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Localized infusion of IGF-I results in skeletal
muscle hypertrophy in rats

GREGORY R. ADAMS AND SAMUEL A. MCCUE
Department of Physiology and Biophysics, University of California, Irvine, California 92697

Adams, Gregory R., and Samuel A. McCue. Localized
infusion of IGF-I results in skeletal muscle hypertrophy in
rats. J. Appl. Physiol. 84(5): 1716–1722, 1998.—Insulin-like
growth factor I (IGF-I) peptide levels have been shown to
increase in overloaded skeletal muscles (G. R. Adams and F.
Haddad. J. Appl. Physiol. 81: 2509–2516, 1996). In that
study, the increase in IGF-I was found to precede measurable
increases in muscle protein and was correlated with an
increase in muscle DNA content. The present study was
undertaken to test the hypothesis that direct IGF-I infusion
would result in an increase in muscle DNA as well as in
various measurements of muscle size. Either 0.9% saline or
nonsystemic doses of IGF-I were infused directly into a
non-weight-bearing muscle of rats, the tibialis anterior (TA),
via a fenestrated catheter attached to a subcutaneous minios-
motic pump. Saline infusion had no effect on the mass,
protein content, or DNA content of TA muscles. Local IGF-I
infusion had no effect on body or heart weight. The absolute
weight of the infused TA muscles was ,9% greater (P , 0.05)
than that of the contralateral TA muscles. IGF-I infusion
resulted in significant increases in the total protein and DNA
content of TA muscles (P , 0.05). As a result of these
coordinated changes, the DNA-to-protein ratio of the hyper-
trophied TA was similar to that of the contralateral muscles.
These results suggest that IGF-I may be acting to directly
stimulate processes such as protein synthesis and satellite
cell proliferation, which result in skeletal muscle hypertro-
phy.

insulin-like growth factor I; growth factors; somatomedin;
muscle DNA content; fibroblast growth factor-2

INDIVIDUAL SKELETAL MUSCLES can respond to increased
loading by adapting their size and contractile character-
istics (8). In contrast to the generalized skeletal muscle
growth seen during development, this process results
in selective hypertrophy of the affected muscles. A
common example of this selective form of adaptation is
the hypertrophy evident after resistance training of
specific muscle groups. A more extreme example would
be the rat model of compensatory hypertrophy in which
a single muscle can be targeted via the removal of all
synergists and increase in mass by as much as 100%
(e.g., Ref. 1).

The sensitivity of individual muscles to changes in
loading state suggests that mechanisms are function-
ing at the level of the myofiber to promote adaptation.
Whereas many aspects of skeletal muscle physiology
have been extensively studied, neither the mechanisms
that transduce mechanical load into cellular-level sig-
nals nor the components of myofiber signaling path-
ways that promote hypertrophy have been clearly
delineated.

One obvious process that must occur during skeletal
muscle hypertrophy is increased protein accumulation.

In addition, it has recently been suggested (3, 14) that
muscle hypertrophy is accompanied by increases in the
number of myonuclei, such that the ratio between
myofiber size and myonuclear number is maintained
within some finite range. Current theory suggests that
new myonuclei in hypertrophied skeletal muscle arise
from the proliferation of satellite cells and the subse-
quent differentiation and fusion of some of the satellite
cell progeny with existing myofibers (28, 29, 31). Experi-
ments in which satellite cells have been prevented from
contributing myonuclei, via prior g-irradiation, have
found that satellite cell proliferation is an obligatory
process for the development of this type of compensa-
tory muscle hypertrophy (23, 25, 26).

Insulin-like growth factor I (IGF-I) is thought to be a
critical modulator of skeletal muscle growth as well as
overall somatic growth during mammalian neonatal
development (7, 15). IGF-I is also known to promote
hypertrophylike responses in muscle cell lines (15). The
purported ability of IGF-I to stimulate both anabolic
and myogenic effects in vitro suggests that this growth
factor is a promising candidate as a component of a
cellular-level signaling system in skeletal muscle.

We have recently reported that compensatory hyper-
trophy of rat plantaris muscles is accompanied by
increased IGF-I peptide production in the affected
muscle (1). This increased IGF-I production coincides
with increases in muscle DNA and precedes measur-
able increases in muscle protein. This result has lead us
to hypothesize that IGF-I may be acting as an autocrine
and paracrine signal, thereby stimulating increased
protein production in myofibers and the proliferation of
satellite cells.

A number of studies have attempted to augment
muscle adaptation to resistance training in humans by
increasing circulating IGF-I by the infusion either of
IGF-I itself or of growth hormone (GH), thus indirectly
increasing circulating IGF-I. These studies have gener-
ally found that increased circulating levels of IGF-I had
no effect on the degree of muscle hypertrophy or other
measured responses to resistance training (e.g., Refs.
35, 41). Analogous animal studies have generally found
that an experimental increase in the circulating levels
of IGF-I results in generalized somatic growth that
includes an increase in the weight of some muscles (6,
19, 40). However, the muscle growth seen was either
proportional to, or somewhat less than, the generalized
increase in body size. As a result, these experiments do
not directly address the concept of locally mediated
responses to loading and the role of IGF-I in that
process.

In contrast to the results with increased systemic
IGF-I, Coleman et al. (11) have recently reported that
overexpression of IGF-I in the skeletal muscles of mice
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leads to significant hypertrophy that was confined to
that tissue. Because of the nature of the transgenic
model, these animals were exposed to increased IGF-I
production throughout the developmental period of
rapid growth. As a result, it is not clear that this model
provides insights into the role of IGF-I in the hypertro-
phy response to repeated episodes of increased muscle
loading in mature animals.

The experiments described in this paper were de-
signed to investigate the responsiveness of individual
skeletal muscles in adult rats to local increases in
IGF-I. Our hypothesis was that local increases in IGF-I
peptide would mimic the signaling processes thought to
take place after an increase in the loading of a skeletal
muscle. Our results show that direct local infusion of
nonsystemic doses of IGF-I into the tibialis anterior
(TA) muscles of adult rats resulted in muscle hypertro-
phy that included an increase in muscle DNA content.

METHODS

For the primary study, 35 female Sprague-Dawley rats,
weighing 220 6 2 g, were randomly assigned to three groups.
The TA was chosen as a target for these experiments because
this muscle is a plantar flexor of the foot and as such does not
directly bear the animal’s body weight. The TA muscles of rats
from the first group were infused with 0.9% sterile saline
solution for either 2 wk (n 5 5) or 3 wk (n 5 5). In the second
group, TA infusion consisted of recombinant human IGF-I
(Genentech) at 0.9 µg/day for 3 wk (n 5 10). In a third group,
1.9 µg/day of IGF-I were infused into the TA for 2 wk (n 5 5).

In two additional groups, five rats each were randomly
assigned to receive local infusion of either 1.9 µg/day recombi-
nant human GH (Bachem) or 1.5 µg/day of recombinant
human basic fibroblast growth factor-2 (FGF-2; Calbiochem,
San Diego, CA) for 2 wk.

Local Infusion Technique

Two IGF-I doses were selected to roughly span a range of
systemic doses that had been reported to have growth-
inducing effects in rats (e.g., Refs. 27, 37, 38). Each IGF-I
infusion dose was arrived at by scaling a systemic dose in
milligrams per kilogram to the expected weight of the TA
muscles of rats in the selected body weight range. The lower
dose of 0.9 µg/day would be equivilent to a systemic dose of
,2.0 µg·kg21 ·day21, whereas the higher muscle dose (1.9
µg/day) would approximate a 4.0 µg·kg21 ·day21 systemic
dose for rats of this size.

Infusion of saline or one of the growth factors was accom-
plished via a catheter attached to a miniosmotic pump [Alzet
model 2002 (14 days) or 2004 (21 days), Alza]. The minios-
motic pumps were filled under aseptic conditions, following
the manufacturers instructions. All solutions were sterilized
via µStar syringe filters (Corning-Costar) during pump fill-
ing. Catheters consisted of ,12 cm of C-flex implantable
tubing (OD 0.8 in., ID 0.02 in.) bonded to ,2.5 cm of Tygon
tubing (OD 0.03 in., ID 0.01 in.; Cole Parmer). The C-flex
tubing is very flexible and was used to provide strain relief to
prevent excess stress on the muscle fascia. The Tygon tubing
was fenestrated by using a microtipped soldering iron (An-
tex). For catheter implantation, the rats were anesthetized
with ketamine and acepromazine, 80 and 2 mg/kg, respec-
tively, and incisions were made in the skin overlying the TA
muscle and on the back ,4 cm caudal from the neck. Two
small cuts were made in the layers of fascia overlying the TA
muscle using iris scissors.

One cut was near the proximal end of the muscle, whereas the
other was distal, near the tendon. The Tygon portion of the
catheter was tunneled under the fascia of the TA and secured
in place by a single stitch (4–0 Ethicon) that passed through
the fascia and around the catheter at both the entry and exit
points. The C-flex portion of the catheter was tunneled under
the skin to the back incision. The catheter was then filled with
the same solution placed in the pumps (e.g., saline or growth
factor), and the distal end (Tygon) of the catheter was closed
by tying off with 2–0 suture. The C-flex end of the catheter
was then mated with the osmotic pump that had been primed
by preincubation in sterile saline at 37°C. The pump was then
placed under the skin via the back incision, and both incisions
were closed. At the termination of the infusion protocols, the
osmotic pumps were removed, and any remaining infusate
was aspirated via a syringe to verify that the pumps had
functioned correctly.

Based on the specifications for the osmotic pumps, the total
volume delivered per day was 10.8 6 0.48 µl (,0.45 µl/h) in
the 2-wk groups and 5.3 6 0.24 µl (,0.22 µl/h) in the 3-wk
groups. Based on the findings of Sreter and Woo (33), the
volumes infused per hour would represent ,0.6 and ,1.3% of
the extracellular space, respectively, in rat TA muscles of this
size.

As a validation of the effectiveness of the IGF-I infusion, six
rats were implanted with 14-day osmotic pumps delivering
1.9 µg of IGF-I per day. Five days after the implantation
surgery, these rats were anesthetized, and plasma samples
were collected from the left ventricle. The TA and extensor
digitorum longus (EDL) muscles were then removed and
processed as described below.

Tissue Collection

Infusion validation group. Both the contralateral and
infused TA muscles were removed and cut in half along the
long axis of the muscle, separating them into a deep and a
superficial (nearest the catheter) halves, then quick frozen
between blocks of dry ice. These muscles were stored at
280°C for later analysis.

Primary study groups Fourteen days after the implanta-
tion surgeries, rats from the saline control and the growth
factor experimental groups were killed via an overdose of
pentobarbital sodium (120 mg/kg). The TA muscles of both the
infused and contralateral leg were removed, weighed, and
quick frozen between blocks of dry ice. These muscles were
stored at 280°C for later analysis. At 21 days, 5 saline control
rats and the 10 rats receiving the 0.9 µg/day IGF-I dose were
killed, and TA muscles were collected as described above.

Assessment of Muscle Hypertrophy

Muscle mass determination. After dissection, left and right
TA muscles were quickly weighed on an electronic scale
before further processing. The left ventricle from each rat was
dissected free from the atria, arteries, and right ventricle and
weighed. Both EDL muscles were also removed and weighed.

Muscle and myofibrillar protein determination. Muscle
protein was determined from whole muscle homogenates by
using the biuret method (17). Total muscle protein was
calculated from the product of the concentration and the wet
weight of the muscle sample recorded at death.

Total myofibrillar protein was determined as previously
described (39) by using the method of Solaro et al. (32).
Briefly, muscle samples were weighed and then homogenized
in ,20 vol of a an ice-cold solution containing (in mM) 250
sucrose, 100 KCl, and 5 EDTA. The homogenate was washed
(suspended, then centrifuged at 1,000 g for 10 min) succes-
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the EDL muscles, which lie directly beneath the TA,
were similar for both the infused and contralateral
sides, suggesting that the infused IGF-I affected only
the target muscle. Based on these same measurements,
neither GH or FGF-2 infusion had any apparent sys-
temic effects.

In the validation group that had received infusion of
1.9 µg/day of IGF-I, plasma IGF-I levels were similar to
those found in control rats (e.g., infused 558 6 74 vs.
control 569 6 43 ng/ml). The lack of systemic effect from
these local infusion protocols is not surprising consider-
ing the doses used. As an example, the highest IGF-I
dose infused in the present study was 1.9 µg/day. This
contrasts with reports from the literature that gener-
ally employed systemic doses of IGF-I in the range of
200–300 µg/day (18, 24, 27, 37, 38).

TA Muscle Hypertrophy

The implantation and infusion protocol, in and of
itself, did not result in alterations in muscle size. For
example, at the end of 3 wk of treatment, the saline-
infused TA muscle weights were 453 6 7 mg, whereas
the contralateral muscles weighed 453 6 9 mg.

In contrast to the saline response, infusion of IGF-I
at a dose of 0.9 µg/day for 3 wk or 1.9 µg/day for 2 wk
resulted in ,9% increases in whole muscle mass,
compared with either the contralateral TA muscles or
with those of the saline-infused TA (Fig. 2). Similar
increases in TA muscle weight are seen when the data
are expressed normalized to body weight (P , 0.05)
(data not shown).

The total muscle protein content (e.g., mg/muscle) of
the IGF-I-infused muscles was increased relative to
contralateral muscles (Fig. 3). The relative increase in
total muscle protein was greater in the 1.9-µg-dose
group after 2 wk (,47%) than in the 0.9-µg-dose group
after 3 wk (,22%) of IGF-I infusion, suggesting that
there was a dosage-dependent effect. Saline infusion
had no effect on the total protein content of TA muscles
(e.g., 3 wk saline-infused: 132 6 6 mg; contralateral:
134 6 6 mg). Local infusion of GH resulted in a
significant increase (122 6 5 vs. 145 6 8 mg) in total
muscle protein content, whereas FGF-2 infusion did
not result in significant changes in this parameter.

As noted above, the local infusion protocol did not
appear to result in equivalent distribution of growth
factors to all regions of the muscle. As a result, the
extrapolation of total muscle protein from the muscle
samples taken near the infusion site might be expected
to lead to an overestimation of these values. In addi-
tion, in the IGF-I-infused muscles, there appeared to be
a trend toward an increase in the total protein and
myofibrillar protein concentration. These two factors
resulted in an apparently disproportionate increase in
muscle protein compared with the muscle wet weight
(cf. Fig. 3 vs. Fig. 2).

In each case, the myofibrillar protein concentration
of the growth factor-infused muscles was similar to that
of control or contralateral muscles (e.g., IGF-I infused
169 6 3 vs. contralateral 172 6 8 mg/g). This indicates
that myofibrillar protein increased in parallel with the
total protein and strongly suggests that the growth
factor-induced increases reflect effects on the myofi-
bers, as opposed to some nonmuscle cell type (e.g.,
fibroblasts).

TA Muscle DNA Content

As with muscle weights and total muscle protein,
saline infusion did not affect the total DNA content of
the infused TA muscles (Fig. 4). However, infusion of
IGF-I, GH, or FGF-2 resulted in significant increases in
TA muscle DNA content compared with either the

Fig. 2. Effects of 0.9% saline or growth factor infusion on TA muscle
wet weights. IGF-I low dose: 0.9 µg/day for 3 wk. IGF-I high dose: 1.9
µg/day for 2 wk. *P , 0.05 vs. contralateral; #P , 0.05 vs. saline.

Fig. 3. Effects of 0.9% saline or growth factor infusion on TA muscle
total protein content. *P , 0.05 vs. contralateral; #P , 0.05 vs. saline.

Fig. 4. Effects of 0.9% saline or growth factor infusion on TA muscle
total DNA content. *P , 0.05 vs. contralateral; #P , 0.05 vs. saline.
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contralateral TA or those of the saline-infused rats
(Fig. 4).

DISCUSSION

We previously reported that IGF-I peptide concentra-
tions increased in muscles undergoing hypertrophy due
to functional overload (1). Furthermore, the increases
in muscle IGF-I peptide paralleled increases in IGF-I
mRNA, suggesting that the increased IGF-I was of
muscle origin. These results, in conjunction with an
extensive body of literature regarding the hypertrophic
and anabolic effects of IGF-I in vitro (15), lead us to
speculate that this growth factor acts in an autocrine
and/or paracrine mode to mediate the hypertrophy
process in skeletal muscle. Accordingly, we designed
the experiments described herein to determine whether
exogenously supplied IGF-I, provided in doses that
avoided generalized somatic growth, would induce
muscle hypertrophy in adult rats in the absence of
alterations in muscle loading. We chose the TA muscle
as a target for these experiments because it is a
non-weight-bearing muscle and has proven to be rela-
tively insensitive to such interventions as decreased
loading induced by the hindlimb-suspension model (2).

The results of this experiment demonstrate that
IGF-I infusion stimulates hypertrophy of the target
skeletal muscle. The various growth factor infusions
had no apparent effects on nearby muscles or the heart
or body weight of the rats. In particular, the heart and
body weights of rats are known to be sensitive indica-
tors of systemic effects of GH and IGF-I (13, 16, 24). The
experimental design employed avoided inducing so-
matic growth via the delivery of low doses of IGF-I. The
highest effective dose delivered in this study was ,7.9
µg·kg21 ·day21. In contrast, effective systemic doses
found in the literature range from 1.0 to 6.9
mg·kg21 ·day21 (e.g., Refs. 13, 27, 37, 38).

The results of this study are qualitatively similar to
those reported by Coleman et al. (11), who found that
increased muscle IGF-I production resulted in signifi-
cant muscle hypertrophy in transgenic mice. However,
the degree of hypertrophy seen in transgenic mice was
greater than that reported here. The design of the
present study differs from the transgenic model in that
the increased muscle IGF-I levels were initiated in
adult rats and thus were not present during the pre-
and postnatal development period. This design would
be expected to more directly mimic conditions found
during muscle adaptation to increased loading in adult
animals.

In addition to the increases in muscle mass and
protein accumulation, IGF-I infusion stimulated an
increase in DNA content (µg/muscle). This result is
similar to that seen when a skeletal muscle hypertro-
phies in response to increased loading (1). The process
of muscle hypertrophy is known to include an increase
in the number of myonuclei (see Refs. 3, 28, 29, 31).
Because mature mammalian myofibers are thought to
be unable to reenter the cell cycle (9, 34), current
thought is that increases in myonuclei result from the

proliferation, differentiation, and fusion of satellite
cells with existing myofibers (30).

The theory that satellite cells participate in the
hypertrophy process is supported by a number of
reports based on a variety of experimental models (3,
21, 23, 25, 26, 29). Of these studies, several indicate
that the hypertrophy that occurs in response to in-
creased loading requires mitotically competent satel-
lite cells in order to proceed (23, 25, 26). These studies
reported that the incapacitation of satellite cells via
g-irradiation actually prevented muscle hypertrophy
from occurring in response to increased loading (23, 25,
26). The concept that the process of muscle hypertrophy
requires a coordinate increase in muscle DNA is also
supported by recent findings suggesting that there is a
finite relationship between the size of a muscle fiber
and the number of myonuclei present in that cell
(3, 14).

Various studies have reported that IGF-I stimulates
anabolic responses as well as cellular proliferation and
differentiation in a number of systems used to study
skeletal muscle (4, 15). The increase in DNA seen in the
present study suggests that IGF-I may be coordinating
the hypertrophy process, possibly by stimulating cellu-
lar proliferation, presumably in satellite cells, as well
as an increase in protein production, thereby maintain-
ing a proportionality between the size of the muscle and
its DNA (myonuclear) content.

The data presented in this study are open to a variety
of interpretations. For example, it is possible that
satellite cell activation is stimulated by the hypertro-
phy process itself. In this scenario, IGF-I might be
initially exerting anabolic effects that subsequently
stimulate satellite cells via some other messengers
such as hepatocyte growth factor or FGF-2 (5, 36). In
this scheme, IGF-I would then be important for the
stimulation of differentiation of these new satellite
cells. Whereas such a process has yet to be elucidated,
the maintenance of the DNA-to-protein ratio in conjunc-
tion with the proportional increase in myofibrillar
protein seen in the present study clearly suggests that
IGF-I is modulating these two processes during hyper-
trophy.

Fig. 5. Effects of infusion of 0.9% saline or growth factor infusion on
DNA-to-protein ratio of rat TA muscles. *P , 0.05 vs. contralateral;
#P , 0.05 vs. saline.
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In addition to IGF-I, a variety of other growth factors
such as GH and FGF-2 have been implicated in the
control of muscle growth and/or hypertrophy. GH is
generally thought to exert many of its growth-promot-
ing effects primarily via stimulating IGF-I production
by the liver and, to a much lesser extent, other tissues
such as kidney and muscle. In this study, we found that
GH infusion resulted in muscle hypertrophy and an
increase in the IGF-I concentraion. Thus it would seem
resonable to suggest that the hypertrophy seen with
GH infusion resulted indirectly via the increase in
IGF-I.

FGF-2 is known to have mitogenic effects in skeletal
muscle cell lines (15). It is interesting to note that in
this study infusion of FGF-2 stimulated a significant
increase in muscle IGF-I concentration and total DNA
but not in muscle protein content (Fig. 3). This result is
in sharp contrast to that seen with increased IGF-I
resulting from IGF-I or GH infusion, where increases in
muscle DNA and protein appeared to be coordinated
such that the DNA-to-protein ratio remained un-
changed (Fig. 5). FGF-2 has been shown to stimulate
IGF-I production by fibroblasts in vitro (10), which may
account for the increase in muscle IGF-I. However,
FGF-2 is known to be antagonistic to the differentiation
of myogenic cells into myoblasts (15, 22) and thus may
counter a critical step in the hypertrophy process.
Therefore, the increase in DNA seen with FGF-2 may
reflect the proliferation of satellite cells or some other
cell type such as fibroblasts. The failure of FGF-2 in-
fusion to result in hypertrophy is likely due to the lack
of differentiation necessary to complete the process.

To date, the literature suggests that IGF-I is unique
among the well-characterized growth factors in its
ability to stimulate both the proliferation and differen-
tiation in myogenic cells (15). In a previous study (1),
we found that endogenous increases in IGF-I produc-
tion by overloaded skeletal muscles precedes measur-
able hypertrophy. In the present study, we demon-
strated that exogenous IGF-I could stimulate muscle
hypertrophy. Taken together, the results of these two
studies strongly suggest that IGF-I may be a key agent
in the signaling pathways that allow individual skel-
etal muscles to adapt to increased loading. IGF-I
appears to be able to stimulate and/or coordinate both
the anabolic processes necessary to increase muscle
protein and the recruitment of satellite cells, thereby
providing new myonuclei and preserving the equilib-
rium between the number of myonuclei and the size of
the myofibers.
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