithm is used. These
steps are repeated until the algorithm converges. EMDD is
started at an initial value based on every point ~p from three

randomly selected positive bags with initial values of ~h = ~p

and ~s = ~1.

3.5 Ranking Algorithm
The final stage of Accio! is to take the set of hypotheses
returned by EMDD and combine them to rank the images
in the image repository. The ranking of the image repository
depends on how the hypotheses of EMDD are used. While
the original EMDD algorithm proposed directly using the
hypothesis with the highest diverse density value, extensive
experiments with CBIR data sets have shown statistically
significant improvement in retrieval accuracy when retaining
all the hypotheses [18, 13].

The final similarity measure for an image in the repository
is a geometric average among the similarity measure given

by each hypothesis. Let H = {(~h1, ~s1), . . . , (~hk, ~sk)} be the
set of hypotheses returned by EMDD. Let I be an image in
the image repository that is segmented into r segments and
represented by test the bag B = {~p1, . . . , ~pr}. The Hausdorff

distance between hypothesis Hi = (~hi, ~si) and B is given by

d(Hi, B) = min
j=1,...,r

dist~si
(~hi, ~pj)

where dist is the weighted Euclidean metric given in Equa-
tion (1). The label for bag B is given by

ℓB =
1

k
·

kY

i=1

e
d(Hi,B)2

.

When the hypotheses are unnormalized, the method per-
form better than any variation in our experiments of using
a single hypothesis or multiple hypotheses. Finally, the im-
ages are ranked in decreasing order based on the label.

This ranking method works well since a good hypothesis
is one that occurs very close to a point in a positive test
bag. The label drops exponentially with relation to the dis-
tance of the hypothesis from a point in the bag. Thus a
good hypothesis will give a label that is several magnitudes
larger than a mediocre hypothesis. A good hypothesis will
reflect more heavily in the average than many mediocre hy-
potheses. Furthermore, when the scale vectors (i.e. ~s) of
the hypotheses are unnormalized, the sparsity of the points
in the hypothesis space causes the probability of a negative
bag being falsely predicted as positive to become very low.
Hence, accuracy in label prediction is increased.

A second conjecture as to why average labeling works well
is that even in localized CBIR, the desired images may be-

long to a broad image domain where no single hypothesis
can capture what images the user desires. For example,
when looking for a mountain, the whiteness of snow neigh-
boring the course texture of rock is one way to represent a
mountain. The gray color of rock neighboring the smooth
blue of the sky is another representation. Each of these
are represented by a different hypothesis. By combining all
hypotheses, Accio! can capture such disjunctive concepts.
Thus, both an image with snow neighbored by rock and an
image with rock neighbored by sky will be ranked highly.
The combining of all hypothesis enables Accio! to general-
ize to broad retrieval tasks such as image scenes. Global
content in image scenes would be captured by Accio! piece-
wise by each hypothesis. Then test images containing the
most similar set of segments will be ranked the highest.

4. EXPERIMENTAL RESULTS
We first report on results using a natural scene images from
the Corel image suite. There are 5 image categories (moun-
tain, sunset, waterfall, field and flower) in our data sets. We
refer to the task of learning to distinguish mountain from
non-mountain images as the mountain task and likewise for
the other image groups. The results we report are all based
on a test data set of 900 examples in which there are 180
positive examples (i.e. from the desired image group) and
720 negative examples (180 from each of the remaining four
image groups). We used 30 fold cross-validation with re-
placement for all of our experiments.

The results from a sample query is shown in Figure 5. The
natural scene database we used is strongly characterized by
high variation between images within any category. There
exists a significant amount of irrelevant features (color and
texture) in the data. Finally, the categories are not disjoint.
For example, some waterfall images are of a waterfall in the
mountains. In the mountain task, if images of waterfalls are
not provided as negative examples (as they are in the query
of Figure 5), then some waterfalls that occur in rocky areas
often rank highly in the mountain task. However, for the
mountain task, if such a waterfall image is classified as a
mountain it is treated as a wrong prediction since we label
each image based solely on the category given by Corel.

We use Maron and Ratan’s representation and hypothesis
selection scheme as a baseline [12]. However, we use the
improved EMDD algorithm (as opposed to the DD algo-
rithm), because of its empirical performance gains in both
retrieval accuracy and time [18]. We refer to this bag gener-
ator as “SBN” for single-blob with neighbors. We compare
this to the results from Accio! when using k-means as a seg-
mentation algorithm (for k = 8), IHS-8 (which produces 8
segments per image), IHS-16, and IHS-32. Also, to show
the gains obtained by including the neighboring informa-
tion, we also include IHS-16 (no nbrs) that represents each
segment as 6-dimensional point (leaving out the 24 features
used for neighbors). These results are given in Table 1. Note
that when using a segmentation algorithm like IHS in which
the segments are contiguous a larger number of segments is
needed than with k-means. As an example imagine there is
a blue sky with four non-connected clouds in the sky. To
represent this part of the image with k-means only requires
two segments (since all clouds can be a single segment even



Figure 5: Result from a sample query for the mountain task.

though they are not contiguous). For IHS, five segments
would be needed.

[[[Reviewers: We are still completing our experiments on 25-
category image set and the remainder of this section will re-
port those results. We plan on comparing the performance of
our algorithm to a variant of Simplicity [16] in which we give
each image in the query image set to Simplicity as the query
image. (We also hope to add a comparison to simplicity for
the natural scene image set.) Simplicity uses a segmenta-
tion algorithm in conjunction with a sophisticated matching
algorithm to define a similarity measure between the query
image and all images in the image repository. Thus for each
image in the repository there is a similarity measure defined
based on each image in the query image set. For each image
in the repository, we compute the average similarity with
respect to the positive images in the query set and subtract
from this the average similarity with respect to the negative
images in the query set. The images are then ranked based

on this composite similarity measure.]]]

5. CONCLUSIONS
We have presented, Accio! , a localized CBIR system that
does not assume that the desired object(s) are in a fixed
location or have a fixed size. In addition, our system incor-
porates information about the relationship of an object to
its neighboring objects and combines the results from sev-
eral hypothesis to obtain a robust system that can handle
a wide variety of image sets. In addition, we have provided
a benchmark data set for localized CBIR and an evalua-
tion framework that will allow systematic comparisons to
be made between different systems.

[[[Reviewers: We are also still writing this section since it
will discuss the results. We will also discuss future research
directions. One important direction is to make comparisons
with other CBIR systems that are designed to use Relevance



Training Set Size (#pos,#neg)
Task Bag Generator 4 (2,2) 8 (2,6) 8 (4,4) 16(4,12)

SBN 73.6± 1.6 72.9± 1.6 75.7± 1.8 75.8± 1.3
k-means 86.1± 2.3 86.8± 1.8 88.8± 1.3 89.0± 1.5
IHS-8 86.7± 2.4 88.5± 1.3 90.6± 0.6 90.8± 0.8

Sunset IHS-16 88.2± 1.8 89.8± 0.7 91.1± 0.7 91.6± 0.6
IHS-16 (no nbrs) 87.7± 2.0 89.5± 0.8 91.1± 0.6 91.2± 0.7
IHS-32 90.4± 0.9 89.6± 1.4 91.3± 0.7 92.3± 0.4
SBN 74.6± 1.7 76.1± 1.6 75.4± 1.6 77.0± 1.7
k-means 76.6± 1.3 77.7± 1.3 78.7± 0.9 80.7± 1.1
IHS-8 76.5± 1.1 76.3± 0.8 78.3± 0.7 77.3± 1.2

Mountain IHS-16 76.9± 1.0 75.9± 1.2 77.7± 0.7 78.1± 1.2
IHS-16 (no nbrs) 75.8± 1.1 74.8± 1.0 75.9± 0.7 76.3± 1.0
IHS-32 77.6± 1.1 77.5± 1.2 78.7± 0.7 79.8± 1.0
SBN 75.6± 1.7 75.9± 1.4 74.8± 1.5 75.6± 1.8
k-means 80.8± 1.3 78.2± 1.3 81.5± 1.1 79.6± 1.3
IHS-8 79.0± 1.1 78.9± 0.9 81.9± 0.8 81.2± 0.9

Waterfall IHS-16 80.6± 1.2 80.7± 1.2 82.2± 0.9 82.7± 0.6
IHS-16 (no nbrs) 80.3± 1.2 78.9± 1.4 82.5± 0.9 81.7± 0.6
IHS-32 79.9± 1.4 81.3± 1.4 83.8± 0.9 82.2± 0.7
SBN 73.2± 2.1 76.9± 2.3 75.6± 2.0 77.7± 2.1
k-means 76.6± 1.6 78.0± 1.5 79.0± 1.3 80.1± 1.2
IHS-8 74.4± 1.8 75.7± 2.3 76.0± 2.0 79.6± 1.0

Flower IHS-16 76.0± 1.6 75.5± 1.9 78.1± 1.9 80.4± 1.5
IHS-16 (no nbrs) 76.7± 1.6 74.8± 1.9 78.5± 1.8 79.9± 1.6
IHS-32 78.3± 2.1 79.0± 2.1 80.5± 1.8 81.2± 1.7
SBN 76.8± 1.1 76.8± 1.7 76.6± 1.2 76.9± 1.3
k-means 78.8± 2.1 81.4± 1.8 84.0± 1.7 83.1± 1.5
IHS-8 79.0± 2.0 79.2± 1.8 80.9± 1.3 82.6± 1.5

Field IHS-16 81.5± 1.7 80.8± 2.0 82.8± 1.5 85.1± 1.3
IHS-16 (no nbrs) 79.8± 1.3 79.3± 1.8 80.9± 1.2 82.4± 1.4
IHS-32 82.5± 1.5 83.3± 1.5 84.0± 1.2 84.1± 1.3

Table 1: Results for natural scenes image repository. Each entry shows the mean accuracy (when the top
ranked 180 images are labeled as positive and the rest of negative), and the width of the error bar for the
95%-confidence interval.

Feedback.]]]
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