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Localized edge states in two-dimensional topological insulators: Ultrathin Bi films
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We theoretically study the generic behavior of the penetration depth of the edge states in two-dimensional
quantum spin Hall systems. We found that the momentum-space width of the edge-state dispersion scales with
the inverse of the penetration depth. As an example of well-localized edge states, we take the Bi(111) ultrathin
film. Its edge states are found to extend almost over the whole Brillouin zone. Correspondingly, the bismuth
(111) 1-bilayer system is proposed to have well-localized edge states in contrast to the HgTe quantum well.
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I. INTRODUCTION

The quantum spin Hall (QSH) phase1,2 is a new state
of matter predicted theoretically, and has received a lot of
attention recently. This phase is a nonmagnetic insulator in
the bulk or film, and has gapless surface or edge states. The
edge states consist of counterpropagating states with opposite
spins. The notable feature of these edge states is that they
are topologically protected; they remain gapless even in the
presence of nonmagnetic impurities and interaction.3,4 We still
know few systems in which the QSH phase is realized. A
theoretical proposal for the QSH system on the Bi ultrathin
film was made by one of the authors.5 In addition, the
HgTe quantum well has been theoretically proposed6 and
experimentally shown to be in the two-dimensional (2D) QSH
state.7,8

The edge states are localized near the edge, but their
penetration depth � into the bulk varies among the systems.
Observation and control of the edge states crucially depends on
the penetration depth, and how they are determined in various
systems is an important issue. In this Rapid Communication,
we study the behavior of the penetration depth � in QSH
systems. From a simple model, we establish a simple formula
for the penetration depth �. From the formula, we show that
the minimum penetration depth (which is typically reached
in the middle of the bulk gap) scales with the inverse of the
extension of the edge states in k space. Hence, if the edge states
exist in a small region in k space, � is long. By generalizing
this conclusion, we expect that � is of the order of the lattice
constant if the edge state extends almost over the whole
Brillouin zone (BZ). To see this, we numerically study bismuth
thin films and their edge states. Among bismuth thin films, only
two thin films are proposed to be insulating in the bulk: the
(111) single- (1-) bilayer film9 and the {012} 2-monolayer
film.10 By using tight-binding (TB) Hamiltonians obtained by
first-principles calculations, we find that (111) 1-bilayer film
is in the QSH phase and {012} 2-monolayer film is not. We
also find that the edge states in Bi (111) 1-bilayer film are well
localized near the edges, compared with the HgTe quantum
well. From these studies, we conclude that the penetration
depth � corresponds to the inverse of the k-space width of
edge-state dispersion. We note that the penetration depth �

was studied in Refs. 11 and 12, but for a ribbon geometry,
where it is difficult to derive an analytic formula for �. In

contrast, our calculation on a semi-infinite plane enables us to
derive the analytic formula for � and discuss a wide range of
systems.

II. PENETRATION DEPTH OF THE EDGE STATES

We use the Hamiltonian for the HgTe quantum well

H(kx,ky) =
(

H (k) 0

0 H ∗(−k)

)
, (1)

where H (k) = εkI2 + da(k)σa . Here, I2 is a 2 × 2 unit matrix,
σa are the Pauli matrices, εk = C − D(k2

x + k2
y), d1 = Akx ,

d2 = Aky , and d3 = M(k) = M − B(k2
x + k2

y). The overall
energy offset C is set to zero. The eigenenergies are then
given by −Dk2 ± |d(k)|. Thus, D represents the asymmetry
between the valence and the conduction band dispersions. The
bulk gap at k = 0 is 2M . To consider the edge state on a single
edge, we deal with a system on a half-plane of y � 0. This
considerably simplifies the results, compared with the ribbon
of finite width.11 As edge states, only the solutions with eλy

(Reλ > 0) are allowed. The secular equation[
M − E + B+

(
λ2 − k2

x

)][ − M − E − B−
(
λ2 − k2

x

)]
= A2

(
k2
x − λ2

)
, (2)

where B± = B ± D gives two allowed values for λ:

λ = λ1,2 =
√

k2
x + F ±

√
F 2 − (M2 − E2)/(B+B−), (3)

where F = A2−2(MB+ED)
2B+B−

. If we impose a boundary condition
ψ(y = 0) = 0 as in Ref. 11, we get

λ1λ2 = BM + DE

B+B−
− k2

x, λ1 + λ2 = DM + BE

kxB+B−
. (4)

We then obtain an exact form for the dispersion of edge states

E = (−DM ± A
√

B+B−kx)/B (5)

from Eqs. (3) and (4). The signs correspond to the two
branches of edge states with opposite spins. Because they are
related with each other by the Kramers theorem, we henceforth
consider only the plus sign in (5). Putting (5) into (4), we get

λ1λ2 = −k2
x + 2DN

B
kx + M

B
, λ1 + λ2 = 2N, (6)
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FIG. 1. Penetration depth � for the effective model with ribbon
geometry. CB (VB) represents the bulk conduction (valence) band.
The plot on the right corresponds to a more asymmetric situation,
leading to a larger � at the crossing point of the edge states.

where N = A/(2
√

B+B−). These determine λ1,2. If we put
λ1 > λ2, λ−1

2 gives the physical penetration depth � as
discussed in Ref. 11. At the points with λ2 = 0, the edge states
have infinite penetration depth and become bulk states. From
(6), this occurs when kx = k±

x ≡ DN
B

(1 ±√
1+ BM

D2N2 ). It can be
checked that the states at kx = k±

x are located at the band edge
of the projection of the bulk band and, at these points, the
edge dispersion (5) is tangential to the bulk band projection.
We can rewrite as λ1λ2 = −(kx − k+

x )(kx − k−
x ). Therefore,

λ2(= �−1) is expressed as

�−1 = N −
√

N2 + (kx − k+
x )(kx − k−

x ) . (7)

Hence, the behavior of �−1 is as shown in Fig. 1. It
vanishes at the points P± (kx = k±

x ), where the edge states
are absorbed into the bulk band, and � is minimum when
kx = (k+

x + k−
x )/2. The minimum value �min is given by �−1

min =
N −

√
N2 − (k+

x − k−
x )2/4. As a function of N , the minimum

value of �min is 2/(k+
x − k−

x ) at N = (k+
x − k−

x )/2. This means
that the minimum �min of the system is roughly given by the
inverse of the k-space extension of the edge-state dispersion.
From Fig. 1, it can be seen that the penetration depth � becomes
short when the considered edge state is far from the points P±.
The inverse of the penetration depth �−1 corresponds to an
imaginary part of the wave number perpendicular to the edge
direction and it therefore behaves similarly to the (real) wave
number. Hence, �−1 is approximately given by the k-space
distance of wave numbers from the points P±.

In the HgTe quantum wells, the 2D quantum spin Hall states
are confirmed by transport measurements.7,8 The penetration
depth of the edge states in these systems has been calculated
to be relatively long, � ∼ 50 nm.11 In our theory, by plugging
the parameters into our results, we get � = 56 nm at kx = 0,
in agreement with Ref. 11. The coefficient D gives rise to an
asymmetry between the conduction and the valence bands,
and the edge state is also asymmetric: k+

x �= −k−
x , k+

x =
0.62 nm−1, k−

x = −0.024 nm−1. Thus, the penetration depth �

is shortest not at kx = 0 but at kx = (k+
x + k−

x )/2 = 0.30 nm−1

with �min ∼ 6.2 nm. In our interpretation, the relatively long �

of the edge states in the HgTe quantum well comes from the
fact that the edge states are localized within a very narrow
region in k space. This penetration depth determines the

minimal width of the system required for observation of edge
states.

We note that the present solution for the semi-infinite plane
also gives physical properties for the states on the ribbon
discussed in Ref. 11. When the ribbon is wider than �, the
hybridization between the two edge states at the opposite
edges can be treated within first-order perturbation. This
hybridization induces the gap, which is an exponentially
decreasing function of the ribbon width. The case with a very
narrow ribbon is beyond the scope of this paper because it is
far from the topological insulator.

III. Bi(111) ULTRATHIN FILM

By extending our theory to generic types of edge states, we
can expect that the inverse of the penetration depth �−1 well
scales with the k-space distance from the absorption point P±
into the bulk band. Therefore, if the edge states extend over
the Brillouin zone, the penetration depth of the edge states is
as short as a few lattice constants. We will theoretically show
that Bi(111) ultrathin film is a QSH system having edge states
with such a short penetration depth.

For the calculation, we use a TB model constructed from
maximally localized Wannier orbitals13 obtained from first-
principles calculations.14 The Fermi energy lies in the six
p-like states, comprising three conduction bands and three
valence bands. Therefore, in constructing the Wannier orbitals,
we only retain these six bands. From these Wannier orbitals,
including the lattice relaxation effects of the ultrathin films,
we construct TB models keeping up to third-neighbor hopping
amplitudes.

Figures 2(a)–2(c) show the unit cell and lattice vectors,
reciprocal vectors, and the time-reversal-invariant momenta
(TRIM) and the energy band of Bi(111) 1-bilayer, respec-
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FIG. 2. (Color online) (a) Unit cell and lattice vectors and
(b) TRIMs of Bi(111) ultrathin film. The TRIMs consist of the �

point and the three M points. (c) Bulk energy bands and the parity at
the TRIMs for a Bi(111) 1-bilayer. (d) and (e): Energy bands of the
Bi(111) zigzag- and armchair-edge ribbons, respectively, with a width
of 20 unit cells, calculated from the TB model. (f) Energy bands of a
eight-unit-cell-wide Bi(111) zigzag-edge ribbon from first-principles
calculations. The size of the symbols corresponds to the weight of
the states in the edge atoms.
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tively. Since this system is inversion symmetric, all states in
Fig. 2(c) are doubly degenerate. This system is proposed to
be a nonmagnetic insulator with a bulk gap of 0.2 eV.9 We
will calculate the Z2 topological number ν. For inversion-
symmetric systems, (−1)ν is equal to the product of all the
parity eigenvalues of the Kramers pairs of eigenstates at all
the TRIMs below the Fermi energy.15 The parity eigenvalues
at the TRIMs are given in Fig. 2(c) and yield ν = 1. We note
that the first-principles calculation (without a TB model) also
gives ν = 1, meaning that the (111) 1-bilayer bismuth film is
in the QSH phase, in agreement with Ref. 5 based on a simple
truncation of the three-dimensional TB model.16

If we neglect the out-of-plane coordinate, the (111)
1-bilayer film has a honeycomb structure. Therefore, as in
graphene, we refer to the two types of simple edge shapes
as zigzag and armchair edges. Figures 2(d) and 2(e) show
the energy bands of zigzag- and armchair-edge ribbons of
the Bi(111) 1-bilayer. All the states are doubly degenerate,
consisting of two states with opposite spins, localized on
the opposite edges. In both figures, the number of Kramers
pairs of edge states per one edge is odd, confirming that the
Bi(111) 1-bilayer is a QSH system. We checked that, for the
zigzag-edge ribbon, our result from the TB model [Fig. 2(d)]
and that from a first-principles calculation [Fig. 2(f)] are in
good agreement.

These edge states extend almost over the whole Brillouin
zone. It is quite different from the HgTe quantum well,
where the edge states exist only near k = 0.6 At the Fermi
energy, there are three Kramers pairs of edge states. Thus, the
conductance of the ribbon is G = 6e2/h for a clean system.
When nonmagnetic disorder is increased, some of these edge
states become gapped due to elastic scattering, while at least
one pair of edge states remains gapless, giving G = 2e2/h.
The edge states form perfectly conducting channels, similar
to those in the graphene nanoribbons.17 In graphene, perfectly
conducting channels are formed only in the absence of short-
ranged disorder; in the Bi (111) 1-bilayer nanoribbon, the
perfectly conducting channel exists irrespective of the nature
of nonmagnetic disorder, and it gives a universal behavior
realizable in experiments.

IV. Bi{012} ULTRATHIN FILM

For inversion-asymmetric systems such as Bi {012}
2-monolayer film, the calculation of ν is complicated because
the phases of the Bloch wave functions in the entire BZ are
involved.1,18 The phase of the wave function is a gauge degree
of freedom and can be chosen arbitrary for each k, which often
causes instability in numerical calculations. Hence, we adopt
a gauge-invariant discretization method proposed in Ref. 19.
It is a merit of the method that we do not need to determine the
phase of the wave function smoothly in k space. The mesh size
δk1δk2 should be fine enough to satisfy |F (k)|δk1δk2 < π at
any mesh, where F (k) is the Berry curvature, and δk1,δk2 are
the width and height of a mesh, respectively.19 This quantity
is largest when k is at the direct gap k = kg, and the critical
size is approximated by the k-space nominal size of the band
extremum at k = kg. From the band structure of Bi{012}
2-monolayer, the critical mesh number nc

B is estimated
to be ∼100. For various mesh numbers exceeding nc

B , we
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FIG. 3. (Color online) Energy bands of Bi{012}: (a) zigzag- and
(b) armchair-edge ribbons with a width of 20 unit cells. U (L) means
that the state is localized on the upper (lower) edge. The crystal
structures near the upper edge are shown in the right panels with 1,
2, 3, and 4 representing the lattice sites. We note that these four sites
do not lie on the same plane. The shaded regions are the bulk energy
bands.

get ν = 0. Therefore, the Bi{012} 2-monolayer is an ordinary
insulator.

The edge states of Bi{012} 2-monolayer ribbons for two
types of edges are shown in Fig. 3. These two edge shapes
can be called zigzag and armchair edges, although the lattice
structure is different from graphene. The number of Kramers
pairs of edge states on the Fermi energy is even at each edge,
and this is in agreement with our result that ν = 0. The edge
states of the armchair-edge ribbon are almost degenerate due
to mirror symmetry, while those of the zigzag-edge ribbon
are not. The small energy splitting in the edge states of the
armchair-edge ribbon is due to hybridization of the edge states
at the opposite edges. Nevertheless, for a ribbon wider than �,
the energy splitting is exponentially small.

V. PENETRATION DEPTH OF THE EDGE STATES

Our calculation result of the penetration depth � of the edge
states of the zigzag-edged Bi(111) 1-bilayer ribbon is shown in
Fig. 4(a). The penetration depths � are typically several lattice
constants. Hence, for transport experiments, the sample width
has to be larger than a few lattice constants. These results
on Bi(111) film agree with our theory on �. According to
our theory, � becomes short when the edge states are distant
from the points P± where the edge states merge into the bulk
[circles in Figs. 4(b) and 4(c)]. Hence, � is longer for the states
at EF in Fig. 4(b) and shorter in Fig. 4(c). This information
is relevant for transport that is governed by the states at the
Fermi level. In Bi(111), the edge state travels almost over the
whole BZ. Therefore, we estimate � ∼ (size of the BZ)−1 ∼
(lattice spacing), in agreement with the results in Fig. 4(a).

Bi(111) 1-bilayer film can not be described by an effective
model near k = 0 such as (1). The effective model (1) is
derived when the QSH system is described as a band inversion
between two doubly degenerate bands, such as the HgTe
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FIG. 4. (Color online) (a) Penetration depth of the edge states on
the zigzag edge of the Bi(111). (b), (c) Examples of the edge states
in the 2D QSH systems.

quantum well. In bismuth ultrathin films, the involved bands
are px , py , pz orbitals, and the valence and conduction bands
have different mixing coefficients for these orbitals. Therefore,
it is not a mere band inversion, which is the reason why the
case [Fig. 4(c)] is realized in bismuth films. We note that
Bi2Te3 and Bi2Se3 ultrathin films also have edge states similar
to Fig. 4(c).20 Although the penetration depth is not discussed
in Ref. 20, it might be interesting to check whether our theory
holds also in these films. We note that our theory assumes
isotropy between the direction along the edge (surface) and
that perpendicular to it. For layered materials such as Bi2Se3

and Bi2Te3, the penetration depth perpendicular to the layer
can not be predicted from the surface-state dispersion in the
layer because of the anisotropy.

These short penetration depths of edge states in the Bi (111)
1-bilayer film are ideal for observation by scanning tunneling
microscopy and scanning tunneling spectroscopy and control
of the edge states. Furthermore, it is also favorable for edge
thermoelectric transport.21 To utilize the perfectly conducting
channels of edge states for thermoelectric transport, short
penetration depth is an important factor, because longer
penetration depth mixes the states at different edges for narrow
ribbons and destroys the coherent edge transport.

VI. CONCLUSION

We derived a general and simple formula (7) for the
penetration depth of the edge states in two-dimensional
quantum spin Hall systems. We found that momentum-space
distance between the edge states and the absorption point of
the edge dispersion into the bulk band roughly gives the inverse
of the penetration depth. As an example, we calculated the
penetration depth of the edge states of Bi(111) 1-bilayer film,
which we propose to be a QSH insulator. The penetration
depth of the edge states in Bi(111) 1-bilayer film is in good
agreement with our theory.
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