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Abstract

We study a class of localized indices for the Dirac type oper-
ators on a complete Riemannian orbifold, where a discrete group
acts properly, co-compactly, and isometrically. These localized
indices, generalizing the L2-index of Atiyah, are obtained by tak-
ing certain traces of the higher index for the Dirac type operators
along conjugacy classes of the discrete group, subject to some trace
assumption. Applying the local index technique, we also obtain
an L2-version of the Lefschetz fixed-point formulas for orbifolds.
These cohomological formulas for the localized indices give rise to
a class of refined topological invariants for the quotient orbifold.

Contents

1. Introduction 286

2. A review of orbifolds and the orbifold index theorem 291

2.1. Orbifolds and discrete group actions 291

2.2. Kawasaki’s index theorem for compact orbifolds 297

3. Invariant elliptic operators on complete orbifolds 301

3.1. Invariant elliptic pseudo-differential operators 302

3.2. Dirac operator and heat kernel asymptotics 304

3.3. Cut-off functions and (g)-trace class operators 308

3.4. Calculation of (g)-trace for the heat operator 318

4. Higher index theory for orbifolds 321

4.1. Higher analytic index map 321

4.2. Higher index for a discrete group action on a noncompact
orbifold 325

4.3. Orbifold index and the higher index 328

5. Localized indices 331

5.1. Localized traces 331

5.2. Localized indices 335

6. Applications and further remarks 340

Received 7/25/2013.

285



286 B.-L. WANG & H. WANG

6.1. L2-Lefschtez fixed-point formula 340

6.2. Selberg trace formula 342

6.3. An application in positive scalar curvature 345

References 346

1. Introduction

The Lefschetz fixed-point formula calculates the supertrace of the
action of a diffeomorphism on a closed Riemannian manifold with iso-
lated fixed points. This was generalized by Atiyah and Bott in [AB]
to an elliptic complex with a geometric endomorphism defined by a dif-
feomorphism with isolated fixed points. When the diffeomorphism γ
comes from a compact group H of orientation-preserving isometries of
a compact even-dimensional manifold X, the fixed-point formulas are a
special case of the equivariant index formulas for the equivariant index

indH(γ, /D) = Tr(γ|ker /D+)− Tr(γ|ker /D+)(1.1)

assocaited to anH-invariant Dirac operator /D on an equivariant Clifford
module E . The local index formula, also called the Lefschetz fixed-point
formula,

indH(γ, /D) =

∫

Xγ

Âγ(X) chγ(E/S),(1.2)

is obtained by an asymptotic expansion of the equivariant heat kernel to

the operator γe−t /D2
. Here, Xγ is the fixed-point set of the γ-action, con-

sisting of closed submanifolds of X, and Âγ(X) chγ(E/S) represents the
local index density for the equivariant index. See [BGV, Chapter 6] for
a detailed account of these developments. When X is not compact, the
equivariant index is not defined and there does not exist any Lefschetz
fixed-point formula. We remark that the Lefschetz fixed-point formulas
for compact orbifolds have been established in [Dui, FT, EEK].

To motivate our study, let us consider a compact even-dimensional
Riemannian manifold M with an isometric action of a finite group H.
Let /D be an H-invariant Dirac operator on an equivariant Clifford mod-
ule E . Then /D defines a Dirac operator /DX on the quotient orbifold
X = H\M . An orbifold locally looks like Euclidean space equipped
with a finite group action and is a basic geometric model used in many
areas such as mathematical physics, algebraic geometry, representation
theory, and number theory. Index theory of Dirac type operators on
orbifolds is an operator algebraic approach in detecting the topological,
geometrical, and arithmetic information concerning the orbifolds.

The Kawasaki orbifold index for /DX in [K] for the finite quotient
orbifold X = H\M can be obtained by applying the Lefschetz fixed-
point formula (the local equivariant index formula) for indH(γ, /D) to
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the following identity:

(1.3) ind /DX =
1

|H|
∑

γ∈H
indH(γ, /D) =

∑

(γ)∈〈H〉

1

|ZH(γ)| indH(γ, /D).

Here, the second summand is taken over representatives for the conju-
gacy classes 〈H〉 inH. Applying the Lefschetz fixed-point formula (1.2),
this is exactly the Kawasaki orbifold index for the Dirac operator /DX on
the orbifold X. From the view point of topology, the formula (1.3) for
/DX follows from its analogue of calculating the equivariant K-theory of
the compact proper H-manifold M using the extended quotient
⊔(γ)ZH(γ)\Mγ indexed by the conjugacy classes of the finite group H
(see [BC1, EE]):

(1.4) K∗
H(M)⊗ C ∼= ⊕(γ)K

∗(ZH(γ)\Mγ)⊗ C.

In this paper, we are interested in the index problems for a Dirac
type operator on an orbifold that is not necessarily compact. Namely,
we consider a complete even-dimensional Riemannian orbifold X where
a discrete group G acts properly, co-compactly, and isometrically. Let
/DE be a G-invariant Dirac type operator on X acting on the L2-sections
of a Dirac bundle E (cf. Definition 2.9), and let /DG\E be the Dirac
operator /DE passed from X to the compact quotient orbifold G\X. We

study the index theory of /DE as well as its relation to /DG\E , based on
the following facts when X is a manifold.

1) The G-invariant elliptic operator /DE defines a cycle in the K-
homology group of C0(X) and is “Fredholm” with respect to the
C∗-algebra C∗(G) of the discrete group G. In other words, /DE has
a higher index in the K-theory of the maximal group C∗-algebra
of G (see, for example, [K1]):

(1.5) μ : K0
G(C0(X)) −→ K0(C

∗(G)) [ /DE ] 	→ μ[ /DE ].

2) The Dirac operator /DG\E on the quotient orbifold G\X has a Fred-
holm index according to the work of Kawasaki [K] and is related
to the higher index μ[ /DE ] of /DE by composing the homomorphism
ρ : C∗(G) → C, given by the trivial representation of G, on the
K-theory level (see [Bu]):

ind /DG\E = ρ∗(μ[ /D
E ]) ∈ Z.

3) The L2-index is an important topological invariant for a proper
co-compact G-manifold. It was initially defined by Atiyah in [At]
for a manifold admitting a free co-compact action of a discrete
group. The L2-index for /DE is a numerical index measuring the
size of the space of L2-solutions for /DE . In [W], we showed that
the L2-index of /DE follows from taking the von Neumann trace of
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the higher index (1.5):

(1.6) L2- ind /DE = τ∗(μ[ /D
E ]) ∈ R,

where τ∗ : K0(C
∗(G)) → R is induced by the trace map

τ : C∗(G) −→ C
∑

g∈G
αgg 	→ αe.

Moreover, by the L2-index formula derived in [W], the L2-index
of /DE is the top stratum of the Kawasaki index formula for /DG\E .

The paper is devoted to answering the following concrete questions
for the index theory for /DE :

1) How do we formulate the higher index and L2-index in the setting
when X is a non-compact orbifold?

2) How is the orbifold index ind /DG\E related to the L2-index for /DE?
3) Is there any Lefschetz fixed-point formula for a non-compact orb-

ifold with a transformation preserving all the geometric data for
the Dirac type operator?

The main results of the paper are then summarized as follows.
First of all, we have a positive answer to the first question, that is,

the indices μ[ /DE ], ind /DG\E , and L2-ind /DE can be formulated when X

is a complete Riemannian orbifold admitting a proper, co-compact and
isometric action of a discrete group G. Namely, we construct in (4.7) a
higher index map

μ : K0
G(C

∗
red(X)) −→ K0(C

∗(G)) [ /DE ] 	→ μ[ /DE ],

where the Dirac operator /DE on the G-orbifold X gives rise to an
equivariant K-homology class of the reduced C∗-algebra C∗

red(X); see

Lemma 4.7. The orbifold index ind /DG\E of the quotient G\X is related
to the higher index by the trivial representation of G; see Theorem 4.13.

Second, in searching for a relationship between the orbifold index of
/DG\E and the L2-index of ind /DE , we find it is necessary to introduce the
notion of localized indices for /DE , which is a major novelty of our paper.
See Definition 5.7. For each conjugacy class (g) of g in G, the localized
(g)-index of /DE , denoted by ind(g)( /D

E), is defined as the pairing between

the Banach algebra version higher index μS(G)[ /D
E ] (cf. Definition 4.5)

and a localized (g)-trace τ (g), which is a cyclic cocycle of degree 0 given
by the sum of the coefficients over elements in the conjugacy class (g)
for an element in the group algebra CG (cf. Definition 5.2). It then
follows from Theorem 5.12 that the higher index μS(G)[ /D

E ] is linked to

the numerical indices ind /DG\E and L2-ind /DE by the localized indices
as follows:
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1) The localized indices factor through the Banach algebra version
higher index by definition:

(1.7) ind(g)( /D
E) = τ

(g)
∗ (μS(G)[ /D

E ]).

In particular, the nonvanishing of the localized (g)-index implies
the existence of L2-solutions invariant under the action of g ∈ G.

2) The localized (e)-index generalizes the L2-index and factors through
the usual higher index μ[ /DE ]:

L2- ind /DE = ind(e)( /D
E) = τ

(e)
∗ (μ[ /DE ]).

3) When the group G satisfies some trace properties, the integer-

valued orbifold index for /DG\E on G\X is the sum of localized
indices for /DE over all conjugacy classes (cf. Theorem 5.10):

(1.8) ind /DG\E =
∑

(g)∈G
ind(g)( /D

E).

On the one hand, localized indices (1.7) give rise to a K-theoretic
interpretation of each component of the orbifold index for /DG\X on the
quotient orbifold G\X. Hence, as an analogue of (1.4) in our more
general setting, localized indices produce finer topological invariants on
G\X. On the other hand, comparing (1.8) with (1.3), the localized
index should be thought of as a replacement of the equivariant index
(1.1) for the Lefschetz fixed-point formula in the compact situation.
This motivated us to find a cohomological formula for ind(g)( /D

E); see
Theorem 5.10.

Third, combining the techniques of KK-theory and the heat kernel
method, we explicitly compute the localized (g)-index as the orbifold in-
tegration of the local index density over X(g), which is an orbifold of type
ZG(g)\Xg (the fixed-point sub-orbfiold). The formulas are presented in
Theorems 3.23 and 5.10 and they are regarded as an analogue of the
“Lefschetz fixed-point formulas” for the isometries given by the action of
the discrete group G on the complete Riemannian orbifold X. There are
two nontrivial technical points in deriving the cohomological formulas
for the localized indices. The first one is Theorem 3.4, which provides an
asymptotic expansion of the heat kernel Kt(x, y) of /DE and the uniform
convergence of

∑
g∈G Kt(x, gx)g over a relative compact suborbifold of

X that have nontrivial intersection with each orbit for the G-action. The
second one is Lemma 5.6. The lemma relates two notions of traces in
topological and analytic settings—namely, the continuous trace defined
on a certain completion of the group algebra CG and some supertrace
of the heat kernel. See Definition 5.2 and Definition 3.13 for the precise
descriptions.

Finally, we provide some observations and applications for the local-
ized indices and their index formulas:
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1) When X is replaced by a manifold M , we derive the L2-version
of the Lefschtez fixed-point formula for a complete Riemannian
manifold M with a proper co-compact action of a discrete group
G, by introducing an average function, called a cut-off function,
with respect to some group action on the fixed-point sub-manifold
(see Theorem 6.1). This result extends the L2-index formulas
in [At, W] from the top stratum of G\M to the lower strata.

2) Let X = G/K be a Riemannian symmetric manifold of noncom-
pact type, where G is a real semi-simple Lie group and K is a
maximal compact subgroup. Let Γ be a discrete co-compact sub-
group of G. The cohomological formulas for the localized indices
for /DE give rise to the orbital integrals in the Selberg trace for-
mula. See Theorem 6.2. This means that our localized indices in
this special case are related to the multiplicity of unitary repre-
sentations of the Lie group G.

3) The nonvanishing of the higher index for /DE is useful in solv-
ing topological and geometric problems for the orbifold X. Ex-
plicit formulas for the localized indices, which are derived from
the higher index, provide a tool to tackle these problems for X.
Theorem 6.4 provides an example of how the nonvanishing of the
localized indices for groups satisfying some trace property derive
the nonexistance of positive scalar curvature for complete spin
orbifolds.

The paper is organized as follows: In Section 2, we review basic def-
initions concerning orbifolds and the Kawasaki orbifold index theorem.
In Section 3, we give the definition of invariant elliptic operators on a
proper co-compact G-orbifold and use the heat kernel method to cal-

culate the localized supertraces of the heat kernel e−t( /DE )2 of the Dirac
operator /DE . In Section 4, we formulate the higher index map for /DE

and show that the Fredholm index for /DG\E factors through this higher
index map. In Section 5, we introduce the localized indices and present
their various connections to the other indices. We also use the analyti-
cal results from Section 3 to derive the cohomological index formulas for
the localized indices that correspond to the L2-version of the Lefschtez
fixed-point formulas for a noncompact orbifold. In Section 6, we discuss
several applications and remarks of the localized indices.
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hai Center of Mathematical Sciences at Fudan for their hospitalities
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2. A review of orbifolds and the orbifold index theorem

In this section, we give a preliminary review of orbifolds in terms of
orbifold atlases and orbifold groupoids, and Kawasaki’s orbifold index
theorem. Some of basic references are [Th, K, ALR]. Chapter 2 of
[KL] contains a nice account of differential and Riemannian geometries
of orbifolds. Due to the subtle nature of orbifolds and the fact that
there is not any universal agreement in describing orbifolds, we try to
give a sufficiently self-contained review as best as we can.

2.1. Orbifolds and discrete group actions. An n-dimensional orb-
ifold X is a paracompact Hausdorff space |X| equipped with an equiva-
lence class of orbifold atlases. Let us recall the definition of an orbifold
atlas.

Definition 2.1. (Orbifolds and local groups) Let |X| be a para-
compact Hausdorff space. An orbifold atlas on |X| is a coherent system

of orbifold charts O = {(Ũi,Hi, πi)} such that:

1) {Ui} is an open cover of |X| that is closed under finite intersec-
tions.

2) For each Ui, there is an obifold chart (Ũi,Hi, πi) where Ũi is a
connected open neighborhood in some Euclidean space Rn with a
right action of a finite group Hi with the quotient map πi : Ũi →
Ui.

3) For any inclusion ιij : Ui → Uj, there is an embedding of orbifold
charts

(φij , λij) : (Ũi,Hi, πi) →֒ (Ũj ,Hj , πj),(2.1)

which is given by an injective group homomorphism λij : Hi → Hj

and an embedding φij : Ũi →֒ Ũj covering the inclusion ιij such
that φij is Hi-equivariant with respect to φij , that is,

φij(x · g) = φij(x) · λij(g) x ∈ Ũi, g ∈ Hi.(2.2)

When the action of Hi is not effective, the subgroup of Hi acting
trivially on Ui is isomorphically mapped to the subgroup of Hj

acting trivially on Uj .

Here, the coherent condition for O is described as follows: given Ui ⊂
Uj ⊂ Uk, there exists an element g ∈ Hk such that

g ◦ φik = φjk ◦ φij , gλik(h)g
−1 = λjk ◦ λij(h)(2.3)

for any h ∈ Hi. Two orbifold atlases are called equivalent if they are
included in a third orbifold atlas (called a common refinement).

Given an orbifold X and a point x ∈ |X|, let (Ũ ,G, π) be an orbifold
chart around x. Then the local group at x is defined to be the stabilizer
of x̃ ∈ π−1(x), which is uniquely defined up to conjugation.
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As proved in Corollary 1.2.5 of [MP1], any orbifold atlas admits a

refinement O such that for each orbifold atlas (Ũ ,H, π, U) in O, both

Ũ and U are contractible. Such an orbifold atlas is called a good atlas.
For convenience, we may choose each orbifold chart (Ũ ,H, π) in O such

that Ũ is an open ball centred at the origin in Rn and H is a finite group
of linear transformations.

An orbifold X is called compact (resp. connected) if |X| is compact
(resp. connected). An orbifold X is oriented if there exists an orbifold

atlas {(Ũi,Hi, πi)} such that Ũi is an open set of an oriented Euclidean
space Rn, the Hi-action preserves the orientation, and moreover, all the
embeddings {φij} in (2.1) are orientation preserving.

A smooth map f : X → Z between two orbifolds is a continuous map
|f | : |X| → |Z| with the following property: there exist orbifold atlases

OX = {(Ũi,Hi, πi)} and OZ = {(Ṽα, Gα, πα)} for X → Z, respectively,
such that:

1) For each (Ũi,Hi, πi) ∈ OX, there is an orbifold chart (Ṽαi
, Gαi

, παi
) ∈

OZ with a local smooth map fi : (Ũi,Hi) → (Ṽαi
, Gαi

) making the
diagram

Ũi
fi

��

πi

��

Ṽαi

παi

��

Ui
|f |i

�� Vαi

commute, where fi is Gαi
-equivariant.

2) For any embedding of orbifold charts (Ũi,Hi, πi) →֒ (Ũj ,Hj , πj)
in OX, there is an corresponding embedding of orbifold charts

(Ṽαi
, Gαi

, παi
) →֒ (Ṽαj

, Gαj
, παj

)

in OZ such that the following diagram commutes in the obvious
equivariant sense:

(Ũi,Hi, πi)
fi

��

��

(Ṽαi
, Gαi

, παi
)

��

(Ũj ,Hj, πj)
fj

�� (Ṽαj
, Gαj

, παj
).

3) The coherent condition (2.3) is preserved under fi’s.

A diffeomorphism f : X → Z is a smooth map with a smooth inverse.
The set of all diffeomorphisms from X to itself is denoted by Diff(X).

A Riemannian metric on an orbifold X = (|X|,O) is a collection of

Riemannian metrics on Ũi’s such that for each orbifold chart (Ũi,Hi, πi)

in O, Hi acts isometrically on Ũi and all the embeddings {φij} in (2.1)
are isometric. We have already assumed that the orbifold atlas for
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X is a good atlas. Note that when X is an effective Riemannian n-
dimensional orbifold, the orthonormal frame of X is a smooth manifold
with a locally free O(n)-action whose quotient space can be equipped a
natural orbifold structure isomorphic to X.

Remark 2.2. An orbifold is called presentable if it arises from a
locally free action of a compact Lie group on a smooth manifold. It is
obvious to see that any effective orbifold is presentable. Conjecturally,
every orbifold is presentable (cf. Conjecture 1.55 in [ALR]). An orbifold
is called a good orbifold if it is a quotient of a smooth manifold by
a proper action of a discrete group. Equivalently, an orbifold is good
if its orbifold universal cover is smooth; see [Th, ALR] for detailed
discussions.

In this paper, we are mainly interested in a noncompact oriented
Riemannian orbifold X with a discrete group G-action that is proper,
co-compact, and isometric. Given a discrete group G and an orbifold
X, a smooth action of G on X is a group homomorphism

G −→ Diff(X).

An action of G on X is called proper if the induced action on |X| is
proper, that is, the map

G× |X| −→ |X| × |X| (g, x) 	→ (x, gx)(2.4)

is proper. It is easy to check that the quotient space G\|X| can be
equipped with an orbifold structure as given by the following lemma.

Lemma 2.3. Let X be a noncompact Riemannian orbifold, and G a
discrete group acting properly, co-compactly, and isometrically on X.

1) Then |X| is covered by finite number of G-slices of the form G×Gi

Ui for i = 1, · · · , N , where Gi is a finite subgroup of G and Ui is
the quotient space of some Euclidean ball Ũi by a finite group Hi,
where Ũi admits a left Gi-action and a right Hi-action.

2) Let |X| = ∪N
i=1G ×Gi

Ui be covered by G-slices as in (1). Then X

has the orbifold atlas generated by {G×Gi
Ũi,Hi}Ni=1.

3) The orbit space G\X, being a compact orbifold as a result of the
properness of the action, admits an orbifold atlas generated by
{Ũi, Gi ×Hi}Ni=1.

Proof. As the action is proper, given an open set Ui of |X|, then the
pre-image of the closure of Ui×Ui under the map (2.4) is compact. This
implies that there is a finite subgroup Gi such that Ui is Gi-invariant.
By choosing Ui small enough, we can assume that

{g ∈ G|g(Ui) ∩ Ui �= ∅} = Gi.

For each Ui, let (Ũi,Hi, πi) be an orbifold chart over Ui. Then taking a
smaller Ui, by the definition of a diffeomorphism of X, we know that Gi-
action on Ui can be lifted to an action on Ũi that is Hi-equivariant. This
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means that Gi-action and Hi-action commute. We can choose Ũi to be
a Euclidean ball with a linear action of Hi. As G acts co-compactly on
X, there are finitely many G-slices of the form

G×Gi
Ui.

This completes the proof of the Claim (1). Claims (2) and (3) are
obvious. q.e.d.

It becomes a majority view that the language of groupoids provides a
convenient and economical way to describe orbifolds. In this paper, the
groupoid viewpoint is also essential to getting a correct C∗-algebra asso-
ciated to an orbifold in order to define a correct version of K-homology
for orbifolds. We briefly recall the definition of an orbifold groupoid
that is just a proper étale groupoid constructed from its orbifold atlas.

Definition 2.4. (Proper étale groupoids) A Lie groupoid G =
(G1 ⇒ G0) consists of two smooth manifolds G1 and G0, together with
five smooth maps (s, t,m, u, i) satisfying the following properties.

1) The source map and the target map s, t : G1 → G0 are submersions.
2) The composition map

m : G[2]
1 := {(g1, g2) ∈ G1 × G1 : t(g1) = s(g2)} −→ G1,

written as m(g1, g2) = g1 · g2 for composable elements g1 and g2,
satisfies the obvious associative property.

3) The unit map u : G0 → G1 is a two-sided unit for the composition.
4) The inverse map i : G1 → G1, i(g) = g−1, is a two-sided inverse

for the composition m.

A Lie groupoid G = (G1 ⇒ G0) is proper if (s, t) : G1 → G0 × G0 is
proper, and called étale if s and t are local diffeomorphisms.

In the category of proper étale groupoids, a very important notion of
morphism is the so-called generalized morphisms developed by Hilsum
and Skandalis (for the category of general Lie groupoids in [HS]). Let
G1 ⇒ G0 and H1 ⇒ H0 be two proper étale Lie groupoids. A gener-

alized morphism between G and H, denoted by f : G ��❴❴❴ H , is a
right principal H-bundle Pf over G0 that is also a left G-bundle over H0

such that the left G-action and the right H-action commute, formally
denoted by

G1

����

Pf

����⑦⑦
⑦⑦
⑦⑦
⑦

��
❇❇

❇❇
❇❇

❇❇
H1

����

G0 H0.

(2.5)

See [CaW] for more details. Note that a generalized morphism f be-
tween G and H is invertible if Pf in (2.5) is also a principal G-bundle
over H0. Then G and H are called Morita-equivalent.
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Remark 2.5. Given a proper étale Lie groupoid G, there is a canon-
ical orbifold structure on its orbit space |G| [ALR, Prop. 1.44]. Two
Morita-equivalent proper étale Lie groupoids define two diffeomorphic
orbifolds [ALR, Theorem 1.45]. Conversely, given an orbifold X with

an orbifold atlas O = {(Ũi,Hi, πi)}, there is a canonical proper étale

Lie groupoid GX, locally given by the action groupoid Ũi � Hi ⇒ Ũi;
see [MP2, LU]. Two equivalent orbifold atlases define two Morita-
equivalent proper étale Lie groupoids. A proper étale Lie groupoid
arising from an orbifold atlas will be called an orbifold groupoid for
simplicity in this paper. Our notion of orbifold groupiods is slightly
different from that in literature, where any proper étale Lie groupoid
is called an orbifold groupoid. One can check that a smooth map be-
tween two orbifolds corresponds to a generalized morphism between the
associated orbifold groupoids.

Using the language of orbifold groupoids, it is simpler to describe
de Rham cohomology and orbifold K-theory for a compact orbifold X.
Let G = GX be the associated orbifold groupoid. Then the de Rham
cohomology of X, denoted by H∗

orb(X,R), is just the cohomology of the
G-invariant de Rham complex (Ω∗(X), d), where

Ω∗(X) = {ω ∈ Ω∗(G0)|s∗ω = t∗ω}.
The Satake–de Rham theorem says that there is a natural isomorphism

H∗
orb(X,R)

∼= H∗(|X|,R).
Hence, the orbifold de Rham cohomology of X does not provide any orb-
ifold information about X. In terms of orbifold atlas O = {(Ũi,Hi, πi)}
of X, a differential form ω ∈ Ω∗(X) can be written as a family of local

equivariant differential forms on Ũi’s that respect the equivariant con-
dition (2.2) and the coherent condition (2.3). Let ω be a compactly
supported n-form on X; we define

∫ orb

X

ω =
∑

i

1

|Hi|

∫

Ũi

ρiω,(2.6)

where ρi is a smooth partition of unity subordinate to {Ũi} in an obvious
sense. Then this is a well-defined integration map for an n-dimensional
orbifold X.

An orbifold vector bundle E over an orbifold X = (|X|,O) is a coherent
family of equivariant vector bundles

{(Ẽi → Ũi,Hi)}
such that for any embedding of orbifold charts φij : (Ũi,Hi) →֒ (Ũj ,Hj),

there is an Hi-equivariant bundle map φ̃ij : Ẽi → Ẽj covering φij : Ũi →
Ũj . The coherent condition for φ̃ij is given by (2.3) with φij ’s replaced

by φ̃ij’s. Then the total space E =
⋃
(Ẽi/Hi) of an orbifold vector
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bundle E → X has a canonical orbifold structure given by {(Ẽi,Hi)}.
We remark that orbifold vector bundles in this paper are those called
proper orbifold vector bundles in [K, ALR]. An orbifold vector bundle
is called real (resp. complex) if each Ei is real (resp. complex). For
example, for an orbifold X, the local tangent and cotangent bundles form
real orbifold vector bundles over X, denoted by TX and T ∗X respectively.

A smooth section of an orbifold vector bundle is a family of invariant
smooth sections of Ẽi’s that behave well under the equivariant con-
dition (2.2) and the coherent condition (2.3). The space of smooth
sections of E is denoted by Γ(X, E). A connection ∇ on a complex orb-
ifold vector bundle E → X is a family of invariant connections {∇i} on

{(Ẽi → Ũi,Hi)} that are compatible with the bundle maps {φ̃ij}. A
connection ∇ on E defines a covariant derivative, which is a differential
operator

∇ : Γ(X, E) −→ Γ(X, T ∗X⊗ E)
satisfying Leibniz’s rule in the usual sense.

Recall that a vector bundle over a Lie groupoid G = (G1 ⇒ G0) is
a G-vector bundle E over G0, that is, a vector bundle E with a fiber-
wise linear action of G1 covering the canonical action of G1 on G0. The
corresponding principal bundle can be described in terms of a Hilsum–
Skandalis morphism

G ��❴❴❴ GL(k) ,

where k is the rank of E and the general linear group GL(k), over R or
C, is treated as a Lie groupoid GL(k) ⇒ {e}. See [CaW] for details.

One can check that an orbifold vector bundle over X defines a canon-
ical vector bundle over the orbifold groupoid G. The orbifold K-theory
of X, denoted by K0

orb(X), is defined to be the Grothendieck ring of
stable isomorphism classes of complex oribifold vector bundles over X.
Let K0(G) be the Grothendieck ring of stable isomorphism classes of
complex vector bundles over G. Then we have an obvious isomorphism

K0
orb(X)

∼= K0(G).
Here, G is the canonical orbifold groupiod associated to X, so there
is no ambiguity in the above isomorphism caused by another Morita-
equivalent proper étale Lie groupoid.

Given an orbifold groupoid G = (G1 ⇒ G0) for an orbifold X, there
are two canonical convolution C∗-algebras: the reduced and maximal
C∗-algebras, denoted by C∗

red(X) and C∗
max(X). For readers’ benefit, we

recall the definition from Chapter 2.5 in [Co2, Ren].

Definition 2.6. (Reduced and maximal C∗-algebras) The re-
duced C∗-algebra C∗

red(X) is the completion of the convolution algebra
C∞
c (G1) of smooth compactly supported functions on G1 for the norm

‖f‖ = sup
x∈G0

‖πx(f)‖
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for f ∈ C∞
c (G1). Here, πx is the involution representation of C∞

c (G1)
in the Hilbert space l2(s−1(x)). The maximal C∗-algebra C∗

max(X) is the
completion of the convolution algebra C∞

c (G1) for the norm

‖f‖max = sup
π
{‖π(f)‖},

where the supremum is taken over all possible Hilbert space representa-
tion of C∞

c (G1).

Remark 2.7. For an effective or a presentable orbifold, it is straight-
forward to see that there is an isomorphism

K∗
orb(X)

∼= K∗(C∗
red(X)),

where K∗(C∗
red(X)) is the K-theory of the reduced C∗-algebra C∗

red(X).
For a noneffective orbifold, this becomes a very subtle issue. Neverthe-
less, the above isomorphism still holds for general orbifolds as estab-
lished in [TTW].

2.2. Kawasaki’s index theorem for compact orbifolds. The Atiyah–
Singer type index theorem for elliptic operators over a compact orbifold
was established by Kawasaki in [K]. When the underlying compact orb-
ifold is good, a higher index was studied in [F1, Bu], and a twisted L2-
index with trivial Dixmier–Douady invariant was developed in [MM].
In this subsection, we will review the original Kawasaki’s orbifold in-
dex theorem using modern language of twisted sectors and delocalized
characteristic classes.

Let X = (|X|,O) be an orbifold. Then the set of pairs

{(x, (g)Hx )|x ∈ |v|, g ∈ Hx},
where (g)Hx is the conjugacy class of g in the local group Hx, has a
natural orbifold structure given by

(2.7) {
(
Ũg, Z(g), π̃

)
|g ∈ Hx}.

Here, for each orbifold chart (Ũ ,H, π) ∈ O around x, Z(g) is the cen-

tralizer of g in Hx and Ũg is the fixed-point set of g in Ũ . This orbifold,
denoted by IX, is called the inertia orbifold of X. The inertia orbifold
IX consists of a disjoint union of sub-orbifolds of X. There is a canonical
orbifold immersion

ev : IX −→ X

given by the obvious inclusions {
(
Ũg, Z(g), π̃

)
→ (Ũ ,H, π)}.

To describe the connected components of IX, we need to introduce
an equivalence relation on the set of conjugacy classes in local groups
as in [ALR]. For each x ∈ X, let (Ũx,Hx, πx, Ux) be a local orbifold
chart at x. If y ∈ Ux, then up to conjugation there is an injective
homomorphism of local groups Hy → Hx. Under this injective map,
the conjugacy class (g)Hx in Hx is well defined for g ∈ Hy. We define
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the equivalence to be generated by the relation (g)Hy ∼ (g)Hx . Let TX
be the set of equivalence classes. Then the inertia orbifold is given by

IX =
⊔

(g)∈TX
X(g),

where X(g) = {(x, (g′)Hx)|g′ ∈ Hx, (g
′)Hx ∼ (g)}. Note that X(e) = X

is called the nontwisted sector and X(g) for g �= e is called a twisted
sector of X.

Given a complex orbifold vector bundle E over X, the pull-back bun-
dle ev∗E over IX has a canonical automorphism Φ. With respect to a
Hermitian metric on E, there is an eigen-bundle decomposition of ev∗E,

ev∗E =
⊕

θ∈Q∩[0,1)
Eθ,

where Eθ is a complex orbifold vector bundle over IX, on which Φ acts

by multiplying e2π
√
−1θ. Define the delocalized Chern character of

E by

chdeloc(E) =
∑

θ

e2π
√
−1θ ch(Eθ) ∈ Hev

orb(IX,C),

where ch(Eθ) ∈ Hev(IX,C) is the ordinary Chern character of Eθ. The
odd delocalized Chern character

chdeloc : K
1
orb(X) −→ Hodd(IX,C)

can be defined in the usual way. The following proposition is established
in [HW] for compact presentable orbifolds, and in [TTW] for general
compact orbfiolds.

Proposition 2.8. [HW, Proposition 2.7] For any compact orbifold
X, the delocalized Chern character gives a ring isomorphism

chdeloc : K
∗
orb(X)⊗Z C −→ H∗(IX,C)

over C.

Let X be a compact Riemannian orbifold with an orbifold atlas O =
{(Ũi,Hi, π)}. Then the bundles of Clifford algebras over Ũi’s,

{(Cliff(T Ũi) → Ũi,Hi)},
whose fiber at x ∈ Ũi is the real Clifford algebra Cliff(TxŨi), define an
orbifold Clifford bundle, denoted by Cliff(TX). As in the manifold
case (cf. Chapter 3.3 in [BGV]), there is a connection on Cliff(TX),
induced from the Levi–Civita connection ∇TX, which is compatible with
the Clifford multiplication on Γ(X,Cliff(TX)).

Definition 2.9. Let X be a compact Riemannian even-dimensional
orbifold with an orbifold atlas O = {Ũi,Hi, π)}.



LOCALIZED INDEX, LEFSCHETZ FIXED FORMULA FOR ORBIFOLDS 299

1) A Dirac bundle over X is a Z/2Z-graded Hermitian orbifold vector
bundle E with a graded self-adjoint smooth action of Cliff(TX) in

the sense that, for each orbifold chart (Ũi,Hi, π), the action of

v ∈ Cliff(TxŨi) is of degree 1 and skew-adjoint.
2) A connection ∇E on a Dirac bundle is called a Clifford connection

if for any v ∈ Γ(X,Cliff(TX)) and ξ ∈ Γ(X, TX),

[∇E
ξ , c(v)] = c(∇ξv).

Here, c is the Clifford action Cliff(TX)⊗ E → E.
Remark 2.10. 1) By means of a smooth partition of unity on X,

any Dirac bundle over X admits a Clifford connection. The space
of all Clifford connections is an affine space modeled on Γ(X, T ∗X⊗
EndCliff(TX)(E)). Here, EndCliff(TX)(E) is the bundle of degree 0
endomorphisms that commute with the Clifford action.

2) For an even-dimensional compact Riemannian orbifold X, X is
spinc if and only if there exists an orbifold complex vector bun-
dle S, called a complex spinor bundle, such that the complexi-
fied version of Cliff(TX), denoted by CliffC(TX), is isomorphic to
EndC(S). A choice of such an S is called a Spinc structure on X.
Then any Dirac bundle E can be written as S ⊗W for an orbifold
complex vector bundle W over X.

3) The Grothendieck group of Dirac bundles over X forms an abelian
group, denoted by K0(X,CliffC(TX)). The relative delocalized
Chern character

chSdeloc : K
0
orb(X,CliffC(TX)) −→ Hev(IX,R)

can be defined by the same construction as in Section 4.1 of
[BGV]. When X is equipped with a Spinc structure S, then

K0
orb(X,CliffC(TX)) ∼= K0

orb(X),

and for any Dirac bundle E written as S ⊗W, we have

chSdeloc(S ⊗W) = chdeloc(W).

Given a Dirac bundle E with a Clifford connection ∇E over a compact
Riemannian even-dimensional orbifold X, the Dirac operator on E is
defined to be the following composition:

/DE : Γ(X, E) ∇E
�� Γ(X, T ∗X⊗ E) ∼= Γ(X, TX⊗ E) c

�� Γ(X, E).
When X is a spinc orbifold with its spinor bundle S, then E = S ⊗W
for a complex orbifold vector bundle W, and /DE will be written as /DW .
With respect to the Z/2Z-grading on E = E+ ⊕ E−,

/DE =

[
0 /DE

−
/DE
+ 0

]
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where /DE
− is the formal adjoint of /DE

+. Let L2(X, E) and L2
1(X, E) be

the completions of Γ(X, E) with respect to L2-norm and L2
1-norm re-

spectively. Then

/DE : L2
1(X, E) −→ L2(X, E)

is a Fredholm operator by showing that the unbounded operator

/DE : L2(X, E) −→ L2(X, E)
has compact resolvent. One could also establish the finite dimensionality

of ker /DE by showing that the heat operator e−t( /DE )2 is a trace-class
operator for any compact Riemannian orbifold X. This latter claim

follows from the fact that e−t( /DE)2 has a smooth kernel. In next section
we will prove the smooth heat kernel for any complete Riemannian
orbifold, so we omit the details here.

The Fredholm index of /DE is given by

ind /DE = dimC ker /DE
+ − dimC ker /DE

−.

To rephrase the orbifold index theorem in [K] (cf. [Bu]), we introduce
the notations for the delocalized A-hat class and the delocalized Todd
class of X as follows. For simplicity, we assume that each twisted sector
X(g) is connected; otherwise, these characteristic classes are defined on
each connected component. Considering the orbifold immersion

ev : IX −→ X,

we can decompose the pull-back of the orbifold tangent bundle along
each twisted sector X(g) (using the Riemannian metric)

TX|X(g)
∼= TX(g) ⊕N(g)

such that the pull-back of the Riemannian curvature of TX is decom-
posed as

ev∗RTX = RTX(g) ⊕RN(g) ,

where RTX(g) is the Riemannian curvature of X(g) and RN(g) is the cur-
vature of the induced connection on N(g). Then the delocalized A-hat
class of X is a cohomology class on IX. When restricted to each twisted
sector X(g), it is defined by

Âdeloc(X) =
Â(X(g))

[det
(
1− Φ(g)eR

N(g)/2πi
)
]1/2

.

Here, Â(X(g)) is the A-hat form of X(g) defined by

[
det

(
RTX(g)/4πi

sinh(RTX(g)/4πi)

)]1/2

and Φ(g) is the automorphism of N(g) defined by the inertia orbifold
structure. If IX is a spinc orbifold, then the delocalized Todd class of
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X is a cohomology class on IX. When restricted to each twisted sector
X(g), it is defined by the closed differential form

Tddeloc(X) =
Td(X(g))

det
(
1− Φ−1

(g)e
R

N(g)/2πi
) ,

where Td(X(g)) = det

(
iRX(g)/2π

1− e−iR
X(g)/2π

)
is the usual Todd form of the

spinc orbifold X(g).

Theorem 2.11. Let X be a compact Riemannian even-dimensional
orbifold. Let /DE be a Dirac operator on a Dirac bundle E over X. Then
the index of /DE is given by

ind /DE =

∫ orb

IX
Âdeloc(X) ch

S
deloc(E).

In particular, if IX is a spinc orbifold and W is an orbifold Hermitian
vector bundle with a Hermitian connection, then the index of the spinc

Dirac operator /DW
+ is given by the formula

ind /DW =

∫ orb

IX
Tddeloc(X) chdeloc(W).

Remark 2.12. One can adapt the proof of Theorem 4.1 in [BGV] to
compact orbifolds to establish the local index version of Theorem 2.11.

It amounts to studying the heat kernel asymptotics for e−t( /DE )2 on the
compact orbifold. We will apply the same heat kernel approach to
establish a more refined index formula for a discrete group action on a
complete Riemannian orbifold, so we will not reproduce a proof here.

3. Invariant elliptic operators on complete orbifolds

In this section, after a review of invariant elliptic pseudo-differential
operators in Section 3.1, we prepare some analytical tools to study in-
dices of Dirac type operators on a complete even-dimensional Riemann-
ian orbifold X, where a discrete group G acts properly, co-compactly,
and isometrically. When the orbifold is compact, the index of the Dirac
operator /DE is known to be calculated by the supertrace of the cor-
responding heat operator. However, when X is not compact, the con-
vergence of the heat kernel asymptotic expansion as t → 0+ has to be
modified accordingly. This is worked out in Section 3.2. Also, the oper-

ator trace of e−t( /DE)2 does not make sense. In Section 3.3 we introduce
(g)-trace class operators, and in Section 3.4 we compute the (g)-trace
for the heat operator. On the one hand, these traces are related to the
orbifold index of /DG\E on the quotient. On the other hand, as we shall
see in Section 5, they are topological invariants for X coming from the
higher index for /DE .
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3.1. Invariant elliptic pseudo-differential operators. Let X be a
complete n-dimensional oriented Riemannian orbifold, and let E be a
Hermitian orbifold vector bundle with a Hermitian connection ∇. De-
note by Γc(X, E) ⊂ Γ(X, E) the subspace of smooth sections of E with
compact support. A differential operator

(3.1) D : Γc(X, E) −→ Γ(X, E)
of orderm is a linear map such that for any orbifold chart (Ũi,Hi, πi, Ui),
the operator D is locally represented by

D̃i : Γ(Ũi, Ẽ |Ũi
)Hi −→ Γ(Ũi, Ẽ |Ũi

)Hi ,

an Hi-invariant differential operator of order m. The completion of
Γc(X, E) in the Sobolev k-norm

‖ψ‖2k =

k∑

i=0

∫ orb

X

|∇iψ|2d volX(3.2)

is the Sobolev space denoted by L2
k(X, E). Here, d volX is the Riemann-

ian volume element (the unique n-form of unit length) on X defined by
the metric. Then the differential operator (3.1) extends to a bounded
linear map D : L2

k(X, E) → L2
k−m(X, E) for all k ≥ m. A linear map

A : Γc(X, E) −→ Γ(X, E) is called a smoothing operator if A extends
to a bounded linear map A : L2

k(X, E) → L2
k+m(X, E) for all k and

m ≥ 0. The Sobolev embedding theorem implies that, for a smoothing
operator A, we have

A(L2
k(X, E)) ⊂ Γ(X, E)

for all k.

Definition 3.1 (Pseudo-differential operators on an orbifold).
A linear map

D : Γc(X, E) −→ Γ(X, E)
is a pseudo-differential operator of order m if modulo smoothing
operators, for any orbifold chart {(Ũi,Hi, πi, Ui)}, the operator D is
represented by

(3.3) D̃i : Γc(Ũi, Ẽ |Ũi
) −→ Γ(Ũi, Ẽ |Ũi

),

which is an Hi-invariant pseudo-differential operator of order m. A
pseudo-differential operator D is elliptic if D̃i is elliptic for each orb-
ifold chart (Ũi,Hi). Denote by Ψm

orb(X, E) the linear space of all pseudo-
differential operators of order m on (X, E).

Due to the local nature of pseudo-differential operators, an operator
D ∈ Ψm

orb(X, E) has a well-defined principal symbol of order m that is
an element in

Symm
orb(X, E)/Symm−1

orb (X, E)
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where Symm
orb(X, E) is the space of all sections of order m of the orbifold

vector bundle End(p∗E) over T ∗X; here, p : T ∗X → X is the obvious
projection. Associated to a pseudo-differential operator D of order m,
the Schwartz kernel

k ∈ D′(X× X, E ⊠ E∗)
as a distributional-valued section, is smooth off the diagonal. Here,

E ⊠ E∗ = π∗
1E ⊗ π∗

2E∗,

with the projections X×X → X to the first factor and the second factor,
respectively. As explained in [Ma], in terms of a local orbifold chart

(Ũi,Hi, πi, U)i there is a distributional-valued section

k̃D(x̃, ỹ) ∈ Γ(Ũi × Ũi, Ẽi ⊠ Ẽ∗
i ),

which is the kernel for the representing operator D̃i in (3.3), such that

kD(x, y) =
∑

h∈Hi

hk̃D(x̃ · h−1, ỹ),(3.4)

where x̃ ∈ π−1
i (x) and ỹ ∈ π−1

i (y). Here, we assume that Hi acts on Ũi

from the right.
A smoothing pseudo-differential operator A has a smooth kernel,

which is a smooth section k(x, y) of the bundle E ⊠E∗ = π∗
1(E)⊗π∗

2(E∗)
over X× X such that

Aψ(x) =

∫ orb

X

k(x, y)ψ(y)d volX(y).

When X is equipped with a proper, co-compact and isometric action
of a discrete group G, we can define G-invariant pseudo-differential op-
erators on E in the usual sense. Let E be an orbifold Hermitian vector
bundle with a G-invariant Hermitian connection ∇. Consider a collec-
tion of orbifold charts of X

{(G×Gi
Ũi,Hi, G×Gi

Ui)}
as provided by Lemma 2.3. Here, {(G ×Gi

Ũi,Hi, G ×Gi
Ui)} is a col-

lection of orbifold charts indexed by the coset space G/Gi. We further
assume {Ui} to be an open covering of a relatively compact open set C
in |X| such that X = G · C. A G-invariant pseudo-differential operator

DX : Γc(X, E) −→ Γ(X, E)
is locally represented by a G-invariant pseudo-differential operator on
the orbifold G×Gi

Ui. Note that the orbifold structure on the quotient
space G\|X| is defined by the collection of finitely many orbifold charts

{(Ũi, Gi ×Hi, Ui)}.
Then a G-invariant pseudo-differential operator DX of order m on X

defines a pseudo-differential operator of order m on the compact orbifold
G\X.
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Remark 3.2. Let k(x, y) ∈ Ex ⊗ E∗
y be the distributional kernel of a

G-invariant pseudo-differential operator DX. Then we have

(3.5) gk(g−1x, y) = k(x, gy)g ∀x, y ∈ X,∀g ∈ G.

Here, g stands for the action of g ∈ G on the smooth sections in Γ(X, E).
An important class of pseudo-differential operators being studied have

proper support. Recall that an operator with the distributional kernel
k(x, y) is properly supported if for all compact sets C ⊂ X, the
following set is compact in X× X :

(3.6) {(x, y) ∈ X× X|k(x, y) �= 0, x or y ∈ C}.
If S is a G-invariant properly supported operator with Schwartz kernel
KS , then by Remark 3.2 and the co-compactness of the action, (3.6)
implies the existence of R > 0 such that

KS(x, y) = 0 ∀d(x, y) > R.

In view of Definition 3.1, any pseudo-differential operator is properly
supported up to a smoothing operator.

The following proposition is a key property for elliptic operators.
When X is compact, it implies that an elliptic operator has the Fredholm
index. In general, this proposition leads to an elliptic operator model
for K-homology and higher index. As a pseudo-differential operator on
an orbifold is locally defined on the orbifold charts, the proof is similar
to the manifold case ([W, Proposition 2.7]), where we assumed DX to
be properly supported and have order 0. The proof of the proposition is
then a trivial generalization. In fact, any pseudo-differential operator of
positive order can be normalized to an order 0 operator and is properly
supported up to a difference of a smoothing operator.

Proposition 3.3. Let (DX)+ : L2
k(X, E+) → L2

k−m(X, E−), where k >
m, be a G-invariant elliptic operator with nonnegative order m. Then
there exists a G-invariant parametrix QX : L2

k−m(X, E−) → L2
k(X, E+) of

(DX)+ so that 1−QX(DX)+ = S0 and 1−(DX)+QX = S1 are smoothing
operators.

3.2. Dirac operator and heat kernel asymptotics. In this paper,
we focus on Dirac operators, which are first-order elliptic differential
operators. Let X be a complete even-dimensional Riemannian orbifold.
Let ∇TX be the Levi–Civita connection on TX. Given a Dirac bundle
E = E+ ⊕ E− with a Clifford connection ∇E , the Dirac operator

(3.7) /DE =

[
0 /DE

−
/DE
+ 0

]
: L2(X, E) −→ L2(X, E),

with domain Γc(X, E) is an essentially self-adjoint elliptic differential
operator. Moreover, we have the Lichnerowicz formula for ( /DE)2 as
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follows:

( /DE)2 = ∆E + c(F E/S) +
1

4
rX,(3.8)

where ∆E is the Laplace operator on E , c(F E/S) is the Clifford action
of the twisted curvature of the Clifford connection ∇E , and rX is the
scalar curvature of X. We remark that the proof of the essential self-
adjointness of /DE and the Lichnerowicz formula for ( /DE)2 follow from
the proof in the case of smooth manifolds without significant changes.
Then the heat operator

e−t( /DE)2 : L2(X, E) −→ L2(X, E)
is a one-parameter semi-group of operators consisting of positive, self-
ajoint operators of norm ≤ 1, satisfying the following properties, for
ψ ∈ L2(X, E), t ≥ 0:

1)

(
d

dt
+ ( /DE)2

)
e−t( /DE )2ψ = 0.

2) limt→0 e
−t( /DE )2ψ = ψ in L2(X, E).

Moreover, e−t( /DE )2 is a smoothing operator. By the Schwartz kernel
theorem, there is a kernel

Kt(x, y) ∈ Γ(X× X, E ⊠ E∗),

called the heat kernel of /DE with respect to d volX. For ψ ∈ L2(X, E),

(e−t( /DE)2ψ)(x) =

∫ orb

X

Kt(x, y)(ψ(y))d volX(y).

When X is compact, that is, |X| is compact, we have the following

asymptotic expansion: for each Riemannian orbifold chart (Ũi,Hi, Ui),
using the notations in (3.4), there exists a smooth section uj of E ⊠ E∗

over Ũi× Ũi such that for every l > n = dimX and x, y ∈ Ui, as t → 0+,

Kt(x, y) = (4πt)−n/2 1

|Hi|
∑

h∈Hi
e−

d̃(x̃,ỹ)2

4t
∑l

j=0 t
jhuj(x̃ · h−1, ỹ)

+O(tl−n/2).

Here, d̃(x̃, ỹ) is the distance function on Ũi defined by the Riemannian

metric on Ũi. Moreover, the off-diagonal estimate is given by

Kt(x, y) = O(e−a2/4t)

as t → 0, for (x, y) ∈ |X| × |X| with d(x, y) > a > 0. Here, d(x, y) is
the distance function defined by the Riemannian metric on X. See [Ma]
and Chapter 5.4 in [MaMa] for relevant discussions. The local index
technique in [BGV, MaMa] gives rise to a local index formula for the
Kawasaki orbifold index theorem (Theorem 2.11).



306 B.-L. WANG & H. WANG

Let X be a complete even-dimensional Riemannian orbifold equipped
with a proper, co-compact, and isometric action of a discrete group
G. Let ∇TX be the G-invariant Levi–Civita connection on TX. Then
the scalar curvature rX is a G-invariant function on X. Given a G-
equivariant Dirac bundle E = E+ ⊕ E− with a G-invariant Clifford con-
nection ∇E , the Dirac operator

/DE : L2(X, E) −→ L2(X, E)
is then a G-invariant elliptic differential operator. The corresponding
Dirac operator on G\X is denoted by

/DG\E : L2(G\X, G\E) −→ L2(G\X, G\E).
Theorem 3.4. Let X be a complete even-dimensional Riemannian

orbifold with a proper, co-compact, and isometric action of a discrete
group G. Let Kt(x, y) be the heat kernel of a G-invariant elliptic dif-
ferential operator /DE , that is, the Schwartz kernel of the semigroup

e−t( /DE )2 . Then Kt(x, y) is a G-invariant smooth kernel with an as-
ymptotic expansion, as t → 0+,

Kt(x, y) ∼ (4πt)−n/2e−
d(x,y)2

4t

∞∑

j=0

tiuj(x, y)(3.9)

on a sufficiently small neighborhood of the diagonal in X × X. Here
uj(x, y) is a smooth section of E ⊠ E∗ in the sense of (3.4). Moreover,
choose a relative compact sub-orbifold C in X with X = G · C. Let
π : C → G\X be the natural map defined by the quotient map X → G\X.
Then the series

∑

g∈G
gKt(g

−1 · x, y) =
∑

g∈G
Kt(x, g · y)g ∈ Ex ⊗ E∗

y

converges uniformly on [t1, t2]×C×C to the kernel Kt(x̄, ȳ) of e
−t( /DG\E )2

for x̄ = π(x) and ȳ = π(y). Here, g acts on a section ψ ∈ L2(X, E) by
(g · ψ)(y) = gψ(g−1 · y).

Proof. In the case of smooth manifolds, this theorem is due to Don-
nelly [Do]. For convenience, we use the same notation ( /DE )2 to denote
its unique self-adjoint extension. By the Lichnerowicz formula, ( /DE)2

is a generalized Laplacian operator

∆E + c(F E/S) +
1

4
rX

where c(F E/S) + 1
4rX is bounded from below due to the isometric co-

compact action of G on X. Then by Theorem D.1.2 in [MaMa] and the
standard functional calculus,

e−t( /DE)2 : L2(X, E) −→ L2(X, E)
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is a smoothing operator and the heat kernel Kt(x, y) is a smooth section
of E ⊠ E∗ in x, y ∈ X and t ∈ (0,∞).

The asymptotic expansion follows from the uniqueness of the funda-
mental solution to the heat equation on (0,∞)× X× X,

(
∂

∂t
+ ( /DE

y )
2

)
Kt(x, y) = 0,

where ( /DE
y )

2 acts in the second variable, with the following initial bound-
ary condition at t = 0: if ψ is a smooth section of E , then

lim
t→0

∫ orb

X

Kt(x, y)ψ(y)d volX(y) = ψ(x)

in the L2-norm or the uniform norm on any compact set in X. It is done
by building an approximate heat kernel in normal orbifold coordinate
charts as the asymptotic expansion in question holds on a sufficiently
small neighborhood of the diagonal in X × X. Then the asymptotic
expansion (3.9) follows from the construction in [BGV, Chapter 2] and
[CGT] carried over to the case of orbifolds. Moreover, for any T > 0
and 0 < t ≤ T , we have the following fiberwise norm estimate,

‖( ∂
∂t

)i(∇E
x)

j(∇E
y )

kKt(x, y)‖ ≤ c1t
−n/2−i−j/2−k/2e−

d(x,y)2

4t .

To check that the series
∑

g∈G Kt(x, g · y)g converges uniformly on

[t1, t2]× C × C, we need to estimate the number

n(i) = #{g ∈ G|(i − 1)r ≤ d(x, g · y) < ir}
for i ∈ N, x, y ∈ C with r > diam(C). As the G-action is proper, let

m = #{g ∈ G|(g · C) ∩ C �= ∅}.
Suppose that B(x, r) contains pr G-translates of y, that is,

p(r) = #{g|d(x, g · y) < r}.
Then B(x, 2r) contains p(r) G-translates of C as r > diam(C). Any
point of X is contained in at most m translates of C, so we have

p(r) · vol(C) ≤ m · vol(B(x, 2r)).

Note that since G acts on X isometrically and co-compactly, then the
sectional curvatures of X are bounded from below. By comparing with
a space of constant curvature (cf. [Bo, Proposition 20] and [BiCr,
Corollary 4, p.256]), we have

vol(B(x, r)) ≤ c3e
c4r.

This implies that n(i) < p(ir) <
mc3e

2c4ir

vol(C)
for any i ∈ N. Then by

partitioning G into subsets

G(i) = {g ∈ G|(i − 1)r ≤ d(x, g · y) < ir},
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for i ∈ N, we have the operator norm estimate
∑

g∈G
‖Kt(x, g · y)g‖

≤ c1t
−n/2

∑

g∈G
e−

d2(x,g·y)
4t

= c1t
−n/2

∞∑

i=1

∑

g∈G(i)

e−
−(i−1)2r2

4t

≤ c1t
−n/2

∞∑

i=1

nie
−−(i−1)2r2

4t

≤ mc1c3
vol(C)

t−n/2
∞∑

i=1

e2c4ire−
−(i−1)2r2

4t

=
mc1c3
vol(C)

t−n/2
∞∑

i=1

e−
−(i−1)2r2+2c4ir

4t ,

which converges uniformly on [t1, t2] × C × C. By a similar argument,
we have uniform convergence for all the derivatives of the series. One
can check that

Kt(x̄, ȳ) =
∑

g∈G
Kt(x, g · y)g

is a fundamental solution to the heat equation for ( /DG\E)2 on G\X. By
the uniqueness of the heat kernel, we know that the series

∑

g∈G
Kt(x, g · y)g

converges uniformly on [t1, t2]×C×C to the heat kernel of /DG\E . q.e.d.

As Kt is G-invariant and C has nonempty intersection with each
orbit, the proof of Theorem 3.4 gives rise to an estimate on the heat
kernel Kt(x, y), which will be used later.

Corollary 3.5. There exists L > 0 such that, for all x ∈ X, we have

(3.10)
∑

g∈G
‖Kt(x, g · x)g‖Ex ≤ L.

3.3. Cut-off functions and (g)-trace class operators. We aim to

define some meaningful traces for the heat kernel operator e−t( /DE)2 . We
shall first introduce a class of operators on X “approximating” the heat
kernel operator.

Definition 3.6. Let S be the algebra of bounded operators on L2(X, E)
having the following properties:
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1) The Schwartz kernel KS of S ∈ S is smooth and G-invariant—in
particular,

KS(gx, gy) = g[KS(x, y)]g
−1 ∀x, y ∈ X,∀g ∈ G.

2) The kernel KS for S ∈ S is properly supported, in the sense
of (3.6).

Because of condition (1) in Definition 3.6, the usual trace of S ∈ S
might be infinite. To eliminate the repeated summations caused by the
G-invariance, we will use of the following “weight” function over X.

Using Lemma 2.3 on the local structure of the G-orbifold X, let G =
(G1 ⇒ G0) be the corresponding proper étale grouppoid that locally
looks like (cf. Remark 2.5)

(G×Gi
Ũi)�Hi ⇒ G×Gi

Ũi

and naturally admits a G-action on the left. Recall that a smooth
function f on X corresponds to a smooth G-invariant function on G0, that
is, s∗f = t∗f . A smooth function f on X defines a unique continuous
function of |X| that will also be denoted by f . A function on X is called
compactly supported if its support in |X| is compact.

Definition 3.7 (Cut-off function). A nonnegative function c ∈
C∞
c (X) = C∞

c (G) is called a cut-off function of X associated to the G
action if the values over the orbits of G-action add up to be 1, that is,

(3.11)
∑

g∈G
c(g−1x) = 1, ∀x ∈ |X|.

Notice that the action of the cut-off function c ∈ C∞
c (X) on f ∈

Γ(X, E) is given by point-wise multiplication:

(3.12) [c · f ](x) = c(x)f(x).

Remark 3.8. A cut-off function always exists for a proper co-compact
G-action on X. In fact, let h ∈ C∞

c (X) be a nonnegative function whose
support has nonempty intersection with each G-orbit. Then

c(x) =
h(x)∑

g∈G h(g−1x)

is a cut-off function.

We shall construct one particular cut-off function c on X, where we
suppose

|X| =
N⋃

i=1

G×Gi
Ui

and each Ui has an orbifold chart (Ũi,Hi, πi, Ui).
Let {φ̄i} be a partition of unity of G\X subordinate to the open cover

{Vi = Gi\Ui = Gi\Ũi/Hi}Ni=1
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such that the lift of φ̄i to Ũi is a smooth (Gi ×Hi)-invariant function,

denoted by φ̃i.
We use [x] to denote the equivalence class of an element x. For

example, if g ∈ G and u ∈ Ui, then [g, u] ∈ G×Gi
Ui and [u] ∈ Gi\Ui ⊂

|G\X|. Let ϕi be a function on G×Gi
Ui ⊂ X given by

ϕi([g, u]) =

{
φ̄i([u]) g ∈ Gi

0 g /∈ Gi.

As φ̄i is Gi-invariant, ϕi is well defined. Also, ϕi extends to a smooth
Gi-invariant function on X when setting ϕi(x) = 0 for x /∈ G×Gi

Ui.
Define a smooth nonnegative function on X by

(3.13) c(x) :=
N∑

i=1

1

|Gi|
ϕi(x).

It is compactly supported because each summand is compactly sup-
ported.

Lemma 3.9. The nonnegative function c ∈ C∞
c (X) given by (3.13)

is a cut-off function of X.

Proof. Fix x ∈ X. For each j ∈ J := {i|x ∈ G ×Gi
Ui}, there exists

hj ∈ G and uj ∈ Uj so that x = [hj , uj ]. Note also that if j /∈ J ,
ϕj(x) = 0. Hence, by (3.13)

∑

g∈G
c(g−1x) =

∑

g∈G

∑

j∈J

1

|Gj |
ϕj [g

−1hj, uj ].

As ϕj vanishes unless g−1hj = k ∈ Gj , then by the Gj-invariance of ϕj

we obtain
∑

g∈G
c(g−1x) =

∑

k∈Gj

∑

j∈J

1

|Gj |
ϕj([k, uj ]) =

∑

j∈J
φ̄j([uj ]).

Let π : X → G\X be the quotient map then by definition π(x) = [uj ]
for all j ∈ J and φ̄j(π(x)) = 0 if j /∈ J . As {φ̄i} is a partition of unity
on G\X, we have

∑

j∈J
φ̄j([uj ]) =

N∑

j=1

φ̄j(π(x)) = 1.

The lemma is then proved. q.e.d.

The cut-off function is designed to deal with G-invariant sections and
G-invariant operators. Denote by Γ(X, E)G the subset of G-invariant
sections in Γ(X, E). We shall present some properties of the cut-off
function to be used later.
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Lemma 3.10. Let c ∈ C∞
c (G0) be the cut-off function given by (3.13).

Then:

1) For a smooth function f on G\X and its lift, the G-invariant func-

tion f̃ ∈ C∞(X), we have

∫ orb

X

c(x)f̃ (x)d volX(x) =

∫ orb

G\X
f(x)d volG\X(x).

2) If a continuous function h on X× X satisfies that

(3.14) h(gx, gy) = h(x, y), ∀g ∈ G,∀x, y ∈ X

and that c(x)h(x, y), c(y)h(x, y) are integrable on X × X, then we
have

∫ orb

X×X

c(x)h(x, y)d volX(x)d volX(y) =

∫ orb

X×X

c(y)h(x, y)d volX(x)d volX(y).

Proof. Let {φ̄i} be a partition of unity of G\X subordinate to the
open cover

{Vi = Gi\Ui = Gi\Ũi/Hi}Ni=1

such that the lift of φ̄i to Ũi is a smooth (Gi ×Hi)-invariant function,

denoted by φ̃i. Let {φi} ⊂ C∞(X) be the G-invariant partition of unity
of the cover {G×Gi

Ui}Ni=1 given by φi[g, u] = φ̄i[u] for g ∈ G and u ∈ Ui

locally.
(1) Using the cut-off function as in (3.13) , we have

∫ orb

X

c(x)f̃ (x)d volX(x)

=

∫ orb

X

N∑

i=1

1

|Gi|
ϕi(x)f̃(x)d volX(x)

=
N∑

i=1

∫ orb

Ui

1

|Gi|
ϕi(x)f̃(x)d volX(x)

=
N∑

i=1

1

|Hi ×Gi|

∫

Ũi

φ̃i(x)f̃(x)dx

=

∫ orb

G\X
f(x)d volG\X(x).
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(2) Using (3.13) for the cut-off function and the partition of unity
{φj} for X subordinated to {G×Gj

Uj}Nj=1, we get

(3.15) ∫ orb

X×X

c(x)h(x, y)d volX(x)d volX(y)

=

N∑

i=1

∫ orb

Ui

∫ orb

X

1

|Gi|
ϕi(x)h(x, y)d volX(x)d volX(y)

=
N∑

i=1

1

|Gi ×Hi|

∫

Ũi

∫ orb

X

φ̃i(x) h(x, y)dxd volX(y)

=

N∑

i,j=1

1

|Gi||Hi|

∫

Ũi

∫ orb

G×Gj
Uj

φ̃i(x)φj(y)h(x, y)dxd volX(y)

=
∑

k∈G

N∑

i,j=1

1

|Gi||Gj ||Hi||Hj|

∫

Ũi×Ũj

φ̃i(x)φ̃j(y)h(x, k · y)dxdy.

Here, the last equality follows from
∫ orb

G×Gj
Uj

φj(y)h(x, y)d volX(y) =
∑

k∈G

1

|Gj |

∫ orb

Uj

φ̃j(y)h(x, k · y)dy.

Similarly, we have
(3.16) ∫ orb

X×X

c(y)h(x, y)d volX(x)d volX(y)

=
∑

k∈G

N∑

i,j=1

1

|Gi||Gj ||Hi||Hj|

∫

Ũi×Ũj

φ̃i(x)φ̃j(y)h(k · x, y)dxdy.

By (3.14), we have h(x, k ·y) = h(k−1 ·x, y) for k ∈ G. Thus, the k-term
in (3.15) is the k−1-term in (3.16). Then the integrals (3.15) and (3.16)
coincide. The lemma is then proved. q.e.d.

Remark 3.11. Condition (2) in Definition 3.6 is to reduce the com-

plexity in calculating the new traces. However, e−t( /DE)2 does not have
proper support. In view of Theorem 3.4, when t > 0 is small, the heat
kernel decays exponentially off the diagonal. Therefore, we shall use the
following lemma to replace the heat kernel by an operator in the class
S having the same value on the diagonal.

Lemma 3.12. For any G-invariant smoothing operator S, the oper-
ator

(3.17) S0 :=
∑

g∈G
g · (c 1

2Sc
1
2 )

belongs to S (cf. Definition 3.6) and has the same Schwartz kernel as
that of S along the diagonal.
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Proof. Let KS and KS0 be the heat kernels for the operators S and
S0, respectively. Then by definition (3.17) we have

(3.18) KS0(x, y) =
∑

g∈G
c(g−1x)

1
2KS(x, y)c(g

−1y)
1
2

and conclude that S0 is a properly supported smoothing operator. More-
over, if x = y, then

KS0(x, x) =
∑

g∈G
c(g−1x)KS(x, x) = KS(x, x).

The lemma is then proved. q.e.d.

In the following, we shall define a family of traces, indexed by the
conjugacy classes of elements in G, for the set of operators slightly
larger than the set S defined in Definition 3.6. These traces are closely
related to the localized indices in Section 5 (see Lemma 5.6).

For any g ∈ G, denote by (g)G ⊂ G (or (g) when there is no ambigu-
ity) the conjugacy class of g ∈ G. Also, whenever traces of an operator
involved in this paper, if the space is Z/2Z-graded, we shall mean a
graded traces or a supertrace:

trs

(
A B
C D

)
:= tr(A)− tr(B).

Definition 3.13 ((g)-trace class operator). A bounded properly
supported G-invariant operator S : L2(X, E) → L2(X, E) is of (g)-trace
class if the operator ∑

h∈(g)
h−1φ|S|ψ

is of trace class for all positive functions φ,ψ ∈ C∞
c (G0). Here, |S| =

(SS∗)
1
2 and h−1 stands for the unitary operator on L2(X, E) given by

(h−1 · u)(x) := h−1u(hx) u ∈ L2(X, E).
If S is a (g)-trace class operator, the (g)-supertrace (or simply the (g)-
trace) is defined by the formula

(3.19) tr(g)s (S) :=
∑

h∈(g)
trs[h

−1cS],

where c is a cut-off function on X.

Remark 3.14. In case of a G-manifold, where g is the group identity,
the (e)-trace is the same notion as the G-trace of bounded G-invariant
operators on L2(X, E) introduced in [W].

Denote by K a chosen subset of G having the following properties:

{kgk−1|k ∈ K} = (g);

if k1 �= k2, for all kj ∈ K, then k1gk
−1
1 �= k2gk

−1
2 .

(3.20)



314 B.-L. WANG & H. WANG

We shall sometimes use {kgk−1}k∈K to denote the conjugacy class (g)
of g ∈ G. In view of the following lemma, we shall identify K with the
quotient G/ZG(g), where ZG(g) = {h ∈ G|hg = gh} is the centralizer
of g in G. Note that, if finite, K has the same cardinality as that of (g).

Lemma 3.15. Let K be a subset of G having the property (3.20).
Then

K · ZG(g) = G.

Proof. If k1, k2 ∈ K and h1, h2 ∈ ZG(g) satisfy k1h1 = k2h2, then

k1h1gh
−1
1 k−1

1 = k2h2gh
−1
2 k−1

2

and it is the same as k1gk
−1
1 = k2gk

−1
2 . By definition of K, we have

k1 = k2, and hence h1 = h2. Then the map

(3.21) m : K × ZG(g) −→ G (k, h) 	→ kh

is injective. For each l ∈ G, then by definition there is a k ∈ K so that
lgl−1 = kgk−1. Thus, k−1l ∈ ZG(g) and (3.21) is surjective. The lemma
is then proved. q.e.d.

Proposition 3.16. Let S be a (g)-trace class operator having a smooth-
ing Schwartz kernel KS, and let c be a cut-off function on X. Then

(3.22) tr(g)s S =
∑

h∈(g)

∫ orb

X

c(x)Trs[h
−1KS(hx, x)]d volX(x).

Here, Trs is the matrix supertrace of End(Ex, Ex). Alternatively,

(3.23) tr(g)s S =
∑

k∈G/ZG(g)

∫ orb

X

c(kx)Trs[g
−1KS(gx, x)]d volX(x),

where G/ZG(g) is identified as a subset K of G having property (3.20).
In particular, operators from S given by Definition 3.6 are of (g)-trace
classes.

Proof. As (h−1 · u)(x) = h−1u(hx) for u ∈ L2(X, E), we have

[h−1cS]u(x) =c(hx)h−1Su(hx) =

∫ orb

X

c(hx)h−1[KS(hx, y)]u(y)d volX(y).

Then by the change of variable x → h−1x and the invariance of the
measure d volX(h

−1x) = d volX(x), we obtain

trs[h
−1cS] =

∫ orb

X

c(x)Trs[h
−1KS(hx, x)]d volX(x).
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If h = kgk−1, then as S isG-invariant, by (3.5) we have h−1[KS(hx
′, x′)] =

g−1[KS(gx, x)], where x′ = kx. Therefore,

tr(g)s S =
∑

h∈(g)
trs[h

−1cS]

=
∑

h∈(g)

∫ orb

X

c(x)Trs[h
−1KS(hx, x)]d volX(x)

=
∑

k∈G/ZG(g)

∫ orb

X

c(kx)Trs[g
−1KS(gx, x)]d volX(x).

If S ∈ S, then as the action of G on X is proper, there are finitely
many nonvanishing terms in the sum in (3.22). Hence operators from S
are of (g)-trace class. The proposition is proved. q.e.d.

Remark 3.17. The trace tr
(g)
s given by Definition 3.13 does not de-

pend on the choice of cut-off function c. In fact, set

m(x) :=
∑

h∈(g)
Trs[h

−1KS(hx, x)]

and observe that for any k ∈ G, we have

m(kx) =
∑

h∈(g)Trs h
−1[KS(hkx, kx)]

=
∑

h∈(g)Trs[(k
−1hk)−1KS(k

−1hkx, x)] = m(x).

Then by Lemma 3.10 (1) the integral over the orbifold X does not depend
on choice of a cut-off function c.

The (g)-trace defined in (3.19) has the tracial property as is shown
in the following proposition. As we shall see later in the proof of
Lemma 5.6, this trace is the composition of a matrix trace and the
localized (g)-trace given by Definition 5.2.

Proposition 3.18. Let S, T be G-invariant operators and let ST and
TS be of (g)-trace class. Then

tr(g)s (ST ) = tr(g)s (TS).

Proof. By Proposition 3.16, tr
(g)
s (ST ) is equal to

(3.24)
∑

h∈(g)

∫ orb

X×X

c(x)Trs[h
−1(KS(hx, y)KT (y, x))]d volX(x)d volX(y).
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Similarly, we arrive at the (g)-trace for TS:
(3.25)

tr
(g)
s (TS) =

∑

h∈(g)

∫ orb

X×X

c(y)Trs[h
−1(KT (hy, x)KS(x, y))]dxdy

=
∑

h∈(g)

∫ orb

X×X

c(y)Trs[h
−1(KT (y, x)KS(x, h

−1y))]dxdy,

where the latter equality comes from the change of variables y 	→ h−1y.
Set

m(x, y) =
∑

h∈(g)
Trs[h

−1(KS(hx, y)KT (y, x))].

Then theG-invariance property of S and T implies thatm satisfies (3.14):

m(kx, ky) =
∑

h∈(g)
Trs[h

−1KS(hkx, ky)KT (ky, kx)]

=
∑

h∈(g)
Trs[(k

−1hk)−1KS(k
−1hkx, y)KT (y, x)]

= m(x, y), ∀k ∈ G.

Notice that

Trs[h
−1(KS(hx, y)KT (y, x))] = Trs[KT (y, x)h

−1KS(hx, y)]

= Trs[h
−1KT (y, x)KS(x, h

−1y)].

Then we have

tr
(g)
s (ST ) =

∫ orb

X×X

c(x)m(x, y)dxdy

=

∫ orb

X×X

c(y)m(x, y)dxdy = tr(g)s (TS),

by Lemma 3.10(2). The proposition is then proved. q.e.d.

Finally, we look at the G-invariant heat operator St := e−t( /DE)2 for
t > 0, where /DE is the G-invariant Dirac operator on X given by (3.7).

Denote by Kt(x, y) the Schwartz kernel of e−t( /DE )2 , which can be “ap-
proximated” by elements of S, that is, the norm of Kt(x, y) decays
rapidly when d(x, y) → ∞ for a fixed positive number t (cf. Theo-
rem 3.4).

Following from Theorem 3.4, when g ∈ G does not have a fixed point
on X, we have

(3.26) lim
t→0+

g−1Kt(gx, x) = 0.

If g ∈ G has a fixed point (h, x) ∈ X where h ∈ G and x ∈ Ui, then

g(h, x) = (gh, x) = (h(h−1gh), x)
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implies that h−1gh ∈ Gi and fixes x ∈ Ui. Then the following lemma
implies that we may assume g ∈ Gi and g fixes the point (e, x).

Lemma 3.19. If g ∈ G has a fixed point on X, then there exists an
i ∈ {1, . . . , N}, so that (g) ∩Gi is not empty.

Proposition 3.20. Let St be the heat operator e−t( /DE )2 , and let Kt

be its Schwartz kernel. Then it is of (g)-trace class and its (g)-trace is
independent of t given by the finite sum
(3.27)

tr(g)s St =
∑

h∈(g)∩(∪N
i=1Gi)

lim
t→0+

∫ orb

X

c(x)Trs[h
−1Kt(hx, x)]d volX(x).

Proof. Let us estimate the sum
∑

h∈(g) |Trs[h−1φStψ]|, where φ,ψ ∈
C∞
c (X), following from Definition 3.13, as follows:

∑

h∈(g)
|Trs[h−1φStψ]|

≤
∑

h∈(g)

∫ orb

X

φ(hx)ψ(x) dim(E)‖h−1Kt(hx, x)‖Exd volX(x)

≤ dimE‖φ‖L∞

∫ orb

X

ψ(x)
∑

h∈G
‖h−1Kt(hx, x)‖Exd volX(x)

≤L dim E‖φ‖L∞‖ψ‖L1 < ∞.

(3.28)

Here, in the last inequality, we have used the uniform upper estimate

in Corollary 3.5. Therefore, the heat operator St = e−t( /DE )2 on X is of
(g)-trace class for all g ∈ G and t > 0.

Let a(t) = tr
(g)
s St. Then

da(t)

dt
= − tr

(g)
s (( /DE)2e−t( /DE )2)

= −1
2 tr

(g)
s ([ /DE , /DEe−t( /DE )2 ]),

which vanishes by Proposition 3.18. So the function a(t) = tr
(g)
s St is

constant in t. Then, by Proposition 3.16, we have

(3.29) tr(g)s St = lim
t→0+

∑

h∈(g)

∫ orb

X

c(x)Trs[h
−1Kt(hx, x)]d volX(x).

Using the same argument as (3.28), the sum in (3.29) is absolutely con-
vergent. Hence, when we take the limit of the sum, the limit commutes

with the infinite sum as well as the integral
∫ orb
X

. Further, the limit
commutes with the integral. As t → 0+ then from (3.26) a summand
in (3.29) tends to 0 if h does not fix any point in X. The nonzero ones
are the ones where hx = x for some x ∈ X. By Lemma 3.19, we see it



318 B.-L. WANG & H. WANG

happens only when h ∈ (g)∩Gi for some i. Thus, there are only finitely
many summands and

tr(g)s St =
∑

h∈(g)∩(∪N
i=1Gi)

lim
t→0+

∫ orb

X

c(x)Trs[h
−1KSt(hx, x)]d volX(x).

The proposition is then proved. q.e.d.

Corollary 3.21. Let S0,t :=
∑

g∈G g · (c 1
2Stc

1
2 ), where St = e−t( /DE )2 .

Then
tr(g)s (St) = lim

t→0+
tr(g)s (S0,t).

(The LHS is independent of t.)

Proof. From Proposition 3.16 and Lemma 3.12, we see that S0,t is of
(g)-trace class for all g ∈ G. As the sum

∑
h∈(g)KS0,t(hx, x) has finitely

many nonvanishing terms as t → 0+, we have
(3.30)

lim
t→0+

tr(g)s S0,t =
∑

h∈(g)

∫ orb

X

c(x)Trs[ lim
t→0+

h−1KS0,t(hx, x)]d volX(x).

Observe that the kernels of S0,t and St have the same diagonal value by
Lemma 3.12. In view of Proposition 3.20, we have the same formula for

tr
(g)
s St in (3.27) as (3.30). Hence, the corollary is proved. q.e.d.

3.4. Calculation of (g)-trace for the heat operator. We shall de-

rive the formula for the (g)-trace of the heat operator e−t( /DE)2 in terms
of the local data on the quotient orbifold G\X.

To calculate the (g)-trace of the heat operator St = e−t( /DE)2 , we need
to describe the twisted sectors for the quotient orbfiold G\X. Let TX
be the set for the twisted sectors of X consisting of equivalence classes
of conjugacy classes in the local isotropy groups of X. Then the set for
the twisted sectors of G\X consists of pairs

((g), (h)),

where (g) is the conjugacy class of g in G such that g has nonempty fixed
points and (h) ∈ TX. We now describe the twisted sector (G\X)((g),(h)) .
Let

{(G×Gi
Ũi,Hi, G×Gi

Ũi)}
be orbifold charts as in Lemma 2.3 such that G ×Gi

Ui consists of a
disjoint union of G-translate of Ui. Suppose that g ∈ G has nonempty
fixed points in Ui; then

(g) ∩Gi = (gi)Gi

for a conjugacy class of gi in Gi. Let (h) ∈ TX have a representative
(hi), a conjugacy class in Hi. Then

{(Ũgi,hi

i , ZGi
(gi)× ZHi

(hi))}(3.31)
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are orbifold charts for the twisted sector (G\X)((g),(h)) .
Definition 3.22. The (g)-twisted sector of G\X is given by

(G\X)(g) =
⊔

(h)∈TX
(G\X)((g),(h)) ,(3.32)

which is a sub-orbifold of the inertia orbifold I(G\X). Let

(3.33) Â(g)(X) and chS(g)(G\E)

be the restrictions of Âdeloc(G\X) and chSdeloc(G\E) to the (g)-twisted
sector (G\X)(g).

Theorem 3.23. For all g ∈ G, the heat operator St = e−t( /DE )2 is a
(g)-trace class operator, and the (g)-trace is given by

tr(g)s St = lim
t→0+

∑

h∈(g)

∫ orb

X

c(x)Trs[h
−1Kt(hx, x)]d volX(x)

=

∫ orb

(G\X)(g)
Â(g)(X) ch

S
(g)(G\E).

(3.34)

Proof. If g ∈ G does not fix any point in X, then by (3.26) we have

tr
(g)
s St = 0. On the other hand, (G\X)(g) is an empty set. So the second

integral also vanishes.
If g ∈ G has a fixed point in X, then by Lemma 3.19 we may assume

g ∈ Gi for some i. Let c be the cut-off function of X given by (3.13) (see
also Lemma 3.9). Let Kt (resp. K̄t) be the heat kernel of /DE (resp.

/DG\E), and let K̃t be the lift of K̄t to Ũi × Ũi. Then we have

tr(g)s St =
∑

k∈(g)

∫ orb

X

c(x)Trs[k
−1Kt(kx, x)]d volX(x)

=
∑

k∈(g)

N∑

i=1

∫ orb

Gi×Gi
Ui

1

|Gi|
ϕi(x)Trs[k

−1Kt(kx, x)]d volX(x).

(3.35)

By Corollary 3.5, the sum is absolute convergent. Hence, when we take
the limit of the sum, the limit commutes with the infinite sum. Then,
notice that by (3.26), as t → 0+,

∫
Gi×Gi

Ui
ϕ(x)Trs[k

−1Kt(kx, x)] → 0

unless there exists a point x = [m,u] ∈ Gi ×Gi
Ui fixed by k ∈ G, that

is,

[m,u] = k[m,u] = [m(m−1km), u],

which means that k′ := m−1km ∈ Gi. In this situation, we have

k−1Kt(kx, x) = Kt([m,u], [m,m−1kmu])k = K̄t([u], k
′[u])k′.
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To simplify the notation, let us still use k for k′ ∈ (g)Gi
. Hence, as

we take the limit of each summand of (3.35), it vanishes except for the

terms k ∈ (g)Gi
. Thus, limt→0+ tr

(g)
s St is equal to

N∑

i=1

1

|Gi|
1

|Hi|
lim
t→0+

∫

Ũi

φ̃i(u)
∑

k∈(g)Gi

∑

(h)∈TX∩Hi

∑

l∈(h)
Trs[K̃t(u, kul)kl]du.

As K̃t is Gi and Hi invariant, K̃t remains constant on the conjugacy

classes in Gi and in Hi. Also, by Lemma 3.15 we have
|(g)Gi

|
|Gi| = 1

|ZGi
(g)|

and
|(h)Hi

|
|Hi| = 1

|ZHi
(h)| . Therefore, we conclude that

lim
t→0+

tr(g)s St

=
N∑

i=1

1

|ZGi
(g)| lim

t→0+

∫

Ũi

φ̃i(u)
∑

(h)∈TX∩Hi

1

|ZHi
(h)| Trs[K̃t(u, guh)gh]du.

Applying the standard local index techniques as in [BGV, Bis, LYZ,
Ma], we get

∑

(h)∈TX∩Hi

1

|ZGi
(g)|

1

|ZHi
(h)| lim

t→0+

∫

Ũi

φ̃i(u)Trs[Kt(u, guh)gh]du

=
∑

(h)∈TX∩Hi

1

|ZGi
(g)|

1

|ZHi
(h)|

∫

Ũg,h
i

φ̃i(u)Âdeloc(X) ch
S
deloc(G\E)

=

∫ orb

(G\X)(g)
φ̄iÂ(g)(X) ch

S
(g)(G\E),

for g ∈ Gi. Therefore,

tr
(g)
s St = lim

t→0+
tr(g)s St

=
N∑

i=1

∫ orb

(G\X)(g)
φ̄iÂ(g)(X) ch

S
(g)(G\E)

=

∫ orb

(G\X)(g)
Â(g)(X) ch

S
(g)(G\E).

This completes the proof of the theorem. q.e.d.

Remark 3.24. Together with Kawasaki’s orbifold index theorem,
Theorem 3.23 implies that

∑

(g)

tr(g)s St =
∑

(g)

∫ orb

(G\X)(g)
Â(g)(X) ch

S
(g)(G\E)

=

∫ orb

I(G\X)
Âdeloc(G\X) chS

deloc(G\E) = ind( /DG\E ).(3.36)
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In Sections 4 and 5, we shall give a K-theoretic interpretation of

tr
(g)
s e−t( /DE )2 , which is called the localized index of /DE at the conjugacy

class (g) of g in G.

4. Higher index theory for orbifolds

In this section, we propose a higher index of a G-invaraint Dirac
operator

/DE : L2(X, E) → L2(X, E)
on a complete Riemannian even-dimensional orbifold X with a proper,
co-compact, and isometric action of a discrete group G. This higher
index generalizes the notion of higher index for smooth noncompact
manifolds with a proper and free co-compact action of a discrete group
G as in [K1, K2]. This higher index for smooth noncompact manifolds
plays an important role in the study of the Novikov conjecture and the
Baum–Connes conjecture. See [BC2, BCH, Yu].

When X is a proper co-compact Riemannian G-manifold with a G-
equivaraint Clifford module E , the Dirac operator /DE

X gives rise to a
K-homology class

[(L2(X, E), F = /DE
X

[
( /DE

X)2 + 1
]− 1

2 )] ∈ K0
G(C0(X)).(4.1)

The higher index of /DE
X is defined to be the image of the homology class

(4.1) under the higher index map (see [K1])

(4.2) μ : K0
G(C0(X)) −→ K0(C

∗(G)).

We refer to [K2, Bl] for the definition and basic properties of KK-
group and its relation to K-theory and K-homology. In Section 4.1, we
construct the higher index map for a complete Riemannian orbifold X

with a proper, co-compact, and isometric action of a discrete group G.
Then we calculate the higher index of /DE as a KK-cycle in Section 4.2.
After that, we show that the higher index of /DE is related to the orbifold
index of /DG\E via the trivial representation of G (cf. Theorem 4.13).

4.1. Higher analytic index map. We formulate the higher index in
the context of a proper co-compact G-orbifold following the philosophy
of [K1]. In view of Lemma 2.3 on the local structure of the G-orbifold
X, choose the corresponding proper étale grouppoid G = (G1 ⇒ G0),
that is, |X| ∼= G0/G1, which locally looks like (cf. Remark 2.5)

(G×Gi
Ũi)�Hi ⇒ G×Gi

Ũi

and naturally admits a G-action on the left. As G acts properly and
co-compactly on X, G acts properly and co-compactly on G. Let C∗

red(X)
be the reduced C∗-algebra given by Definition 2.6. As the reduced C∗-
norm is preserved under the left action of G on C∞

c (G1),

(h · f)(g) = f(h−1 · g) ∀h ∈ G,∀f ∈ C∞
c (G1),
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theG-action extends to C∗
red(X). The convolution algebra Cc(G,C∗

red(X))
is represented as a set of bounded operators on L2(G,C∗

red(X)) given by
the integration of the left regular representation of G on L2(G,C∗

red(X))

Cc(G,C∗
red(X)) −→ B(L2(G,C∗

red(X))).

Denote by C∗
red(X) �r G the closure of Cc(G,C∗

red(X)) under the oper-
ator norm of B(L2(G,C∗

red(X))). Denote by C∗
red(X) �G the closure of

the maximal operator norm of all the covariant representations of the
convolution algebra Cc(G,C∗

red(X)).
The first ingredient is a projection in C∗

red(X) �G constructed from
a cut-off function c. Let P be the closure of C∞

c (G1) under the norm of
C∗
red(X)�G. Then P is a Hilbert C∗

red(X)�G-module. Let c ∈ C∞
c (G)

be a cut-off function of X associated to the G action (cf. Definition 3.7),
and let s : G1 → G0 be the source map. Then the pullback function

s∗c(γ) := c(s(γ)), ∀γ ∈ G1

gives rise to a “cut-off” function in C∞
c (G1), which satisfies

∑

g∈G
s∗c(g−1γ) =

∑

g∈G
c(s(g−1γ)) =

∑

g∈G
c(g · s(γ)) = 1.

Define a projection p ∈ Cc(G,C∞
c (G1)) ⊂ C∗

red(X)�G by

(4.3) p(g)(x) = [s∗c(g−1x)s∗c(x)]
1
2 , ∀g ∈ G,∀x ∈ G1.

The Hilbert module P is related to p. In fact, the image of the convo-
luting operation of p on C∗

red(X) �G is P, that is,

(4.4) p · [C∗
red(X)�G] = P.

They represent the same element in the following identifications:

KK(C, C∗
red(X) �G) ∼= K0(C

∗
red(X)�G) ∼= K0(C

∗
red(G\X))

[(P, 1C, 0)] 	→ [p] 	→ [1].
(4.5)

The second ingredient is the analytic K-homology of C∗
red(X). Let H

be a Z/2Z-graded Hilbert space equipped with a unitary representation
π of the group G and with a ∗-homomorphism φ : C∗

red(X) → B(H),
where the two representations respect the Z/2Z-grading and are com-
patible with the action of G on C∗

red(X):

φ(g · a) = π(g)φ(a)π(g)−1 ∀g ∈ G,∀a ∈ C∗
red(X).

Let F =

(
0 F−
F+ 0

)
, where F ∗

+ = F−, be a bounded operator on H

such that
(4.6)
φ(a)(F 2 − 1), [φ(a), F ], [π(g), F ] ∈ K(H) ∀a ∈ C∗

red(X),∀g ∈ G.
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Here, K(H) is the set of compact operators on H and [·, ·] is the graded
commutator. Then the triple (H,π, F ) gives rise to a K-homology el-
ement in K0

G(C
∗
red(X)). This K-homology cycle is the abstract model

for G-invariant elliptic pseudo-differential operators of order 0 on X.
Denote by [F ] the equivalence class [(H,π, F )] ∈ K0

G(C
∗
red(X)).

Definition 4.1 (Analytic index [K3]). The analyticK-theoretic
index map is the homomorphism

(4.7) μ : K0
G(C

∗
red(X)) −→ K0(C

∗(G))

from a K-homology element [F ] ∈ K0
G(C

∗
red(X)) to the KK-product of

the following elements:

[P] ∈ KK(C, C∗
red(X)�G) and jG([F ]) ∈ KK0(C

∗
red(X)�G,C∗(G)).

Here, jG is given by

(4.8) jG : KKG(C∗
red(X),C) −→ KK0(C

∗
red(X)�G,C∗(G)),

the descent homomorphism (cf. [K2, 3.11]).

In order to accommodate the localized indices to be introduced in
the next section, we introduce some variations of the analytic index
map taking values in the K-theory of some completions of CG in some
other norms.

First of all, recall that the left regular representation of L1(G) on
L2(G) extends to a natural surjective ∗-homomorphism r : C∗(G) →
C∗
r (G), which induces a K-theory homomorphism

r∗ : K0(C
∗(G)) −→ K0(C

∗
r (G)).

Composing r∗ with (4.7) gives rise to the reduced version of the analytic
index map.

Definition 4.2 (Analytic index (reduced version)). The re-
duced analytic K-theoretic index map is the homomorphism μred :=
r∗ ◦ μ
(4.9) μred : K

0
G(C

∗
red(X)) −→ K0(C

∗
r (G))

from a K-homology element [F ] ∈ K0
G(C

∗
red(X)) to the KK-product of

r∗[P] ∈ KK(C, C∗
red(X)�r G) with

jGr ([F ]) := r∗ ◦ jG[F ] ∈ KK0(C
∗
red(X)�r G,C∗

r (G)).

Remark 4.3. Observe that the K-theory element r∗[P] = [r ◦ P] is
represented by Pred := r(P), which is the C∗

red(X) �r G-module given
by r(P) = p[C∗

red(X) �r G] in view of (4.4).

Moreover, assume that S(G) is a Banach algebra containing CG as
a dense subalgebra. Then there is a condition for S(G) due to Laf-
forgue [L1], which gives rise to the Banach algebra version of the ana-
lytic index map.
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Definition 4.4 (Unconditional completion [L1]). Let S(G) be a
Banach algebra equipped with a norm ‖ · ‖S(G) and containing CG as a
dense subalgebra. Then S(G) is called an unconditional completion
of CG if for any f1, f2 ∈ CG satisfying |f1(g)| ≤ |f2(g)|,∀g ∈ G, we
have ‖f1‖S(G) ≤ ‖f2‖S(G).

Let B be a G-Banach-algebra with norm ‖ · ‖B . Denote by S(G,B)
the completion of Cc(G,B) with respect to the norm

‖
∑

g∈G
agg‖ := ‖

∑

g∈G
‖ag‖Bg‖S(G),

∑

g∈G
agg ∈ Cc(G,B).

If S(G) is an unconditional completion, then by [L1] the descent map
formulated using Banach KK-theory is well defined:

(4.10) jGS(G) : KK(C∗
red(X),C) → KKban(S(G,C∗

red(X)),S(G)).

In (4.10) we used the KK-group KKban
G (A,B) associated to two G-

Banach algebras A and B. The group is defined by generalized Kas-
parov cycles of the form (E,φ, F ) modulo suitable equivalence rela-
tions [L1]. Here, E is a Z/2Z-graded Banach B-module and F ∈ B(E)
is an odd self-adjoint operator. In addition, G represents in B(E) as
a grading-preserving unitary representation and φ : A → B(E) is a
grading-preserving homomorphism.

Denote by K(E) the set of compact operators over the Banach B-
module E. Then the triple (E,φ, F ) is a generalized Kasparov cycle
if

[φ(a), F ], φ(a)(F 2 − 1), [π(g), F ] ∈ K(E) ∀a ∈ A,∀g ∈ G.

Analogously, the Banach algebra version of analytic index map can be
defined as follows.

Definition 4.5 (Analytic index (Banach algebra version) [L1]).
Let S(G) be an unconditional completion of CG. The Banach algebra
version of the analytic K-theoretic index map is the homomorphism

(4.11) μS(G) : K
0
G(C

∗
red(X)) −→ K0(S(G))

from a K-homology element [F ] ∈ K0
G(C

∗
red(X)) to the KK-product of

the element

[PS(G)] ∈ KKban(C,S(G,C∗
red(X))),

represented by the Banach S(G,C∗
red(X))-module PS(G) := p[S(G,C∗

red(X))],
with the element

jGS(G)([F ]) ∈ KKban(S(G,C∗
red(X)),S(G))

given by (4.10).
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Remark 4.6. The Banach algebra L1(G) ⊂ C∗
r (G) is an uncondi-

tional completion of CG. In general, if we have an inclusion iS,C
∗
r :

S(G) → C∗
r (G) for S(G), then the (reduced) higher index and the Ba-

nach algebra version higher index are related as follows:

r∗μ[F ] = μred[F ] = i
S,C∗

r∗ μS(G)[F ], ∀[F ] ∈ K0
G(C

∗
red(X)).

4.2. Higher index for a discrete group action on a noncom-
pact orbifold. Given the abstract setting of the higher index maps in
Section 4.1, we shall describe the K-homological cycles in K0

G(C
∗
red(X))

of the Dirac operator /DE and its analytic index in K0(C
∗(G)) and in

K0(S(G)) in terms of (generalized) Kasparov cycles.
Let G be a discrete group acting properly, co-compactly, and iso-

metrically on a complete Riemannian orbifold X. Let E be a Hermitian
orbifold vector bundle over X. The Hilbert space L2(X, E) is the comple-
tion of the compactly supported smooth sections Γc(X, E) with respect
to the following inner product:

〈f, g〉L2 =

∫ orb

X

〈f(x), g(x)〉Exd volX(x) ∀f, g ∈ Γc(X, E).(4.12)

It is a G-algebra with the action given by

[g · f ](x) := gf(g−1x), ∀g ∈ G,∀f ∈ L2(X, E).
A natural representation φ : C∗

red(X) → B(L2(X, E)) is given by the
following action: for every m ∈ C∞

c (G1), x ∈ G0 and f ∈ L2(X, E),
(4.13)

[m · f ](x) =
∑

g∈s−1(x)

m(g)(g · f)(x) =
∑

g∈s−1(x)

m(g)[g(f(g−1x))] ∈ Ẽx.

As discussed in Section 3, a properly supported G-invariant pseudo-
differential operator DX on Γc(X, E) → Γc(X, E) of order m extends to
a bounded linear operator between Sobolev spaces

DX : L2
k(X, E) → L2

k−m(X, E),
for all k ≥ m. By the compact embedding theorem, for any f ∈ Cc(G1)
and for any pseudo-differntial operator DX of negative order, the oper-
ator φ(f)DX is compact.

Lemma 4.7. Let /DE be a Dirac operator on X. Then the Hilbert

space L2(X, E), the representation (4.13) and the operator F = /DE√
1+( /DE)2

form a cycle in the K-homology group

[ /DE ] := [(L2(X, E), φ, F )] ∈ K0
G(C

∗
red(X)).

Proof. Note that /DE =

(
0 /DE

−
/DE
+ 0

)
is a G-invariant Dirac operator

on L2(X, E). Then F = /DE√
1+( /DE)2

is an order 0 pseudo-differential oper-

ator on L2(X, E). F can be extended to a bounded operator on L2(X, E).
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Observe that 1 − F 2 = (1 + ( /DE)2)−1 is a pseudo-differential operator
of order −2. Thus,

φ(f)(1− F 2) ∈ K(L2(X, E)) ∀f ∈ C0(X) = C0(G).
Note that by the G-invariance of F , we have [F, π(g)] = 0,∀g ∈ G. It
is straightforward to check [F, φ(f)] ∈ K(L2(X, E)),∀f ∈ Cc(G1). For
the conditions in (4.6), we only need to check for f ∈ Cc(G1) the dense
subalgebra of C∗

red(X), which can be done as in [Bl] for the manifold
cases. q.e.d.

Definition 4.8. The higher index of /DE , denoted by Ind /DE , is
defined to be

Ind /DE = μ([ /DE ]) ∈ K0(C
∗(G)),

the image in K0(C
∗(G)) of [ /DE ] under the analytic index map (4.7).

We now represent the higher index of /DE as a KK-cycle in

K0(C
∗(G)) ∼= KK(C, C∗(G)),

following from the work of Kasparov [K3].
Recall that in (4.12) the algebra Γc(X, E) is equipped with a pre-

Hilbert space inner product. However, this inner product is not suf-
ficient for us to derive an analogue of the Fredholm property for /DE .
Instead, we equip Γc(X, E) with a CG-valued inner product given by

〈f1, f2〉CG(g) :=
∫ orb

X

(f1(x), g(f2(g
−1x)))Exd volX(x)

(f · b)(x) :=
∑

g∈G
g(f(g−1x))b(g−1)

(4.14)

for all f, f1, f2 ∈ Γc(X, E), g ∈ G, and b ∈ CG,x ∈ G0. It is routine to
check that (4.14) gives rise to a pre-Hilbert CG-module. For example,
by (4.14) we have

〈f1, f2b〉CG = 〈f1, f2〉CGb, ∀f1, f2 ∈ Γc(X, E), b ∈ CG.

Denote by A the completion of Γc(X, E) in the Hilbert C∗(G)-norm
given by the inner product (4.14). Let c ∈ C∞

c (G) be a cut-off function

of X with respect to the G-action, where the pullback s∗c
1
2 ∈ C∞

c (G1)
acts on g · e ∈ L2(X, E) in the sense of (4.13). Then there is an inclusion
ι : Γc(X, E) →֒ Cc(G,L2(X, E)) given by

(4.15) ι(e)(g) = s∗c
1
2 · [g · e] ∀e ∈ Γc(X, E),∀g ∈ G.

Denote by L2(X, E) � G the maximal crossed product as the com-
pletion of Cc(G,L2(X, E)) under the norm ‖∑g∈G(‖ag‖L2)g‖max for

f =
∑

g∈G agg ∈ Cc(G,L2(X, E)), where ‖ · ‖max is the norm of C∗(G).

It is a Hilbert C∗(G)-module.
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Proposition 4.9 ([K3]). The inclusion map ι given by (4.15) extends
to a injective homomorphism between Hilbert C∗(G)-modules

ι : A →֒ L2(X, E) �G.

Moreover, A is a direct summand of L2(X, E) �G as a Hilbert C∗(G)-
submodule.

Proof. Notice that C∞
c (G,L2(X, E)) carries a natural CG-module

structure given by convolution. It is easy to check that the inclusion
ι is compatible with the pre-Hilbert CG-module structures. By tak-
ing the completion, A is regarded as a Hilbert C∗(G)-submodule for
L2(X, E) �G. To show the second claim, note that ι admits an adjoint
q := ι∗ with respect to the CG-valued inner product on C∞

c (G,L2(X, E))
given by
(4.16)

q : C∞
c (G,L2(X, E)) → Γc(X, E) f 	→

∑

g∈G
c(g−1·) 1

2 · {g · [f(g−1)]}.

As a consequence, q ◦ ι is an identity on Γc(X, E) and ι ◦ q is the projec-
tion from C∞

c (G,L2(X, E)) to Γc(X, E). The projection ι ◦ q extends to
L2(X, E) �G and has A as its image. The proposition is then proved.
q.e.d.

Remark 4.10. The projection map ι ◦ q applied to L2(X, E) � G
agrees with the left convolution of the projection p (defined in (4.3))
with L2(X, E) �G. In other words, we have

(4.17) p[L2(X, E) �G] = A.

Proposition 4.11 ([K3]). Let /DE be a Dirac operator on X, and let
[ /DE ] be the K-homology element in Lemma 4.7. Then the KK-cycle of
the higher index Ind /DE ∈ K0(C

∗(G)) is given by
(4.18)

[(A, 1C, pF̃ p)] = [(q(L2(X, E) �G), 1C, q ◦ F̃ ◦ i)] ∈ KK(C, C∗(G)).

Here, F̃ is the lift of the operator F = /DE [1+ ( /DE )2]−
1
2 to L2(X, E)�G

given by

(4.19) [F̃ (h)]g = F (h(g)), ∀h ∈ Cc(G,L2(X, E)),∀g ∈ G.

Proof. By definition of the higher index, we have

Ind /DE = μ[F ] = [P] ⊗C∗
red

(X)�G jG([L2(X, E), φ, F ]),

where F = /DE√
1+( /DE )2

is the bounded operator on Γc(X, E). Denote by

F̃ the lift of the operator F to L2(X, E) �G given by (4.19). Then the
image of [F ] under the descent map jG is given by

jG([L2(X, E), φ, F ]) = [L2(X, E) �G, φ̃, F̃ ].
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Thus, we have

Ind /DE =[P, 1C, 0] ⊗C∗
red

(X)�G [L2(X, E) �G, φ̃, F̃ ]

=[P ⊗C∗
red

(X)�G [L2(X, E) �G], 1C,PF̃P].

The statement is proved by noting thatA is obtained from the Hilbert
C∗
red(X)�G-module P and the Hilbert C∗(G)-module L2(X, E)�G. In

fact, by Remark 4.10 we have

P ⊗C∗
red

(X)�G [L2(X, E) �G] =p · [C∗
red(X)�G]⊗C∗

red
(X)�G [L2(X, E) �G]

=p · [L2(X, E) �G] = A.

In addition, the compression PF̃P of F̃ and P on p·[L2(X, E)�G] = A
is alternatively written as q ◦ F̃ ◦ ι on q(L2(X, E)�G) ∼= A. This follows
from ι ◦ q = p· on L2(X, E) � G. Therefore, the higher index of /DE is
represented by the following KK-cycle:
(4.20)

[(A, 1C, pF̃ p)] = [(q(L2(X, E) �G), 1C, q ◦ F̃ ◦ i)] ∈ KK(C, C∗(G)).

The proposition is then proved. q.e.d.

Let S(G) be an unconditional completion of CG, under a Banach
norm ‖ · ‖S(G). Similarly, we have the following norm-preserving inclu-
sion between Banach S(G)-modules extending the map (4.15)

ιS(G) : AS(G) −→ S(G,L2(X, E)).
Here, AS(G) is the Banach S(G)-module in the same fashion as (4.17)
given by

(4.21) AS(G) := p[S(G,L2(X, E))].
It is a direct summand of S(G,L2(X, E)). Denote by F̃ the lift of F from
Γc(X, E) to S(G,L2(X, E)) given by (4.19). Then the Banach algebra
version of the higher index is then stated as follows.

Proposition 4.12. Let /DE be a Dirac operator on X, and let [ /DE ]
be the K-homology element in Lemma 4.7. Then the KK-cycle of the
higher index μS(G)[ /D

E ] ∈ K0(S(G)) is given by the following KK-cycle:

(4.22) [(AS(G), 1C, pF̃ p)] = [(q(S(G,L2(X, E))), 1C , q ◦ F̃ ◦ i)].

Here, F̃ is the lift of the operator F = /DE [1+( /DE)2]−
1
2 to S(G,L2(X, E))

given by (4.19).

4.3. Orbifold index and the higher index. We relate the higher
index of /DE to the Kawasaki index of /DG\E on the quotient G\X. This
is essentially a result of Theorem 3.4 and Theorem 5.15 (see also Re-
mark 3.24). Here, we present an alternative proof only using KK-
theory.



LOCALIZED INDEX, LEFSCHETZ FIXED FORMULA FOR ORBIFOLDS 329

Theorem 4.13. The Kawasaki’s index for closed orbifold G\X is
equal to the trivial representation of G induced on the higher index of
[ /DE ]:

(4.23) ind /DG\E = ρ∗(μ[ /D
E ])

where ρ∗ : K0(C
∗(G)) → Z is induced by

(4.24) ρ : C∗(G) → C :
∑

αgg 	→
∑

αg

and μ is the higher index map (4.7).

Proof. Let F = /DE√
1+( /DE)2

and FG\X = /DG\E√
1+( /DG\E )2

. Then the ac-

tion of FG\X on Γ(G\X, G\E) can be identified to that of F on the

G-equivariant sections Γ(X, E)G. The functorial map ρ∗ applied to the
higher index μ[ /DE ] is essentially the KK-product of [(C, ρ, 0)] with μ[F ]
over C∗(G) in the following map (see [Bl]):

KK(C, C∗(G))×KK(C∗(G),C) → KK(C,C) ∼= Z.

Then the right-hand side of (4.23) is

ρ∗(μ[F ]) =[(A, 1C, q ◦ F̃ ◦ ι)]⊗C∗(G) [(C, ρ, 0)]

=[(A⊗C∗(G) C, 1C, (q ◦ F̃ ◦ ι)⊗ 1)],
(4.25)

where A = q(L2(X, E) �G), and by (4.15), (4.16), and (4.19) we have

(4.26) q ◦ F̃ ◦ ι =
∑

g∈G
g(c

1
2Fc

1
2 ).

In the following, we shall identify L2(G\X, G\E) and A⊗C∗(G)C. For
a fixed cut-off function c, we have the map

j : Γ(G\X, G\E) −→ Γc(X, E)⊗CG C f 	→ c · f̃ ⊗ 1.

Here, Γc(X, E) is a pre-Hilbert CG-module and f̃ is the image of f under
the natural map Γ(G\X, G\E) ∼= Γ(X, E)G. We show that j(f) does not
depend on the choice of c. In fact, for another cut-off function d and
any h⊗ 1 ∈ Γc(X, E) ⊗CG C, as f̃ is G-invariant, we have

〈(d − c)f̃ ⊗ 1, h⊗ 1〉 =
∑

g∈G
〈[(d− c)f̃ ](gx), h(x)〉 = 0.

Hence, the nondegeneracy of the inner product implies that df̃ ⊗ 1 =
cf̃ ⊗ 1.
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We claim that j preserves the inner products. In fact, the claim
follows from

〈f, h〉 =
∫ orb

G\X
(f(x), h(x))(G\E)xd volG\X(x)

=

∫ orb

X

c(x)(f(x), h(x))Ẽxd volX(x) and

〈j(f), j(h)〉 =
∑

g∈G

∫ orb

X

(c(x)f̃(x), c(g−1x)h̃(gx))Ẽxd volX(x)

=

∫ orb

X

(c(x)f̃(x),
∑

g∈G
c(g−1x)h̃(x))Ẽxd volX(x)

for all f, h ∈ C(G\X, G\E). Hence, the map j extends to an isomorphism
of two Hilbert spaces

j : L2(G\X, G\E) → A⊗CG C.

It is straightforward to check that the inverse of j is given by

j−1 : A⊗C∗(G) C → L2(G\X, G\E) h⊗ 1 	→
∑

g∈G
h(g−1·).

Then, together with (4.25) and (4.26), we have

ρ∗(μ[F ]) = [(A⊗C∗(G)C, 1C,
∑

g∈G
g(c

1
2Fc

1
2 )⊗1)] = [(L2(G\X, G\E), F0)],

where

F0 = j−1◦[
∑

g∈G
g(c

1
2Fc

1
2 )⊗1]◦j =

∑

l,g∈G
c(g−1l−1x)

1
2Fc(g−1l−1x)

1
2 c(l−1x).

Finally, observe that the left-hand side of (4.23) is

ind /DG\E = [(L2(G\X, G\E), 1C , FG\X)].

One need only to show that F0 and F coincide up to compact operators
on Γ(X, E)G (denoted F0 ≡ F ), that is, they have the same Fredholm

index. As we have
∑

g∈G g(c
1
2Fc

1
2 ) ≡ ∑

g∈G g(cF ) = F , then

F0 =
∑

l∈G
l[
∑

g∈G
g(c

1
2Fc

1
2 )c] ≡

∑

l∈G
l(Fc) = F = FG\X.

The theorem is proved. q.e.d.

Remark 4.14. It is important to emphasis G being discrete to ensure

Γ(X, E)G ∼= Γ(G\X, G\E)
and so that /DG\E is a restriction of /DE to the invariant sections. We
used this identification in the proof of Theorem 4.13. If G is a locally
compact group acting on X properly, co-compactly, and isometrically,
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then an elliptic operator /DG\E on G\X lifts to a transversally elliptic
operator on X, which is elliptic when G is discrete. When a group G is
continuous, the restriction /DG\E loses informations on the longitudinal
part of a G-invariant operator /DE on X. However, a result similar to
Theorem 4.13, when a locally compact group acts on a manifold properly
and co-compactly, can be found in [MZ].

5. Localized indices

In this section, we introduce the localized trace associated to each con-
jugacy class (g) of g ∈ G and define the corresponding localized index.
We show that localized indices are well-defined topological invariants for
the G-invariant Dirac operator /DE . In particular, the localized index at
the group identity is just the L2-index, obtained from taking the canon-
ical von Neumann trace on the group von Neumann algebra NG of the
higher index. We also show that the localized index can be computed
from the heat kernel of the Dirac operator when G satisfies some trace
property.

5.1. Localized traces. Denote by (g) the conjugacy class of g in G.

Define a map τ (g) : CG → C given by

(5.1)
∑

h∈G
αhh =

∑

h∈(g)
αh.

Lemma 5.1. The linear map τ (g) in (5.1) is a trace for CG, that is,

τ (g)(ab) = τ (g)(ba) for any a, b ∈ CG.

Proof. Let a =
∑

g∈G agg and b =
∑

g∈G bgg, where all but finite
coefficients are 0, that is, a, b ∈ CG. Let cg, dg be the coefficients of the
products

ab =
∑

g∈G
cgg and ba =

∑

g∈G
dgg.

Thus, ck =
∑

h∈G akh−1bh and dk =
∑

h∈G bkh−1ah. Let K be defined as
in (3.20). Then

τ (g)

(
∑

h∈G
αhh

)
=

∑

k∈K
αkgk−1 .
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By Definition 5.1 and Lemma 3.15, we have

τ (g)(ba) =
∑

k∈K,h∈G
ahbkgk−1h−1

and

τ (g)(ab) =
∑

k∈K,h∈G
akgk−1h−1bh =

∑

k∈K

(
∑

h∈G
akgk−1hbh−1

)

=
∑

k∈K

(
∑

h∈G
ahbh−1kgk−1

)
=

∑

h∈G

(
∑

k∈K
ahbh−1kgk−1

)

=
∑

h∈G

(
∑

k∈hK
ahbkgk−1h−1

)
.

It is easy to verify that hK also satisfies (3.20) for each h ∈ G. Then

τ (g)(ab) = τ (g)(ba). The lemma is proved. q.e.d.

Definition 5.2 (Localized (g)-trace). Let S(G) be a Banach alge-
bra being an unconditional completion of CG satisfying

(5.2) L1(G) ⊂ S(G) ⊂ C∗
r (G).

A localized (g)-trace on S(G) is a continuous trace map

(5.3) τ (g) : S(G) −→ C,

which extends the map (5.1).

Remark 5.3. The localized (g)-trace map always exists. We can
choose S(G) to be L1(G). Note that L1(G) is an unconditional comple-

tion of CG. The continuity of τ (g) : L1(G) → C can be proved as follows.
For any ǫ > 0, choose δ = ε, for all ‖a‖L1 < δ where a =

∑
g∈G agg,

then we have

|τ (g)(a)| :=

∣∣∣∣∣∣

∑

h∈(g)
ah

∣∣∣∣∣∣
≤

∑

h∈G
|ah| = ‖a‖L1 < ε.

Remark 5.4. Let e be the group identity of G. The localized (e)-
trace is “global” in the sense that it is given by the canonical continuous
trace on C∗

r (G):

(5.4) τ (e) : C∗
r (G) −→ C

∑

h∈G
αhh 	→ αe.

In fact, τ (e) can be further extended to a continuous normalized trace
on the group von Neumann algebra NG, the weak closure of C∗

r (G).
Note that we have the ∗-homomorphisms

C∗(G) � C∗
r (G) →֒ NG,
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which induce the following homomorphisms on the level of K-theory:

(5.5) K∗(C
∗(G)) −→ K∗(C

∗
r (G)) −→ K∗(NG).

Recall that a trace τ on a C∗-algebra A is normalized if it is a state,
that is,

τ(a∗a) ≥ 0, ∀a ∈ A and τ(e) = 1.

The trace τ (e) is normalized. For a general conjugacy class (g) consist-

ing of infinite elements, τ (g) is not normalized, hence it may not be a
continuous trace on NG.

Remark 5.5. If G is abelian or if (g) is a finite set, then τ (g), for
g �= e, can be extended to a continuous trace C∗

r (G) → C. In general,
however, a trace map C∗

r (G) → C can fail to be continuous. Thus, for
some G, C∗

r (G) may be too large to be an unconditional completion of
G.

The localized (g)-trace τ (g) in Definition 5.2 and the (g)-trace tr(g) in-
troduced in Section 3 are closely related. Let S : Γc(X, E) → Γc(X, E) be
a G-invariant operator that extends to a bounded operator on L2(X, E).
Denote by S̃ : Cc(G,L2(X, E)) → Cc(G,L2(X, E)) the lift of S given by

(S̃u)(g) = S(u(g)), ∀u ∈ Cc(G,L2(X, E)),∀g ∈ G.

Let S(G) be an unconditional completion of CG such that the localized
(g)-trace on S(G) is continuous. Then the properly supported operator

(5.6) SA := qS̃ι =
∑

g∈G
g · (c 1

2Sc
1
2 )

can be extended to a bounded operator on the S(G)-module AS(G)

(cf. (4.21)).

Lemma 5.6. Let S : L2(X, E) → L2(X, E) be a bounded self-adjoint
G-invariant smoothing operator. Let SA : AS(G) → AS(G) be the opera-
tor given by (5.6). Then:

1) SA on L2(X, E) is of (g)-trace class in the sense of Definition 3.13
for all g ∈ G.

2) Trs SA ∈ S(G) (cf. Definition 5.2) and its localized (g)-trace co-
incides with the (g)-trace of SA, that is,

(5.7) tr(g)s (SA) = τ (g) (Trs SA) ∈ R.

Proof. (1) As the cut-off function c is compactly supported, the kernel

of the operator c
1
2Sc

1
2 is also compactly supported. Then SA given by∑

g∈G g · (c 1
2Sc

1
2 ) as in (5.6) is properly supported and is of (g)-trace

class (cf. Lemma 3.12 and Proposition 3.16).
(2) Recall from Section 4.2 that Γc(X, E) has both the pre-Hilbert

space structure (4.12) and the CG-module structure (4.14). There is
an injection ι from Γc(X, E) to Cc(G,L2(X, E)) given by (4.15), and it
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preserves the CG-inner product. Now, AS(G) is the closure of ι(Γc(X, E))
under the Banach norm.

Let {ui}i∈N ∈ Γc(X, E) so that {ι(ui)}ι∈N forms an orthonormal basis
for the S(G)-module AS(G). Without loss of generality, let us ignore
the Z/2Z-grading on E and work on trace instead of supertrace. Then

(TrSA)(k) =
∑

i

〈SAui, ui〉CG(k) ∀k ∈ G.

As SA is properly supported, ui is compactly supported, and the action
of G on X is proper, TrSA(k) vanishes for all but finite k ∈ G. Therefore,
TrSA ∈ CG ⊂ S(G).

To see (5.7), we calculate the localized (g)-trace of TrSA as follows:

τ (g)((TrSA)(·)) =
∑

k∈(g)

∑

i

〈SAui, ui〉CG(k).

By definition of the C∗(G)-inner product (4.14), we have

〈ui, uj〉L2 =〈ui, uj〉CG(e) = δij ∀i, j ∈ N

〈h · ui, g · uj〉L2 =〈ui, uj〉CG(h−1g) = 0 ∀g �= h,∀i, j ∈ N.

Then

(5.8) {g · ui}g∈G,i∈N ∈ Γc(X, E)

forms an orthonormal subset of L2(X, E).
We claim that (5.8) forms a basis for L2(X, E). If not, let v ∈ L2(X, E)

be a vector perpendicular to all elements in (5.8). Then

〈v, ui〉CG(g) = 〈v, g · ui〉L2 = 0 ∀g ∈ G,∀i ∈ N.

This implies that ι(v) is perpendicular to the basis {ι(uj)}j∈N in AS(G).
So ι(v) = 0. As ι is injective, we conclude that v = 0. Thus, elements
of the set (5.8) form an orthonormal basis for L2(X, E).

To compute the trace of SA, we consider

(5.9) 〈SAui, ui〉CG(k) =
∫ orb

X

〈SAui(x), k · ui(x)〉Exd volX(x),

obtained by (4.14). Note that SA is G-invariant by (5.6). In particular,
we may replace SA on the right-hand side of (5.9) by

SA =
∑

h∈G
h · (cSA) =

∑

h∈G
h(cSA)h

−1.
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Therefore, for all k ∈ G, we have

〈SAui, ui〉CG(k)

=
∑

h∈G

∫ orb

X

〈h(cSA)h−1ui(x), kui(x)〉Exd volX(x)

=
∑

h∈G

∫ orb

X

〈(cSA)h
−1ui(x), (h

−1kh)h−1ui(x)〉Exd volX(x).

As we sum all k ∈ (g), we obtain
∑

k∈(g)
〈SAui, ui〉CG(k)

=
∑

h∈G

∑

k∈(g)

∫ orb

X

〈(cSA)h−1ui(x), kh
−1ui(x)〉Exd volX(x)

=
∑

k∈(g)

∑

h∈G

∫ orb

X

〈k−1(cSA)h
−1ui(x), h

−1ui(x)〉Exd volX(x).

Observe that {ι(ui)}i∈N forms an orthonormal basis for AS(G) and the

set {g · ui}g∈G,i∈N forms an orthonormal basis for L2(X, E). Then by
summing the equality for all i ∈ N, we conclude that

∑

k∈(g)
(TrSA)(k) =

∑

k∈(g)
Tr(k−1cSA).

By Definition 3.13 and Definition 5.2 this is equivalent to saying that

τ (g)(TrSA(·)) = tr(g)(SA).

The lemma is proved. q.e.d.

5.2. Localized indices. The localized trace in the sense of Definition
5.2 induces a group homomorphism on the level of K-theory,

(5.10) τ
(g)
∗ : K0(S(G)) −→ R,

as follows. Let P be a projection in Mn(S(G)), the algebra of n × n
matrices with entries in S(G). Define

τ
(g)
∗ (P ) = Tr(τ (g)(P )).

An element of K0(S(G)) is represented by [P1]− [P2], where P1 and P2

are projections in the matrix algebra with entries in S(G). Then the

map (5.10) is well defined because τ (g) is a continuous trace map. Also,
it is real-valued, as any projection can be written as the difference of

two positive operators on which τ
(g)
∗ takes real values.

Let μS(G)[ /D
E ] ∈ K0(S(G)) be the Banach algebra version higher

index of /DE given by (4.11). Recall that in Theorem 4.13 we applied
the homomorphism ρ in (4.24) to get the orbifold index on G\X. Also,
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combining (5.4) with (5.5), we have the L2-index τ
(e)
∗ μ[ /DE ] of the Dirac

operator /DE .
Note that ρ is a trace and ρ =

∑
(g) τ

(g) when adding up τ (g) over all

conjugacy classes of G. This means that the higher index of /DE can be
localized to each conjugacy class.

Definition 5.7 (Localized index). The real number

ind(g) /D
E := τ

(g)
∗ (μS(G)[ /D

E ])

is called the localized (g)-index of /DE . In general, we call them lo-
calized indices.

Remark 5.8. When the conjugacy class (g) of g ∈ G has finite ele-

ments, τ (g) extends to a continuous trace on C∗(G). Thus, ind(g) /DX =

τ
(g)
∗ μ[ /DX]. In particular, L2-index factors through the higher index in
the K-theory for the reduced group C∗-algebra. Another case worth
mentioning is that when G has the RD property, we have an isomor-
phism of K-theory K0(S(G)) ∼= K0(C

∗
r (G)). Then all localized (g)-

indices are images of an element in K0(C
∗
r (G)). For example, in [Pu]

Puschnigg showed that every reduced C∗-algebra of a hyperbolic group
G contains a subalgebra that is an unconconditional completion S(G)
of G. Thus, the two algebras have the same K-theory. These provide
a large and important class of nontrivial examples where our localized
(g)-indices factor through K0(C

∗
r (G)). In general, it is not known if lo-

calized (g)-indices always come from the higher index in the K-theory
of the group C∗-algebra. Fortunately, this does not affect the results of
our paper.

The following analogue of Mckean–Singer formula provides an explicit
calculation of the localized (g)-index in terms of localized (g)-supertrace

tr
(g)
s of the heat kernel operator of /DE (cf. Definition 3.13).

Proposition 5.9. Suppose the localized (g)-trace τ (g) extends to a
trace on C∗

r (G). The localized (g)-index of /DE is calculated by

ind(g) /DE = tr(g)s

(
e−t( /DE)2

)
.

Proof. Let Q be a parametrix of /DE
+ in the sense of Proposition 3.3.

Then there are G-invariant smoothing operators S0 and S1, where

(5.11) 1−Q /DE
+ = S0 and 1− /DE

+Q = S1.

In particular, if we choose

Q = /DE
−(1− e−t /DE

+ /DE
−/2)( /DE

+ /DE
−)

−1 = (1− e−t /DE
− /DE

+/2)( /DE
+)

−1,

then we have S0 = e−t /DE
− /DE

+/2 and S1 = e−t /DE
+ /DE

−/2.
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Consider the normalization F = /DE [1+( /DE)2]−
1
2 of /DE . The positive

part of this operator is

F+ = /DE
+(1 + /DE

− /DE
+)

− 1
2 = (1 + /DE

+ /DE
−)

− 1
2 /DE

+.

If we choose the parametrix of F+ as R := (1+ /DE
− /DE

+)
1
2Q, then a direct

calculation shows that

(5.12) 1−RF+ = S0 = e−t /DE
− /DE

+/2 1− F+R = S1 = e−t /DE
+ /DE

−/2.

As we assumed the localized (g)-trace can be extended to C∗
r (G), we

can apply τ
(g)
∗ to μred( /D

E) to obtain ind(g) /DE .
Let F̃ be the lift of F from Γc(X, E) to L2(X, E)�rG defined by (4.19).

Recall that the higher index for /DE is given by

μred[F ] = [(Ar, 1C, q ◦ F̃ ◦ ι)] ∈ KK(C, C∗
r (G)),

where Ar := q[L2(X, E) �r G] is the C∗
r (G)-module as A in (4.17)

adapted to the reduced case.
Denote by B(Ar) the set of bounded operators on Ar. Let K(Ar) be

the closed ideal of compact operators over Ar. The algebra K(Ar) is
the closure in the norm for B(Ar) of the set of integral operators with
G-invariant continuous kernel and with proper support. Let S(Ar) ⊂
K(Ar) be an ideal in B(Ar) where

1) S(Ar) is closed under holomorphic functional calculus and
2) S(Ar) contains the algebra of G-invariant properly supported

smoothing operators.

In view of [Co1, Section 2], the algebra S(Ar) exists and the densely
defined localized traces, viewed as degree 0 cyclic cocycles, can be ex-
tended to this algebra.

As q ◦ F̃ ◦ ι = ∑
g∈G g(c−

1
2Fc

1
2 ) and it differs from F by a compact

operator,

(5.13) q ◦ F̃ ◦ ι− F =
∑

g∈G
g(c−

1
2Fc

1
2 )−

∑

g∈G
g(cF ) =

∑

g∈G
g(c−

1
2 [F, c

1
2 )],

we can choose a different representative F in place of q ◦ F̃ ◦ ι in the
same equivalence class of KK(C, C∗

r (G)) and the parametrix R so that

1−RF+ = S0 1− F+R = S1.

By the Fredholm picture ofKK(C,S(G)), the operator F is invertible
in B(Ar) up to an operator in S(Ar). In fact, S0, S1 ∈ S(Ar). Thus,
F+ and R give rise to elements of K1(B(Ar)/S(Ar)). Moreover, the
set of compact operators K(Ar) over the C∗

r (G)-module Ar is Morita
equivalent to C∗

r (G). Thus, we have

K0(S(Ar)) → K0(K(Ar)) ∼= K0(C
∗
r (G)).
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Therefore, the identification between KK(C, C∗
r (G)) and K0(C

∗
r (G))

are given by the boundary map

KK(C, C∗
r (G)) → K1(B(Ar)/S(Ar)) → K0(S(Ar)) → K0(C

∗
r (G))

[(A, 1C, qF̃ ι)] 	→ [F ] 	→
[(

S2
0 S0(1 + S0)R

F+S1 1− S2
1

)]
−

[(
0 0
0 1

)]
.

Here, the entries of the 2 × 2 matrix belong to S(Ar)
+, the unital-

ization of S(Ar). By convention, the trace of this identity element in
S(Ar)

+\S(Ar) is always assumed to be 0 (see [Co1]). Thus, we have

(5.14) ind(g) /D
E = τ

(g)
∗ (μ[ /DE ]) = τ

(g)
∗ ([S0

2])− τ
(g)
∗ ([S1

2]).

Note that qS̃2
i ι =

∑
g∈G g(c

1
2S2

i c
1
2 ), that by Lemma 3.12 it is a G-

invariant properly supported smoothing operator for i = 0, 1 and that

the operator S2
0 = e−t /DE

− /DE
+ and S2

1 = e−t /DE
+ /DE

− in S(Ar) can be approx-

imated by the properly supported operators qS̃2
0ι, qS̃

2
1 ι, respectively, as

t → 0+. Hence, when t is sufficiently close to 0, they are in the same
equivalence class of K-theory K0(S(Ar)). So we are reduced to find

τ
(g)
∗ ([

∑
g∈G g(c

1
2 e−t( /DE)2c

1
2 )]). We shall regard

∑
g∈G g(c

1
2 e−t( /DE )2c

1
2 ) as

a matrix with coefficient in C∗
r (G). Therefore, by (5.10), which defines

τ
(g)
∗ , and Lemma 5.6, we obtain

ind(g) /DE = tr(g)(
∑

g∈G
g(c

1
2 e−t /DE

− /DE
+c

1
2 ))− tr(g)(

∑

g∈G
g(c

1
2 e−t /DE

+ /DE
−c

1
2 ))

when t is small and the number is independent of t. So letting t → 0
and applying Corollary 3.21, we obtain

ind(g) /DE = tr(g)(e−t /DE
− /DE

+)− tr(g)(e−t /DE
+ /DE

−).

The proposition is then proved. q.e.d.

We are now ready to state the main theorem of this section. We com-
bine the heat kernel asymptotics in Theorem 3.23 with Proposition 5.9
to calculate the localized indices in the following theorem.

Theorem 5.10. Let X be a complete Riemannian orbifold where a
discrete group G acts properly, co-compactly, and isometrically. Suppose
the localized (g)-trace defined by (5.2) extends continuously to C∗

r (G).
Let /DE be the G-invariant Dirac operator on X. The localized (g)-index
is calculated by

(5.15) ind(g)( /D
E ) =

∫ orb

(G\X)(g)
Â(g)(X)ch

S
(g)(G\E),

where Â(g)(X) and chS(g) are the delocalized characteristic classes of G\X
restricted to the (g)-twisted sector (G\X)(g) given by (3.33).
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Remark 5.11. The assumption that the localized (g)-trace extends
continuously to the reduced group C∗-algebra is not essential. Assuming
this will enable us to perturb q ◦ F̃ ◦ ι by a compact operator in (5.13).
Proceeding without this assumption produces further complications in
analysis. For this reason, we shall investigate the index formula remov-
ing this condition in a future paper. The analytical result for this paper
is presented in Section 3 without any trace assumption on G. But to
show these results are topological in nature, it is convenient to add this
assumption for groups. There are a lot of groups satisfying this condition
such as hyperbolic groups [Pu] and property RD (rapid decay) groups
with polynomial growth [G]. Geometric group theorists have studied
many concrete examples of property RD groups, which provide the main
examples of groups satisfying the Buam–Connes conjecture [L2].

These localized indices for /DE gives rise to refined topological invari-
ants for the Dirac operator on the orbifold G\X. In fact, in view of
Theorem 5.10 and Theorem 3.23, the following theorem is immediate.
We provide in addition a K-theory proof. Note that in the analytic
result Theorem 3.23 we do not pose any trace assumption on G.

Theorem 5.12. Suppose the localized (g)-trace defined by (5.2) ex-
tends continuously to C∗

r (G). The orbifold index on G\X is the sum of
localized (g)-indices over all conjugacy classes of G, that is,

ind /DG\E =
∑

(g)

ind(g)( /D
E ).

Proof. Note that ind /DG\E = ρ∗(μ[ /DE ]) and ind(g)( /D
E ) = τ

(g)
∗ (μ[ /DE ]).

Denote by P0 and P1 two S(G)-valued projection matrices (P 2
i = Pi =

P ∗
i where i = 0, 1) such that μ[ /DE ] = [P0] − [P1] ∈ K0(S(G)). As the

localized indices for Dirac operators are finite, |τ (g)∗ ([Pi])| < ∞. We need
only to show that

(5.16) ρ∗([P ]) =
∑

(g)

τ
(g)
∗ ([P ]), P = Pi, i = 0 or 1.

Denote by ρ(P ) (resp. τ (g)(P )) the C-valued matrix whose (i, j)th entry

is ρ (resp. τ (g)) applied to the (i, j)th-entry of P . Then, the left-hand
side of (5.16) is equal to the rank of ρ(P ), and the right-hand side
of (5.16) is the sum of the trace of τ (g)(P ) over all conjugacy classes of

G, which is also the trace of ρ(P ) observing that ρ(P ) =
∑

(g) τ
(g)(P ).

Hence, it is sufficient to show that the rank of ρ(P ) equals its trace.
As ρ is a homomorphism, the image ρ(P ) of the projection P is still

a projection, that is, ρ(P )2 = ρ(P ) = ρ(P )∗. The C-valued projection
ρ(P ) is then unitary equivalent to a diagonal matrix Q whose entries
are either 1 or 0. Note that the trace and rank are invariant under
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unitary equivalence. Thus, the rank of ρ(P ) is the same as its trace.
This completes the proof of the theorem. q.e.d.

Remark 5.13. Theorem 5.10 gives rise to a local index formula for
Dirac operators. Then the localized index can be defined for any G-
invariant elliptic operator D on X by adapting the argument of [W] to
the case of orbifold. In fact, D gives rise to an element in K0

G(C
∗
red(X))

by Lemma 4.7. Then using a similar construction as in [ABP, Section 7]
and in [W], we can find a G-invariant Dirac type operator /D, represent-
ing the same K-homology class as D. Hence, /D and D have the same
higher index and localized indices. Thus, localized index formulas are
well defined for [D] ∈ K0

G(C
∗
red(X)) and are calculated by local index

formula (5.15) for the Dirac operator /D under the trace assumption
on G.

6. Applications and further remarks

6.1. L2-Lefschtez fixed-point formula. To illustrate that Theorem
5.10 is indeed an L2-Lefschtez fixed-point formula for noncompact
orbifolds, we restrict ourselves to the case of a complete Riemannian
manifold where a discrete group G acts properly, co-compactly, and
isometrically.

Let X be a good orbifold arising from a complete Riemannian man-
ifold M with a proper, co-compact, and isometric action of a discrete
group G. In this situation, the twisted sector of the orbifold X = G\M
is simply indexed by the conjugacy classes of the group G. Then over
M associated to each conjugacy class (g) ⊂ G, we have the localized
(g)-index for the G-invariant Dirac operator /DE . By Theorem 5.10, we
know the following:

1) When g is the group identity, the localized index of /DE , also known
as the L2-index, gives rise to the top stratum of the Kawasaki index
formula for the Dirac operator /DG\E on X = G\M.

2) When g ∈ G is not the group identity, the localized indices of
/DE characterize the lower strata of the orbifold index formula of
/DG\E .

Therefore, we have related the higher index of /DE to the orbifold in-
dex restricted to each twisted sector X(g) by the localized (g)-trace (cf.
Definition 5.2).

Denote by Mg the fixed-point submanifold of M by g ∈ G. Then the
component for the inertia orbifold I(G\M) has the following structure
indexed by the conjugacy class (g) of G:

(6.1) (G\M)(g) = G\ ∪h∈(g) M
h = ZG(g)\Mg .

In the following, we shall derive from Theorem 5.10 a formula of
ind(g) /DE as integration over fixed-point submanifolds by introducing a
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suitable cut-off function. For example, when g = e, the localized (e)-
index of /DE is the L2-index of /DE and is equal to the top stratum of
the formula for ind /DE

G\M :

(6.2)

L2- ind( /DE) =
∫ orb

G\M
Â(G\M) chS(G\E) =

∫

M
c(x)Â(M) chS(E),

where c is a cut-off function on M with respect to the G action. We
shall show in this subsection a localized index formula for all g ∈ G in
the fashion of (6.2).

Note that ZG(g) acts on Mg isometrically. Given a cut-off function c

on M with respect to the G action, we construct a function c(g) on Mg

as follows:

(6.3) c(g)(y) =
∑

k∈G/ZG(g)

c(k−1y) y ∈ Mg,

where G/ZG(g) is identified as a subset K of G in view of Lemma 3.15
(see (3.20) for the definition of K). By Lemma 3.15, the function given
by (6.3) is in fact a cut-off function on Mg with respect to the ZG(g)-
action:∑

l∈ZG(g)

c(g)(l−1y) =
∑

l∈ZG(g)

∑

k∈K
c(l−1k−1y) =

∑

g∈G
c(g−1y) = 1.

The localized (g)-index of /DE is given by

ind(g)( /D
E) =

∫ orb

X(g)

Â(X(g)) ch
S
(g)(G\E)

det
(
1− Φ(g)e

RN(g)
/2πi) 1

2

=

∫

Mg

c(g)(x)
Â(Mg) chSg (E)

det(1− geRNg /2πi)
1
2

.

We summarize these results as the following L2-version of the Lef-
schtez fixed-point formula for a complete Riemannian manifold M with
a proper co-compact action of a discrete group G.

Theorem 6.1. Let M be a complete Riemannian manifold where
a discrete group G acts properly, co-compactly, and isometrically. Let
/DE be the G-invariant Dirac operator on M , and let /DE

G\M be the corre-

sponding Dirac operator on the quotient orbifold G\M. Then L2- ind /DE =
ind(e)( /D

E), the localized index of /DE at the identity conjugacy class (e).

For g �= e, the localized (g)-index of /DE is given by

ind(g)( /D
E ) =

∫

Mg

c(g)(x)
Â(Mg) chSg (E)

det(1− geRNg /2πi)
1
2

,

where c(g) is the cut-off function on Mg with respect to the action of
ZG(g) given by (6.3).
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6.2. Selberg trace formula. We shall present an interesting connec-
tion between the localized indices and the orbital integrals in the Selberg
trace formula. To begin with, we recall the set up of the Selberg trace
formula [S] (see also the survey article [Ar]).

Let G be a real unimodular Lie group, and let Γ be a discrete co-
compact subgroup of G. Denote by R the right regular unitary repre-
sentation of G on L2(G):

R(g)f(h) = f(g−1h) ∀g, h ∈ G,∀f ∈ L2(G).

It extends to a representation of L1(G) on L2(G) as follows:

(6.4) R(f) =

∫

G
f(g)R(g)dg ∀f ∈ L1(G).

As Γ acts on the left of G, R is reduced to

(6.5) R : L1(G) −→ End(L2(Γ\G)).

Let f ∈ C∞(G)∩L1(G) be a test function, whereR(f) is a trace class op-
erator on L2(Γ\G). The Selberg trace formula is an equality relating two
ways in calculating TrR(f), where Tr is the operator trace on L2(Γ\G).
On the one hand, TrR(f) has the spectral decomposition indexed by
all irreducible unitary representations of G (denoted by Irr(G)):

(6.6) TrR(f) =
∑

π∈Irr(G)

m(π)Tr(π(f)),

where m(π) is the multiplicity of π in R. The equality (6.6) is called
the spectral side of the Selberg trace formula. On the other hand, the
Schwartz kernel K(x, y) of R(f), which has the expression

(6.7) K(x, y) =
∑

γ∈Γ
f(x−1γy),

can be used to calculate TrR(f) as follows:
(6.8)

TrR(f) =

∫

Γ\G

K(x, x)dx =
∑

(γ)⊂Γ

vol(ZG(γ)/ZΓ(γ))

∫

ZG(γ)\G

f(x−1γx)dx,

where the sum is over representatives of all conjugacy classes of G.
This equality (6.8) is called the geometric side of the Selberg trace
formula. We denote the (γ)-summand in (6.8) by Oγ and call it the
orbital integral:

Oγ := vol(ZG(γ)/ZΓ(γ))

∫

ZG(γ)\G
f(x−1γx)dx.

The orbital integral is easier to calculate and is an important tool in
finding the multiplicity of a representation.
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To relate Selberg trace formula to localized indices, we recall the
similar setting that appeared in [CM, BM]. Let H be a maximal com-
pact subgroup of G with volume 1. Let M = G/H be the Riemannian
symmetric manifold of noncompact type. Then the discrete co-compact
subgroup Γ of G acts properly and co-compactly on M . Let E be a
Z/2Z-graded homogeneous vector bundle over M , that is, there exists
a Z/2Z-graded H-representation E, where H respects the grading of
E, so that E = G ×H E. Denote by /DE : L2(M, E) → L2(M, E) the
G-invariant Dirac operator. We then have the identification

L2(M, E) ∼= (L2(G)⊗ E)H .

Therefore, the corresponding Dirac operator /DΓ\E on the quotient orb-
ifold Γ\M is regarded as an operator on (L2(Γ\G)⊗E)H . Let us denote
by Kt (resp. K̄t) the heat kernel for /DE (resp. /DΓ\E ). As M is homo-
geneous, we have:

Kt ∈ (C∞(G×G)⊗End(E))H×H K̄t ∈ (C∞(Γ\G×Γ\G)⊗End(E))H×H .

As DE is G-invariant, Kt gives rise to a well-defined function kt ∈
(C∞(G)⊗ End(E))H×H given by

(6.9) kt(x
−1y) = Kt(x, y), ∀x, y ∈ G.

We shall still consider the right regular representation of a test func-
tion, but we replace the representation space L2(Γ\G) by the Z/2Z-
graded space (L2(Γ\G)⊗E)H and the operator trace by the supertrace.
Note that by (6.7) and Theorem 3.4, we observe that the Schwartz ker-

nel of R(kt) is exactly K̄t(x, y), the heat kernel for /DΓ\E . Applying
Theorem 3.4 to (6.7), we see that the supertrace TrsR(kt) is finite.
Therefore, even though kt is not compactly supported on G, we can
choose kt as a test function. Comparing the localized index formula
and the Selberg trace formula in this situation, we obtain the follow-
ing theorem, which states that the orbital integrals for TrR(kt) have a
one-to-one correspondence with the localized indices for /DE .

Theorem 6.2. Let kt be the test function (6.9) determined by the
heat operator for the Dirac operator /DE on the Riemannian symmetric
manifold M = G/H of noncompact type. Let R(kt) be the right regular
representation of L1(G) on (L2(Γ\G)⊗E)H in the sense of (6.5). Then
the geometric side of the Selberg trace formula of Trs(R(kt)), which was
expressed as a sum of orbital integrals Oγ in (6.8) over all conjugacy

classes of Γ, corresponds exactly to the sum of localized indices for /DE .
Moreover,

Trs(R(kt)) =
∑

(γ)⊂Γ

Oγ = ind /DΓ\E , Oγ = ind(γ) /DE .
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Proof. By the geometric side (6.8) of the Selberg trace formula and
the definition of the localized indices (cf. Theorem 5.10), we shall only
need to show that the orbital integral

(6.10) Oγ = vol(ZG(γ)/ZΓ(γ))

∫

ZG(γ)\G
Trs[kt(x

−1γx)γ]dx,

where Trs is the supertrace of EndE, is equal to

tr(γ)Γs e−t( /DE )2 :=
∑

h∈(γ)

∫

G
c(x)Trs[Kt(x, hx)h]dx,

where c is a cut-off function on G with respect to the Γ-action.

Let us rewrite tr
(γ)Γ
s e−t( /DE )2 as

tr(γ)Γs e−t( /DE )2 =
∑

k∈K

∫

G
c(x)Trs[kt(x

−1kγk−1x)k−1γk]dx

=

∫

G
c(γ)(x)Trs[kt(x

−1γx)γ]dx,

(6.11)

where K is the set generating the conjugacy class (γ)Γ defined in (3.20)
and

c(γ)(x) :=
∑

k∈K
c(kx).

Identify the space of the right cosets ZG(γ)\G of ZG(γ) in G as a subset
of G consisting of representatives of the right cosets. Then any x ∈ G
can be decomposed uniquely into x = ba, where b ∈ ZG(γ) and a ∈
ZG(γ)\G. Notice that kt(a

−1b−1γba)γ = kt(a
−1γa)γ for all b ∈ ZG(γ).

Thus, (6.11) is equal to
(6.12)

tr(γ)Γs e−t( /DE )2 =

∫

ZG(γ)\G
Trs[kt(a

−1γa)γ]

[∫

ZG(γ)
c(γ)(ba)db

]
da.

Lemma 3.15 implies that K · ZΓ(γ) = Γ. Then for any l ∈ G, we have
∑

b∈ZΓ(γ)

c(γ)(bla) =
∑

k∈K,b∈ZΓ(γ)

c(kbla) =
∑

h∈Γ
c(hla) = 1.

The term
∫
ZG(γ) c

(γ)(ba)db in (6.12) can be calculated similarly as the

argument we used to derive (6.12):

∫

ZG(γ)
c(γ)(ba)db =

∫

ZG(γ)/ZΓ(γ)

⎡
⎣

∑

l∈ZΓ(γ)

c(γ)(hla)dl

⎤


dh = vol(ZG(γ)/ZΓ(γ)).

Together with (6.12) and (6.10), we see that tr
(γ)Γ
s e−t( /DE)2 = Oγ . The

theorem is then proved by comparing (6.8) and Theorem 5.12. q.e.d.
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Remark 6.3. The theorems in Sections 6.1 and 6.2 only concern the
heat kernel analysis discussed in Section 3. Thus, they did not need the
assumption of the extension of (g)-traces in Theorem 5.10. In case we
are not sure if ind(g) /D is equal to the (g)-supertrace of the heat kernel

tr
(g)
s e−t /D2

, we use the latter to replace the definition of the localized
(g)-index.

6.3. An application in positive scalar curvature. Localized in-
dices produce finer topological invariants for the G-orbifold X and the
quotient G\X. They also reveal some geometric information of the orb-
ifold. We present a result regarding positive scalar curvature. As we
know, the higher index of an elliptic operator is the obstruction of the
invertibility of the operator. However, the higher index is difficult to
compute. Therefore, as a weaker condition but easier to compute, the
nonvanishing of the localized indices is an alternative obstruction of in-
vertibility of the operator. We then formulate the nonvanishing result
as follows.

Let Y be a compact spin orbifold obtained from the quotient of a
complete orbifold X by a discrete G group acting properly, co-compactly,
and isometrically. Let S be the spinor bundle over X. Denote by /DS

(resp. /DG\S) the Dirac operator on X (resp. Y).

Theorem 6.4. Assume G is a group such that localized (g)-traces
can be extended to the reduced group C∗-algebra. If any of the localized
indices of the G-invariant Dirac operator /DS on X is nonzero, then the
quotient orbifold Y cannot have positive scalar curvature.

Proof. If the quotient orbifold Y = G\X has a metric leading to
a positive scalar curvature, then as G acts by isometry, the covering
orbifold X also has a positive scalar curvature, denoted by rX. Then by
the Lichnerowicz formula (3.8), we have

( /DS)2 = ∆S +
1

4
rX,

which is a strictly positive operator. Hence, /DS is invertible. Choosing
the parametric to be ( /DS)−1, we then observe that T0 = T1 = 0 in
the proof of Proposition 5.9, and this implies that ind(g) /DS = 0 in this
situation. Thus, all the localized indices are 0, which contradicts the
assumption. The theorem is then proved. q.e.d.

Remark 6.5. If the orbifold index of the Dirac operator /DG\S on
the quotient is 0, it does not prove the nonexistance of positive scalar
curvature of Y = G\X. But if the localized indices, which sum up to
be 0 by Theorem 5.12, are not all 0, then Theorem 6.4 shows that Y

cannot admit a positive scalar curvature.
On the other hand, while the localized indices (for g �= e) would vanish

for spaces with positive scalar curvature, we expect the localized indices
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to be useful in the study of nonpositively curved space, for example,
Riemannian symmetric manifolds of noncompact type with compact
orbifold quotients.
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