
J. Ocean Eng. Mar. Energy (2017) 3:353–372

DOI 10.1007/s40722-017-0095-5

RESEARCH ARTICLE

Localized instabilities of the Wigner equation as a model

for the emergence of Rogue Waves

A. G. Athanassoulis1
· G. A. Athanassoulis2,3

· T. P. Sapsis4

Received: 21 March 2017 / Accepted: 26 July 2017 / Published online: 10 August 2017

© The Author(s) 2017. This article is an open access publication

Abstract In this paper, we model Rogue Waves as local-

ized instabilities emerging from homogeneous and station-

ary background wavefields, under NLS dynamics. This is

achieved in two steps: given any background Fourier spec-

trum P(k), we use the Wigner transform and Penrose’s

method to recover spatially periodic unstable modes, which

we call unstable Penrose modes. These can be seen as gen-

eralized Benjamin–Feir modes, and their parameters are

obtained by resolving the Penrose condition, a system of

nonlinear equations involving P(k). Moreover, we show how

the superposition of unstable Penrose modes can result in the

appearance of localized unstable modes. By interpreting the

appearance of an unstable mode localized in an area not larger

than a reference wavelength λ0 as the emergence of a Rogue

Wave, a criterion for the emergence of Rogue Waves is for-

mulated. Our methodology is applied to δ spectra, where the

standard Benjamin–Feir instability is recovered, and to more

general spectra. In that context, we present a scheme for the

numerical resolution of the Penrose condition and estimate

the sharpest possible localization of unstable modes.
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1 Introduction

Rogue Waves in the ocean are often defined as waves larger

than twice the significant wave height, 2Hs, loosely speaking

waves “much larger than the waves around them”. Following

dramatic direct and indirect evidence for the existence and

impact of Rogue Waves in the last 30 years, a consensus has

emerged that although they are rare events, they are much

more common than the statistics of “usual” waves would

lead us to expect (Dysthe et al. 2008). More recently, Rogue

Waves have been identified in many different noisy nonlinear

wave systems (Chabchoub et al. 2015; Onorato et al. 2013b),

including Bose–Einstein condensates (He et al. 2014) and

optics (Dudley et al. 2014).

There is intense debate on the modelling of Rogue Waves,

especially on the mechanisms responsible for their emer-

gence. Numerous studies link them with breathers (Chab-

choub et al. 2012; Dudley et al. 2014; Kibler et al. 2015;

Onorato et al. 2013) or other special solutions of nonlinear

Schrödinger equations.

Many authors point out that Benjamin–Feir instabilities

of focusing nonlinear waves must play a key role in the for-

mation of Rogue Waves (Chabchoub et al. 2015; Kibler et al.

2015; Onorato et al. 2013b). In this work, we quantify for

the first time how a continuous superposition of Benjamin–

Feir-type instabilities can create a highly localized, rapidly

growing perturbation of a noisy wave background. A key

novelty of our analysis is that it can be applied to any back-

ground Fourier spectrum, not just plane waves. Another key

point is that we quantify how spatially-periodic Benjamin–

Feir-type modes can combine to yield persistently localized
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unstable modes, and what are the fundamental lengthscales

and timescales of this localization.

To achieve this, we study the Wigner transform of the

nonlinear Schrödinger equation, and then carry out a linear

stability analysis of the resulting exact, nonlinear Wigner

equation in phase space. On the technical level, we adapt tools

originally invented by Penrose for the study of the Vlasov–

Poisson equation (Penrose 1960).

Finally, it must be mentioned that our approach can be

applied to a large family of nonlinear pseudodifferential

equations (including in particular realistic Whitham opera-

tors). This is due to the pseudodifferential calculus available

for the Wigner transform (Athanassoulis et al. 2011; Gérard

et al. 1997).

1.1 Nonlinear Schrödinger equations and the role of the

functional framework

Nonlinear Schrödinger equations (NLS) of the form

i∂t u +
p

2
�u + q|u|2u = 0 (1)

are used to model a wide variety of nonlinear wave phenom-

ena including water waves, see (Chabchoub et al. 2015; Mei

et al. 2005; Onorato et al. 2013, b; Segur et al. 2005; Sulem

and Sulem 1999; Zakharov 1968) and the references therein.

A key dichotomy in this class lies between the focusing and

defocusing cases: if pq < 0, then we have the defocusing

NLS, and strong stability results and a priori estimates are

available. On the other hand, if pq > 0, then we have the

focusing NLS, and much more unstable behaviour is possi-

ble.

In the context of ocean waves with a central wavenumber

k0, the envelope can be seen to satisfy a focusing NLS of the

form (1) with (Mei et al. 2005, Eqs. (13.2.45), (13.2.61))

p =
−√

g

4k
3
2

0

, q = −
√

g

2
k

5
2

0 . (2)

In this paper, we will use the forced and damped focusing

NLS

i∂t u +
p

2
�u + q|u|2u +

i

2
Du = f (3)

for the envelope u as a basic model for the unidirectional

propagation of narrowband ocean waves (Slunyaev et al.

2015; Segur et al. 2005). The envelope u(x, t) and the phys-

ical sea surface elevation η(x, t) (on an appropriate frame

of reference) are related by Mei et al. (2005), Onorato et al.

(2013), Segur et al. (2005) and Zakharov (1968)

η(x, t) = Re
[
u(x, t)ei(k0·x−ω0·t)

]
. (4)

Thus, the Fourier spectrum for η usually has a peak at k = k0,

while the Fourier spectrum for the corresponding envelope

u is translated to have a peak at k = 0. The wavenum-

ber k0 will be called interchangeably the central, carrier or

modal wavenumber. The central frequency ω0 = ω(k0) is

determined by virtue of the deep water dispersion relation,

ω2 = gk (Mei et al. 2005, Eq. (13.2.20b)).

The parameter D > 0 models dissipation (Slunyaev et al.

2015; Segur et al. 2005), which in most cases is very small,

but physically present. The right hand side term f mod-

els applied pressure (e.g., by the wind) (Bühler et al. 2016;

Maleewong et al. 2005), wave breaking (Cousins and Sapsis

2014), and other processes.

While modified NLS equations with additional terms

have been proposed to model accurately higher order effects

(Trulsen and Dysthe 1996; Trulsen et al. 2000), in many

cases, the basic model (3) contains the most fundamen-

tal physics of the problem. Indeed, we will see that key

mechanisms and scalings generating localized instabilities

are already contained in Eq. (3). This is consistent with the

consensus that Rogue Waves are a generic phenomenon of

nonlinear dispersive waves (Chabchoub et al. 2015; Dudley

et al. 2014; He et al. 2014; Kibler et al. 2015; Onorato et al.

2013b), and thus, they do not originate from some peculiar

term arising only in a very specific context.

A mathematical aspect of Eq. (3) that is sometimes phys-

ically underestimated is that of the boundary conditions or,

in other words, of the behaviour at infinity. A “harmless”

assumption like u(t = 0) ∈ L2
x means that the wavefunction

has to decay to zero at infinity—an assumption seemingly

inappropriate for ocean waves. Indeed, the mathematical

study of focusing Schrödinger equations with non-vanishing

behaviour at infinity indicates that it is much more unsta-

ble than the vanishing case, and this aspect seems to play a

role in the formation of Rogue Waves. One realization of this

effect is the formation of breathers, long linked with Rogue

Waves (Chabchoub et al. 2012; Dudley et al. 2014; Kibler

et al. 2015; Onorato et al. 2013). However, breathers grow

out of a plane wave background; the object of our analysis

is to capture the first stages of a breather-like solution grow-

ing out of a background consistent with a realistic Fourier

spectrum, in particular not an exact plane wave.

1.2 The Wigner transform and phase-space modelling

Given a wavefunction u(x, t), its Wigner transform (WT) is

defined as

W (x, k, t) = W [u(t)](x, k)=
∫

y

e−2π ikyu(x+
y

2
, t)u(x−

y

2
, t)dy.

Observe that W [u(t)](x, k) is real valued for any complex

valued function u(x, t).
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The WT keeps track of how much “wave action” can be

found in each wavenumber k, at every point x and every

moment in time t (Cohen 1976; Rubinstein and Wolansky

2005; Mallat 1999; Lions and Paul 1993).

Broadly speaking, the advantage of working with

W (x, k, t) as opposed to u(x, t) is that it can be used as

a tool for homogenization: in a problem with a large number

of individual waves N , it will take at least O(N ) degrees

of freedom to meaningfully represent (in a non-parametric

way) u(x, t). In contrast, W (x, k, t) plays the role of a phase-

space energy density, and its complexity does not grow with

N ; in fact, in many problems, the WT “cleans up” for large

N . Thus, the WT offers a way to coarse-grain the problem. It

has been extensively used in many linear problems, including

the semiclassical limit of quantum mechanics (Athanassoulis

2008; Athanassoulis et al. 2009; Lions and Paul 1993; Gérard

et al. 1997) and the simulation of graphene (Fermanian-

Kammerer and Méhats 2016).

A particularity of the WT is that, since it is essentially a

second moment of u, in nonlinear problems, you do not obtain

automatically an exact, closed Wigner equation. However, for

the NLS equation a closed, exact Wigner equation derived

by exploiting the correct marginal property

|u(x)|2 =
∫

k

W [u](x, k)dk

effectively as a moment closure. This control of the mag-

nitude of point values of u(x, t) is also instrumental in

describing localized instabilities quantitatively.

We directly compute the WT of Eq. (3) in Sect. 2.2. The

same ideas can be used to derive the exact, closed nonlinear

Wigner equation corresponding to a wide range of nonlinear

dispersive equations, including the MMT equation (Majda

et al. 1997; Cousins and Sapsis 2014), Ginzburg–Landau

models (Aranson and Kramer 2002), Hartree equations

(Athanassoulis et al. 2011), and the Szegö equation (Pocov-

nicu 2011). In particular, the Whitham pseudodifferential

operator (Whitham 1967) can be treated in the place of the

Laplacian, so that fully realistic dispersion is used.

It must be noted that if u is thought of as a stochastic

process u = u(x, t;β), the Wigner spectrum

〈W (x, k, t)〉β

:= Eβ

⎡
⎣
∫

y

e−2π ikyu(x +
y

2
, t;β)u(x −

y

2
, t;β)dy

⎤
⎦ ,

i.e., the average Wigner transform, can also be used for the

analysis of u. This has been used in the context of signal

processing for non-stationary random processes (Martin and

Flandrin 1985) and for the propagation of waves in random

media (Bal et al. 2003; Ryzhik et al. 1996; Erdös and Yau

2000). In the context of water waves, Alber (1978) used the

Wigner spectrum to study the directional stability of solu-

tions of the two-dimensional Davey–Stewartson equations in

a narrowband setting. The Alber equation was derived under

a Gaussianity assumption, and it has since been studied in the

context of directional stability, as well as numerically (Ribal

et al. 2013; Crawford et al. 1980; Stiassnie et al. 2008; Regev

et al. 2008; Dysthe et al. 2003).

1.3 Structure of the paper

In Sect. 2.1, some key properties of the WT are revisited,

and in Sect. 2.2, the exact, nonlinear equation governing the

WT of the NLS (3), Eq. (11), is derived. In Sect. 2.2, it is

checked that, in the absence of forcing, i.e., for f = 0, any

homogeneous initial data W0(x, k) = P(k) give rise a time-

decaying homogeneous solution of the Wigner equation,

W (x, k, t) = e−Dt P(k). Indeed, since there is dissipation

in Eq. (3), the absence of forcing any solution would have to

decay in time. However, the combination of dissipation and

forcing can create solutions that are homogeneous as well as

stationary. We call this combination the Deterministic Bal-

anced Wigner (DBW) equation, cf. Eq. (12). That way we

recover the setting widely observed in ocean waves, namely,

of wavefields that appear to be homogeneous and stationary,

at least for timescales of a few hours, and space scales of

several kilometers. These are exactly the scales, where the

emergence of extreme events is most interesting.

Crucially, by virtue of the WT, we can work with any

observed Fourier spectrum P(k), despite the lack of explicit

representations for realistic u(x, t) or f (x, t). The merit of

this is that now, we can perform a linear stability analysis

for the Fourier spectrum P(k), with dynamics equivalent

to the NLS Eq. (3). In Sect. 3.1, we proceed to investi-

gate small perturbations of P(k) by denoting W (x, k, t) =
P(k) + ǫw(x, k, t), ǫ ≪ 1, and obtaining a linearized equa-

tion for the evolution of the perturbation w(x, k, t), namely,

Eq. (14).

This linearization is grounded on smallness of

ǫw(x, k, t); that is, this is a weakly non-stationary, weakly

non-homogeneous regime. In particular, we do not introduce

any additional1 smallness assumptions for the amplitude of

the background waves, which is controlled by
∫

P(k)dk.

Following an approach Penrose devised for the classical

Vlasov–Poisson equation (Penrose 1960; Bardos and Besse

2013), we introduce the ansatz

wζ (x, k, t) = Fζ (k)eiζ(x−2π(αζ +iβζ )t) (5)

1 There is an inherent smallness assumption in using the NLS as an

approximate equation.
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for solutions of the linearized Eq. (14). Should such a solu-

tion exist, ζ is its wavenumber, 2παζ its velocity, and 2πζβζ

its exponential rate of growth or decay, depending on its sign.

If ζβζ > 0 we say the mode is unstable. (The k-profile Fζ (k)

plays only a secondary role.) We will also use the notation


ζ = αζ + iβζ for the complex “Penrose frequency”. Plug-

ging the ansatz (5) in the linearized equation, we obtain the

Penrose condition

2πζ

q
=

∫

k∈R

P

(
k −

ζ

4π

)
− P

(
k +

ζ

4π

)

pk − 
 − i
D

2πζ

dk. (6)

If the denominator becomes singular, the integral should be

interpreted in the Cauchy principal value sense (it becomes

essentially a Hilbert transform). This connection will become

apparent when looking into some more detailed questions in

Sect. 5.3.

Observe that Eq. (6) is a system of two real-valued equa-

tions (real and imaginary part) for three real unknowns

(ζ, α, β), hence in general we expect the solution set to be a

(union of) curve(s) in R
3. Every solution (ζ, α, β) of the Pen-

rose condition leads to a Penrose mode, which automatically

is a solution of Eq. (14). However, the interesting Penrose

modes are the unstable ones, i.e., the ones with ζβζ > 0.

To work with these unstable modes systematically, we will

call the set of all ζ ∈ R for which there are unstable Penrose

modes the set of resonant Penrose numbers, denoted by

P = {ζ ∈ R | ∃
ζ ∈ C so that Eq.(6) is satisfied,

and ζ Im 
ζ > 0}. (7)

Unstable Penrose modes generalize Benjamin–Feir side-

bands. Indeed, it is checked in Sect. 4.2 that when u is a

plane wave, our approach is an equivalent construction of

the standard modulation instability. The advantage of Pen-

rose stability analysis though is that it can be carried out

for any background Fourier spectrum P(k), as opposed to

around plane waves only.

Moreover, since the linearized Eq. (14) is by construc-

tion linear in w, we can create more interesting solutions by

superpositions of unstable Penrose modes

w(x, k, t) =
∫

G(ζ )wζ (x, k, t)dζ

for various weights G(ζ ). In Sect. 3.2, we demonstrate that

such composite solutions can be highly localized— in con-

trast to the spatially periodic Penrose modes. Moreover, we

observe that their key scalings (how sharply localized they

can become, how fast they grow) are controlled by the Pen-

rose condition (6), and not the weight G(ζ ), which seems to

not play an essential role. This is elaborated with the help of

numerical results in Sect. 4.3.

A key finding is that for each observed Fourier spectrum

P(k), the Penrose bandwidth |P|, i.e., the Lebesgue measure

of the set P of unstable Penrose numbers, is controlling how

sharply localized any instabilities of Eq. (3) can become.

Localized unstable modes can be interpreted as a concentra-

tion of energy from the homogeneous background into small

regions; in this context, a linearly unstable mode localized

over a single typical wavelength, λ0 = 2π
k0

, will be interpreted

as the emergence of a Rogue Wave. Moreover, we find that

the timescale τ at which the linearly unstable modes grow,

measured in wave periods T0 = 2π
ω0

, does not depend on

k0. In particular, we find that within ≈ 40 wave periods, the

perturbation grows from ≈1% to ≈1. This is consistent with

state-of-the-art numerical results for the prediction of Rogue

Waves in the NLS, (Cousins and Sapsis 2016).

In Sect. 4, we work explicitly the narrowband limit P(k) ≈
A2δ(k−k0).This allows an explicit comparison with the stan-

dard modulation instability and a systematic investigation

of the emergence of localized instabilities with the benefit

of some explicit results. In Sect. 5, a numerical scheme for

the resolution of the Penrose condition (6) is formulated.

It is then applied to a realistic Ochi–Hubble spectrum. It is

found that as the spectrum becomes broader, if Hs remains

the same, then the localization of unstable modes deterio-

rates. In that sense, our analysis can be used to quantify

the trade-off between the size of the support of the Fourier

spectrum and the wave height, i.e., the “stabilization through

spectral broadening”. That would essentially amount to a

Benjamin–Feir index which takes fully into account the shape

of the Fourier spectrum. A semi-analytic technique to deter-

mine whether there are solutions of the Penrose condition is

presented in Sect. 5.3, along with some resulting characteri-

sations of symmetric unimodal spectra.

2 Wigner transform and the DBW equation

2.1 The Wigner transform

The Wigner transform (WT) is a sesquilinear transform

W : u, v 	→ W [u, v](x, k) =
∫

y∈Rn

e−2π ikyu
(

x+
y

2

)
v̄

(
x −

y

2

)
dy.

When u = v, i.e., in the quadratic version of the Wigner

transform, the notation can be simplified to

W [u] := W [u, u] =
∫

y

e−2π ikyu
(

x +
y

2

)
u
(

x −
y

2

)
dy.

(8)
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Lemma 2.1 The following correct marginal properties

∫

k

W [u](x, k)dk = |u(x)|2,
∫

x

W [u](x, k)dx = |̂u(k)|2,

(9)

and the operational properties

W [u, v] = W [v, u], W [xu, v] =
(

x −
1

4π i
∂k

)
W [u, v],

W [∂x u, v] =
(

2π ik +
1

2
∂x

)
W [u, v] (10)

hold true.

Proof The proofs follow from direct computations (Athanas-

soulis 2008; Gérard et al. 1997). ⊓⊔

Lemma 2.2 (Wigner transform of plane waves) The plane

wave u(x, t) = Ae2π i(ξ x−ωt), A, ξ ∈ R, ω ∈ C, has WT

given by

W [u(t)](x, k) = A2e4π Im ωtδ(k − ξ).

Proof By direct computation, we obtain

W [Ae2π i(ξ x−ωt)](x, k) = |A|2e4π Im ωt

∫

y

e−2π ikye2π iξ(x+ y
2 )−2π iξ(x− y

2 )dy

= |A|2e4π Im ωt

∫

y

e−2π iy(k−ξ)dy = A2e4π Im ωtδ(k − ξ).

⊓⊔

Finally, we will also use the following computation:

Lemma 2.3 Let V : R → R, u : R → C. Then

W [V u, u] − W [u, V u] =
∫

y

e−2π iky
V
(
x − y

2

)
− V

(
x + y

2

)

y
dy ∗k

×
∂k

2π i
W [u](x, k),

where ∗k denotes convolution in the k variable only.

Proof We will normalize the Fourier transform as

Fx→k[ f (x)](k) = f̂ (k) =
∫

x∈R

e−2π ik·x f (x)dx .

Then, one readily checks that

W [V u, u] − W [u, V u] =
∫

y

e−2π iky
[
V
(

x +
y

2

)

− V
(

x +
y

2

) ]
u
(

x +
y

2

)
u
(

x −
y

2

)
dy

= Fy→k

[
V
(
x + y

2

)
− V

(
x − y

2

)

y
yu
(

x +
y

2

)
u
(

x −
y

2

)]

= Fy→k

[
V
(
x + y

2

)
− V

(
x − y

2

)

y

]
∗k

∂k

−2π i
W [u](x, k)

=
∫

λ,y

e−2π iλy
V
(
x − y

2

)
−V

(
x+ y

2

)

y
dy

∂k

2π i
W [u](x, k−λ)dλ.

⊓⊔

2.2 DBW equation and stationary and homogeneous

solutions

The derivation of the Wigner equation corresponding to (3)

is known (Athanassoulis et al. 2009). However, for the sake

of completeness, we outline it here: let u satisfy Eq. (3), and

W = W [u(t)](x, k); then

∂t W = W [∂t u, u] + W [u, ∂t u] =
i

2

(
W [p�u, u] − W [u, p�u]

)

+ iq
(

W [|u|2u, u] − W [u, |u|2u]
)

− DW + W [ f ],

leading to the exact Wigner equation

∂t W + 2πpk∂x W

−
q

2π

∫

λ,y∈R

e−2π iλy
V (x − y

2
, t) − V (x + y

2
, t)

y
dy∂k

×W (x, k − λ, t)dλ + DW = W [ f ],

V (x, t) =
∫

ξ

W (x, ξ, t)dξ,

W (x, k, t = 0) = W0(x, k), (11)

by virtue of Lemmas 2.1 and 2.3. Observe that as long as

V (x, t) =
∫
ξ

W (x, ξ, t)dξ is differentiable (e.g., either C1

or H1), then
V (x− y

2 ,t)−V (x+ y
2 ,t)

y
makes sense for almost all

y; in particular, for |y| ≪ 1, it simply looks like ∂x V (x, t).

Thus, the dy integral in Eq. (11) makes sense as a Fourier

transform under simple differentiability conditions.

At first glance, any homogeneous wave spectrum P(k) can

be seen as a time-decaying solution of the unforced Wigner

equation (11): indeed, if f = 0, the Wigner equation (11)

with homogeneous initial data, W0(x, k) = P(k), has the

homogeneous solution:
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W (x, k, t) = e−Dt P(k)

since

∂t W + 2πpk✟
✟∂x P

−
q

2π

∫

λ,y∈R

e−2π iλy✘✘✘✘✘✘✘✘✘✘∫
ξ

P(ξ)dξ −
∫
ξ

P(ξ)dξ

y
dy

∂k W (x, k − λ, t)dλ + DW = 0 ⇒ ∂t W = −DW.

The conclusion now follows by solving an ODE.

However, the time-decaying solutions described above do

not correspond to what is usually observed in the ocean.

Indeed, forcing terms describing wind, wave breaking, etc

are crucial in explaining why certain stationary spectra are

common, and some are almost never observed. To observe a

given stationary spectrum P , the dissipation term DW has to

cancel out the effective forcing.2 This situation can be cap-

tured as follows: if W0(x, k) = P(k) and W [ f ] = D P(k),

then the deterministic balanced Wigner equation

∂t W + 2πpk∂x W

−
q

2π

∫

λ,y∈R

e−2π iλy
V (x − y

2
, t) − V (x + y

2
, t)

y
dy∂k

×W (x, k − λ, t)dλ + DW = D P(k),

V (x, t) =
∫

ξ

W (x, ξ, t)dξ, W (x, k, 0) = P(k) (12)

has the stationary and homogeneous solution:

W (x, k, t) = P(k).

Indeed, one readily checks that

∂t W + 2πpk✟
✟∂x P

−
q

2π

∫

λ,y∈R

e−2π iλy✘✘✘✘✘✘✘✘✘✘∫
ξ

P(ξ)dξ −
∫
ξ

P(ξ)dξ

y
dy

× ∂k W (x, k − λ, t)dλ +❍
❍D P = ❍

❍D P ⇒ ∂t W = 0.

We call Eq. (12) the deterministic balanced Wigner equa-

tion, because it contains effective forcing and damping terms,

in addition to the free evolution terms.

2 This situation is reminiscent of the fluctuation–dissipation theorem

in classical statistical mechanics.

3 Penrose stability analysis

3.1 Linearization, unstable Penrose modes, and the

Penrose condition

We investigate small perturbations of the stationary and

homogeneous solution W (x, k, t) = P(k) of Eq. (12), and

whether such perturbations can grow arbitrarily. More specif-

ically, we look for solutions of Eq. (12) of the form

W (x, k, t) = P(k) + ǫw(x, k, t), (13)

and particularly whether w can grow rapidly, so that

ǫw(x, k, 0) is negligible at t = 0 but ǫw(x, k, T ) becomes

comparable to the background waves over some meaningful3

timescale T . Using Eq. (13) to rewrite the problem for the

perturbation w(x, k, t) only, Eq. (12) becomes

∂tw + 2πpk∂xw

−
q

2π

∫

λ,y∈R

e−2π iλy

∫
ξ

(
w(x− y

2 , ξ, t) − w(x+ y
2 , ξ, t)

)
dξ

y
dy∂k

×
(

P(k − λ) + ǫw(x, k − λ, t)
)

dλ + Dw = 0.

Dropping the quadratic term, we are led to the linearized

DBW equation:

∂tw + 2πpk∂xw

−
q

2π

∫

λ,y∈R

e−2π iλy

∫
ξ

(
w(x − y

2
, ξ, t) − w(x + y

2
, ξ, t)

)
dξ

y
dy∂k

×P(k − λ)dλ + Dw = 0. (14)

The driving question now becomes; are there solutions w

of Eq. (14) that can grow rapidly in time? To answer this

question, we will use an idea originally introduced by Pen-

rose for the stability of plasmas (Penrose 1960), namely, the

introduction of an appropriate ansatz for the solutions of Eq.

(14). In the process, we will also recover the timescales and

other qualitative features of linearly unstable modes.

We will seek solutions of the linearized DBW equation

(14) as in Eq. (5). Such solutions will be called Penrose modes

of wavenumber ζ . The first question is, for which ζ , Fζ (k),

and 
ζ do Penrose modes exist? In addition, second, are

there Penrose modes with Im
(
ζ
ζ

)
> 0? If solutions with

Im
(
ζ
ζ

)
> 0 exist, these correspond to perturbations of

3 Meaningful here means not so fast that it would not be physically

plausible, but not so slowly that, e.g., the weather would have changed

altogether destroying the stationarity assumption. An estimate of this T

in wave periods in the narrowband limit is made in Sect. 4.3.

123



J. Ocean Eng. Mar. Energy (2017) 3:353–372 359

P(k) that grow arbitrarily, and they will be called unstable

Penrose modes.

Of course, once the perturbation grows sufficiently, the

linearized equation should no longer be expected to approx-

imate well the nonlinear problem; however, the question we

focus on is whether the growth of such perturbations is pos-

sible in the first place.

Plugging the ansatz (5) in Eq. (14), we get

2π iζ(pk − 
)F(k)eiζ(x−2π
t) −
q

2π

∫

λ,y,ξ

e−2π iλy

×
F(ξ)

(
eiζ((x− y

2 )−2π
t) − eiζ((x+ y
2 )−2π
t)

)

y
dξdy∂k P(k − λ)dλ

+ DF(k)eiζ(x−2π
t) = 0,

which finally leads to

Fζ (k)∫
ξ

Fζ (ξ)dξ
=

q

2πpζ

P(k − ζ
4π

) − P(k + ζ
4π

)

k − 1
p

 − i D

2πpζ

(15)

for the admissible k profile of a Penrose mode. Moreover,

upon integrating Eq. (15) in k, obtain the Penrose condition,

i.e., Eq. (6).

Thus, if there are solutions ζ ∈ R, 
ζ ∈ C for the Penrose

condition (6), then the linearized DBW equation (14) has a

solution given by the Penrose mode:

wζ (x, k, t) =
P(k + ζ

4π
) − P(k − ζ

4π
)

ζk − ζ
p

ζ − i D

2πp

eiζ(x−2π
ζ t). (16)

Since Eq. (14) is a linear equation, applying scalar factors or

taking real parts is possible.

3.2 Superposition of unstable modes and localized

instabilities

So far, we have seen how solving the Penrose condition

(6) can lead to the construction of spatially periodic unsta-

ble modes for a given spectrum. However, physical extreme

events—including oceanic Rogue Waves—are typically due

to localized wavepackets, and not spatially periodic patterns.

Here, we will see how our construction can describe local-

ized instabilities as well. While our mathematical approach is

completely different, physically, our results are reminiscent

of (Kibler et al. 2015).

Assume that for a given background spectrum P(k), we

have resolved the Penrose condition, i.e., we have found all


ζ = αζ + iβζ , so that Eq. (6) holds and ζβζ > 0. This

of course means that we know all unstable Penrose modes,

by virtue of Eq. (16). Then, due to the linearity of Eq. (14),

superpositions of Penrose modes

w(x, k, t) =
q

2πp
Re

×
∫

ζ∈P

G(ζ )
P(k + ζ

4π
) − P(k − ζ

4π
)

ζk − ζ
p

ζ − i D

2πp

eiζ(x−2π
ζ t) dζ

(17)

are also solutions of Eq. (14) for any weight G(ζ ). Recall

also that the whole point of Eq. (14) is that, for ǫ ≪ 1,

P(k) + ǫw(x, k, t) ≈ W (x, k, t), where W (x, k, t) is the

solution of the nonlinear Wigner equation (12), at least until

some time when w becomes too large in an appropriate sense.

By virtue of the marginal property of the Wigner transform,

Lemma 2.1, P(k) + ǫw(x, k, t) ≈ W (x, k, t) implies

|u(x, t)|2 =
∫

k

W (x, k, t)dk ≈
∫

k

[
P(k) + ǫw(x, k, t)

]
dk

= A2 + ǫ

∫

k

w(x, k, t)dk, (18)

where A2 :=
∫

k
P(k)dk is the zero moment of the back-

ground Fourier spectrum. Therefore, the quantity

n(x, t) :=
∫

k

w(x, k, t)dk (19)

controls the x, t localization of instability in the sense that

|u(x, t)| ≈
√

|A|2 + ǫn(x, t) (20)

as long as the linearization (14) provides an acceptable

approximation of (12).

Moreover, it can be seen that

n(x, t) =
∫

k

w(x, k, t)dk

=
q

2πp
Re

∫

ζ∈P

∫

k∈R

P(k + ζ
4π

) − P(k − ζ
4π

)

ζk − ζ
p

ζ − i D

2πp

× dk G(ζ )eiζ(x−2π
(ζ )t)dζ

= Re

∫

ζ∈P

G(ζ )eiζ(x−2παζ t)+2πζβζ t dζ. (21)

The finding here is that the dk integral is exactly the one

controlled by the Penrose condition; hence, it can be carried

out explicitly and the result does not depend on ζ .

The behaviour of this expression depends more on P, αζ ,

βζ than on the weight G(ζ ), cf. Fig. 1. In fact, Eq. (21)
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Fig. 1 Numerical evaluation of ǫn(x, t) for A = 5.3, k0 = 0.24 and

different weights G(ζ ) and times t . Time is measured in timescales

τ, cf. Eq. (22). Top left plot for G(ζ ) = 1
3
, t = 1τ. Top right plot for

G(ζ ) = 1
3
, t = 7τ. Bottom left plot for G(ζ ) = −iζ(ζ 2 −ζ 2

max)e
− 4ζ2

ζ2
max ,

t = 1τ. Bottom right plot for G(ζ ) = −iζ(ζ 2 − ζ 2
max)e

− 4ζ2

ζ2
max , t = 7τ

becomes very powerful once we have found all (ζ, α, β) sat-

isfying the Penrose condition, as we will see in detail in

Sect. 4.3.

A related question that we can address here is that of

timescales: since we have been working with a linearized

equation, for how long can we trust this linearization to be

qualitatively correct? The answer is determined by the fastest

rate of growth of any unstable Penrose mode.

Thus, the timescale

τ =
1

sup
ζ∈P

2πζβζ

(22)

appears.

4 Case study for a prototypical narrowband

spectrum

4.1 Finding the unstable Penrose modes

To see precisely what the previous computation mean phys-

ically, it is instructive to apply them to the simplest narrow-

band, stationary solution of the NLS, namely

P(k) = A2δ(k − 0).

This is the case of the Fourier spectrum for the envelope

u, concentrated at k = 0. It is equivalent with a Fourier

spectrum of A2δ(k − k0) for the sea surface elevation η. The

analysis that follows can be applied to either spectrum; the

difference between the two is a question of normalization,

not dynamics.

In this prototypical case, the Penrose condition (6)

becomes

A2

∫

k∈R

δ(k − ζ
4π

) − δ(k + ζ
4π

)

k − 

p

− i D
2πpζ

dk =
2πpζ

q

⇔
1

pζ
4π

− 
 − i D
2πζ

−
1

− pζ
4π

− 
 − i D
2πζ

=
2πζ

q A2

finally leading to


ζ = −i
D

2πζ
±
√

p2ζ 2 − 4pq A2

4π
. (23)

In particular, as long as

ζ 2 < 4
q

p
A2, (24)

we have the purely imaginary solutions:


ζ = βζ = −i
D

2πζ
±
√

p2ζ 2 − 4pq A2

4π

= −i
D

2πζ
± i

√
4pq A2 − p2ζ 2

4π
. (25)
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This leads to the Penrose mode

wζ (x, k, t) =
P(k + ζ

4π
) − P(k − ζ

4π
)

ζ

(
k ± i

4π

√
2k3

0 A2 − ζ 2

)

× eiζ x e

(
−D±ζ

√
4pq A2−p2ζ2

2

)
t
, ζ 2 < 8k4

0 A2.

(26)

This form represents an unstable mode as long as the expo-

nential rate of growth in time is positive, i.e., as long as

−D + |ζ |
√

4pq A2 − p2ζ 2

2
> 0.

This is the case if and only if

4D2

ζ 2
+ p2ζ 2 < 4pq A2.

This in turn is at all possible if and only if the bi-quadratic

equation in ζ 2

p2ζ 4 − 4pq A2ζ 2 + 4D2 = 0 (27)

has two distinct roots, i.e., positive discriminant

A4 >
D2

q2
. (28)

Thus, if Eq. (28) holds, then for ζ in the nonempty set P =
{ζ | 4D2

ζ 2 + p2ζ 2 < 4pq A2}, exactly, one of the Penrose

modes of Eq. (26) is unstable. We can work out P explicitly;

indeed, if

ζmin :=

√√√√√2
q

p

⎛
⎝A2 −

√
A4 −

D2

q2

⎞
⎠,

ζmax :=

√√√√√2
q

p

⎛
⎝A2 +

√
A4 −

D2

q2

⎞
⎠,

then

P = (−ζmax,−ζmin)
⋃

(ζmin, ζmax).

In particular, observe that if D = 0, then

ζmin = 0, ζmax = 2A

√
q

p
= 2

√
2Ak2

0 . (29)

4.2 Comparison with the modulation instability

It is instructive to compare our results with the classical

Benjamin–Feir (modulation) instability (Mei et al. 2005).

The appropriate setting would be the linear stability analysis

of the plane wave solution

u0(x, t) = Ae
i

[
ξ0·x−(

pξ2
0

2 −q A2)t

]

of the NLS

i∂t u+
p

2
�u+q|u|2u+

i

2
Du =

D

2
Ae

i

[
ξ0·x−

(
pξ2

0
2 −q A2

)
t+ π

2

]

(30)

which is of the same type as Eq. (3). For brevity, we will treat

in full detail the case D = 0, cf. Eq. (1). Moreover, without

loss of generality (i.e., by choosing an appropriate frame of

reference), ξ0 = 0.

Thus, we start from

u0(t) = A0eiq A2t ,

and consider small perturbations thereof, namely

u(x, t) = A0eiq A2t (1 + δ(x, t)). (31)

Inserting the ansatz (31) in the NLS equation (1), we obtain

u0

(
iδt +

p

2
�δ + q A2

0(δ + δ) + q A2
0(δ + δ)δ

+ q A2
0|δ|

2(1 + δ)

)
= 0 (32)

for δ. To proceed, we divide by u0 and drop terms that are

high order in δ. Thus, we arrive to the linearized equation

iδt +
p

2
�δ + q A2

0(δ + δ) = 0; (33)

upon separating real and imaginary parts δ = c + id, it

becomes a system

ct +
p

2
�d = 0, dt −

p

2
�c − 2q A2

0c = 0, (34)

and finally, by cross differentiation, we can eliminate d to

obtain

ct t +
p2

4
�2c + pq A2

0�c = 0. (35)

One readily checks that the plane wave
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c(x, t) = Re
(

Cei ζ̃ (x−2π
̃t)
)

= Re
(

Cei ζ̃ (x−2π Re 
̃t)e2πζ̃ Im 
̃t
)

(36)

is a solution of Eq. (35) for any C ∈ C as long as

−4π2ζ̃ 2
̃2 +
p2ζ̃ 4

4
− pq A2ζ̃ 2 = 0 (37)

This mirrors exactly Eq. (23).

A similar (but substantially lengthier) calculation is possi-

ble for D > 0 as well. In agreement with (Segur et al. 2005),

Eq. (28) implies that for strong enough dissipation (equiva-

lently small enough amplitude of the background waves), the

modulation instability completely vanishes, i.e., no linearly

unstable modes exist.

In conclusion, using Penrose stability analysis on a δ

spectrum, we recover exactly the well-known modulation

instability. The main point, however, is that Penrose stability

analysis can be applied to any background spectrum, some-

thing that is not possible on the level of the wavefunction u.

We proceed to treat some realistic Fourier spectra of ocean

waves in Sect. 5; however, first, we need to introduce some

more concepts related to the emergence of sharply localized

instabilities.

4.3 Emergence of Rogue Waves

In Sect. 4.1, we completely resolved the Penrose condition for

a δ spectrum. Now, we can exploit Eq. (21) to extract quan-

titative information possible about Rogue Wave phenomena

emerging from a very narrow spectrum.

Lemma 4.1 (Localization bound in the absence of dissipa-

tion) Let P(k) = A2δ(k − 0) be the background Fourier

spectrum for the wave envelope u, k0 be the central wavenum-

ber, and D = 0. Then, no superposition of unstable Penrose

modes can be spatially localized in a region smaller than

4

ζmax
=

4√
8k4

0 A2

.

More specifically, for any weight G(ζ ), consider the super-

position of unstable Penrose modes with weight G(ζ ), cf. Eq.

(17). This will give rise to

|u(x, t)| ≈
√

A2 + ǫn(x, t),

n(x, t) =
∫

s

g(x − s, t)
sin(s

√
8k4

0 A2)

s

√
8k4

0 A2

ds (38)

where g is depends explicitly on G and the parameters of the

problem.

Remark 4.2 In fact, this result is valid more generally,

namely, when the solutions of the Penrose condition are of

the form (ζ, α0, β(ζ )), where ζ ∈ (−ζmax, ζmax)\{0}, and

ζβ(ζ ) > 0. This turns out to be the case for other spectra as

well.

Proof By virtue of Eq. (21)

n(x, t) = Re

∫

|ζ |<2
√

q
p

A

G(ζ )eiζ(x−2π
(ζ )t)dζ

= Re

∫

|ζ |<2
√

2Ak2
0

G(ζ )eiζ x+2π |ζ |
√

4pq A2−p2ζ2

4π
t dζ

= Re

∫

|ζ |<2
√

2Ak2
0

G(ζ )eiζ x+|ζ |

√
g
2

k0 A2− g

16k3
0

ζ2

2 t dζ.

Now, denoting G̃ t (ζ ) := G(ζ )e|ζ |

√
g
2

k0 A2− g

16k3
0

ζ2

2 t , we get

n(x, t) = Re

∫

|ζ |<2

√
2k3

0 A

G̃ t (ζ )eiζ x dζ

= Re

∫

ζ∈R

eiζ x G̃ t (ζ )χ[−2
√

2Ak2
0 ,2

√
2Ak2

0 ](ζ )dζ

= 2π Re

∫

ζ∈R

e2π i
ζ

2π
x G̃ t

(
2π

ζ

2π

)
χ

[−
√

2Ak2
0

π
,

√
2Ak2

0
π

]

(
ζ

2π

)
dζ

2π

= 2π Re F
−1
ζ→x

[
G̃ t (2πζ)χ

[−
√

2Ak2
0

π
,

√
2Ak2

0
π

]
(ζ )

]

= 2

√
2Ak2

0

π
F

−1
ζ→x

[
G̃ t

] ( x

2π

)
∗

sin(x2
√

2Ak2
0)

x2
√

2Ak2
0

.

In other words, however, we choose G(ζ ), n(x, t) will always

be of the form:

n(x, t) = Re

∫

s∈R

g(x − s, t)
sin(s2

√
2Ak2

0)

s2
√

2Ak2
0

ds

where of course g(x) = 2

√
2Ak2

0
π

F
−1
ζ→x [G(ζ )

e2π |ζ |

√
g
2

k0 A2− g

16k3
0

ζ2

4π
t ]( x

2π
).

As is well known, sin(x L)
(x L)

has a main lobe supported over

a region of size roughly 4
L

. The proof is complete. ⊓⊔

In Fig. 1, we see the profiles of the perturbation ǫn(x, t)

for two different weights G(ζ ), measured in timescales τ.

As was seen in Eq. (38), ǫn(x, t) should be compared with

A2; in this case, A2 = 28.09. Once the values of the per-

turbation become comparable with A2, we can no longer
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trust our linearization as describing accurately the dynamics.

It is clear that the qualitative behaviour of the perturba-

tions does not depend on G(ζ ), but mainly on ζmax, which

controls the lengthscale of persistent localization, and on

τ. Crucially, in Fig. 1, we observe that the perturbation of

A2 increases from approximately 1% of the background

wave to comparable to the background wave within approx-

imately 7τ.

Thus, we can use Lemma 4.1 to formulate a criterion for

the appearance of localized unstable modes which does not

depend on G(ζ ).

Definition 4.3 (Rogue Wave criterion) We will say that a

superposition of unstable Penrose modes can lead to a Rogue

Wave if its effective support is small enough to be comparable

to a single wavelength: λ0 = 2π
k0

.

(i) If we stay in the setting of Lemma 4.1 (i.e., no dissipation,

very narrow spectrum), this can be formalized as

2π

k0
�

4

2
√

2Ak2
0

⇔ A �
1

k0

√
2π

. (39)

This leads to a scaling of A0 ≈ 1

k0π
√

2
≈ 0.2251 · k−1

0

as the smallest amplitude for which instabilities local-

ized within a single wavelength are expected to arise for

η(x, t) with Fourier spectrum P(k) = A2δ(k − k0).

(ii) More generally, if we have unstable Penrose modes with

ζ ∈ P = (−ζmax, ζmax)\{0}, α ≈ α0, and ζβ(ζ ) > 0

for all ζ ∈ P, then the criterion becomes

ζmax >
2k0

π
,

irrespectively of P(k).

In particular, the existence of linearly unstable modes

leads to Rogue Waves only if there is a sufficiently large

collection of unstable modes, which, by superposition, can

create instabilities localized over regions small enough to be

comparable to a single wavelength.

Since the wavelengths λ0 of ocean waves are roughly in

the range 5–200 m, the corresponding wavenumbers k0 are

roughly in the range 1–0.01. Equation (39) means that longer

waves need to have larger amplitudes to trigger localized

enough instabilities to be considered Rogue Waves. More-

over, by virtue of Eqs. (22) and (25), the timescales for the

emergence of these instabilities are given by

τ =
1

max
ζ∈P

2πζβζ

=
2

√
g A2k

5
2

0

.

Given that the period T0 for a wave of wavenumber k0 is

given by

T0 =
2π

√
gk0

,

the timescale for the emergence of the instability, measured

in wave periods, is

τ

T0
=

2

√
g A2

0k
5
2

0

2π√
gk0

=
1

π A2k2
0

. (40)

Now, if we combine this with Eq. (39) for amplitudes close

to the critical value A0, it follows that the time (measured in

wave periods) it takes for an instability to arise for the critical

amplitude A0 does not depend on k0, since

A0 ≈
1

k0π
√

2
,

τ

T0
≈

1

π A2
0k2

0

⇒
τ

T0
≈ 2π. (41)

Thus, for any k0, the timescale at which localized insta-

bilities emerge should be measured in wave periods T0.

Furthermore, within approximately 7τ = 14πT0 wave

periods, a 1% perturbation becomes comparable to the back-

ground, cf. Fig. 1. This is in close agreement with the

numerical study of emergence of Rogue Waves in Cousins

and Sapsis (2016). It is also broadly in agreement with

Birkholz et al. (2015).

An observation is in order with respect to moving towards

a more realistic setting than that of Lemma 4.1: if the dissi-

pation term i
2

Du in Eq. (3) does describe reasonably well the

effective dissipation, then values of D as small as O(10−3)

can have an O(1) impact on the formation of Rogue Waves.

Indeed, Eq. (28) means that, in the presence of dissipation,

there are no unstable modes at all unless

A2 >
D2

g
4

k3
0

.

More generally, as long as the two sides of this inequality are

comparable, the effect of dissipation will be noticeable. For

k0 ≈ 10−2, A0 ≈ 0.2251k0; this means that D as small as

D ≈ 0.00237 would have an O(1) effect in our analysis, and

thus require noticeably larger amplitude A before sufficiently

localized instabilities could be observed.

The results of this section, and in particular, the criterion

of Eq. (39) can only be considered indicative: for example,

if A = 0.95

k0π
√

2
our Rogue Wave criterion is not satisfied, but

of course, we would still get an unstable mode localized in a

region very nearly as small as a single wavelength. The main

point here is that the scalings we recover look reasonable in

realistic contexts.

Furthermore, it is desirable to apply our analysis to more

general background Fourier spectra P(k) and not only δ
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spectra. This requires the numerical resolution of the Pen-

rose condition. A numerical scheme for this is developed

and implemented in the next section.

5 Investigation of the Penrose condition for general

spectra and applications

As was repeatedly emphasized, the advantage of our approach

is that it can be applied to problems with continuous spectra.

Before we proceed to the presentation of concrete results, it

is worth discussing the modelling side of this investigation.

We work in a setting comparable to (Cousins and Sapsis

2016); namely, we work with the deterministic problem of

Eq. (3), using a given Fourier spectrum P(k) as a proxy for

a quasi-stationary, quasi-homogeneous u(x, t). In Cousins

and Sapsis (2016), the reconstruction of such a wavefunction

was carried out numerically. Here, we do not need to gen-

erate a u(x, t) that would be consistent with P(k), because

we only need its Wigner transform. By virtue of the quasi-

homogeneity and quasi-stationarity of u(x, t)

W [u(t)](x, k) =
∫

y

e−2π ikyu(x +
y

2
, t)u(x −

y

2
, t)dy

≈ P(k)

for any x, t . This is a modelling step which allows the treat-

ment of wavefunctions that are empirically observed to be

approximately homogeneous and stationary in terms only of

partial (or “coarse-grained”) spectral information.

As a physical case study, in Sect. 5.2, we will study

numerically wave trains consistent with the Ochi–Hubble

spectrum with central wavenumber k0, shape parameter σ ,

and significant wave height Hs (Ochi and Hubble 1977).

Physical spectra for ocean waves are often resolved over

frequencies

S(ω) =
(4σ + 1)σ

4σ+1Ŵ(σ)

(Hs)
2

ω0

(ω0

ω

)4σ+1
e− 4σ+1

4

( ω0
ω

)4
, (42)

where of course, ω0 is the central frequency. To express this

in terms of wavenumbers, we will use the deep water disper-

sion relation ω(k) =
√

gk and conservation of energy (Ochi

1998):

P(k) =
(4σ + 1)σ

4σ+1Ŵ(σ)

(Hs)
2

√
gk0

(√
gk0√
gk

)4σ+1

e
− 4σ+1

4

(√
gk0√
gk

)4

∂ω

∂k
=

H2
s

k0

(σ + 1
4
)σ

8Ŵ(σ)

(
k0

k

)2σ+1

e
− 4σ+1

4

k2
0

k2 . (43)

The shape parameter σ affects how broadband the spectrum

is (larger σ leads to more peaked spectrum, smaller σ leads

to less pronounced peaks).

Now, using P(k) of this form, a Penrose condition can be

formulated. In Sect. 5.1, a numerical method for the numer-

ical resolution of the Penrose condition is presented, and

applied to the Ochi–Hubble spectrum in Sect. 5.2.

A related question is to formulate a robust and computable

criterion for whether the Penrose condition has a solution at

all. This is formulated in Sect. 5.3 for the case without dissi-

pation, and is based on ideas from Bardos and Besse (2013);

Penrose (1960). Some useful ramifications are explored in a

case study for a Gaussian spectrum.

Finally, let us recall some basic facts about extracting

information for waves from a continuous spectrum. In the

case of a plane wave u(x, t) = Aei(k0·x−ω0·t), the Fourier

spectrum is A2δ(k − k0) and the amplitude is plainly A.

However, when we have a more realistic wavefield, which

includes waves of different wave amplitudes, there are dif-

ferent notions of amplitude that can be associated with the

wavefield. The most important one is the significant wave

height, Hs, which is related with m0 =
∫

P(k)dk through

Hs = 4
√

m0 (Ochi 1998). Similarly, an estimate of the

slope associated with a given Fourier spectrum with central

wavenumber k0 is Huang et al. (1989)

βp =
√

m0

λ0
=

Hsk0

8π
. (44)

Slopes larger than 0.0505 are considered unphysical, and a

common value is 0.01 (Huang et al. 1989); this will provide

an additional way to check the physical plausibility of our

results.

5.1 A numerical scheme for the investigation of the

Penrose condition

We describe a practical scheme for the numerical investiga-

tion of the Penrose condition (6) given a background Fourier

spectrum P(k).

We assume that the given spectrum is piecewise constant

P(k) =
N∑

j=1

Pjχ[y j ,y j+1)(k). (45)

Of course, any spectrum can be well approximated by one of

the form (45) for N large enough. Indeed, measurements are

noisy, and in many cases, the error in this approximation by

a histogram would be within measurement error anyway.

Now, we can carry out the integrals appearing in the Pen-

rose condition explicitly. First of all, we write separately the

imaginary and real parts of the Penrose condition:

∫

k∈R

P(k −
ζ

4π
) − P(k +

ζ

4π
)

(pk − α)2 + (β +
D

2πζ
)2

dk = 0 (46)
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and

∫

k∈R

P(k −
ζ

4π
) − P(k +

ζ

4π
)

(pk − α)2 + (β +
D

2πζ
)2

(pk − α)dk =
2πζ

q
, (47)

respectively. Now, the left hand side of Eq. (46) becomes

Iim =

∫

k∈R

P(k − ζ
4π

) − P(k + ζ
4π

)

(pk − α)2 + (β + D
2πζ

)2
dk

=
N∑

j=1

P j

⎡
⎣
∫

k

χ[y j ,y j+1)(k − ζ
4π

) − χ[y j ,y j+1)(k + ζ
4π

)

(pk − α)2 + (β + D
2πζ

)2
dk

⎤
⎦

=
1

p

N∑

j=1

P j

⎡
⎢⎢⎣

py j+1+ pζ
4π

−α∫

k=py j + pζ
4π

−α

1

k2 + (β + D
2πζ

)2
dk

−

py j+1− pζ
4π

−α∫

k=py j − pζ
4π

−α

1

k2 + (β + D
2πζ

)2
dk

⎤
⎥⎥⎦ . (48)

At this point, denote for brevity

β̃ := β +
D

2πζ
; (49)

then we have

Iim =
1

pβ̃

N∑

j=1

Pj

[
arctan

(
β̃(py j+1 − py j )

β̃2 + (py j+1 + pζ
4π

− α)(py j + pζ
4π

− α)

)

− arctan

(
β̃(py j+1 − py j )

β2 + (py j+1 − pζ
4π

− α)(py j − pζ
4π

− α)

)]
. (50)

Similarly, if we work on the left hand side of Eq. (47), we

have

Ire =

∫

k

P(k − ζ
4π

) − P(k + ζ
4π

)

(pk − α)2 + β̃2
(pk − α)dk

=
N∑

j=1

Pj

∫

k

χ[y j ,y j+1)(k− ζ
4π

)−χ[y j ,y j+1)(k+ ζ
4π

)

(pk − α)2 + β̃2
(pk−α)dk

=
1

2p

N∑

j=1

Pj log

⎛
⎝

[
β̃2+(py j+1+ pζ

4π
−α)2

] [
β2+(py j − pζ

4π
− α)2

]

[
β̃2+(py j + pζ

4π
−α)2

] [
β̃2+(py j+1− pζ

4π
− α)2

]

⎞
⎠ .

(51)

Now, we can reformulate the Penrose condition as

∣∣∣∣∣∣∣

∫

k∈R

P(k − ζ
4π

) − P(k + ζ
4π

)

(pk − α)2 + (β + D
2πζ

)2
dk

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

∫

k

P(k − ζ
4π

) − P(k + ζ
4π

)

(pk − α)2 + β̃2
(pk − α)dk −

2πζ

q

∣∣∣∣∣∣∣
= 0,

and in terms of the fitness function FP as

FP : =

∣∣∣∣∣∣
1

pβ̃

N∑

j=1

Pj

[
arctan

(
β̃(py j+1 − py j )

β̃2 + (py j+1 + pζ
4π

− α)(py j + pζ
4π

− α)

)

− arctan

(
β̃(py j+1 − py j )

β̃2 + (py j+1 − pζ
4π

− α)(py j − pζ
4π

− α)

)]∣∣∣∣∣

+

∣∣∣∣∣∣

N∑

j=1

Pj log

⎛
⎝

[
β̃2 + (py j+1 + pζ

4π
− α)2

] [
β̃2 + (py j − pζ

4π
− α)2

]

[
β̃2 + (py j + pζ

4π
− α)2

] [
β̃2 + (py j+1 − pζ

4π
− α)2

]

⎞
⎠−

4πpζ

q

∣∣∣∣∣∣
= 0. (52)

In this form, it is straightforward to look for iso-surfaces of

the fitness function being close to zero

FP (ζ, α, β) = ε (53)

for various small values of ε. If there are exact solutions of the

Penrose condition, they will be outlined by the iso-surfaces.

We can use this scheme to approximate the solution set P of

the Penrose condition for any background spectrum. It must

be noted that an analogous scheme based on the approxi-

mation of a general spectrum by a sum of δ functions, i.e.,

working with P(k) =
∑N

j=1 Pjδ(k − k j ) was presented in

Ribal et al. (2013).
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Table 1 Summary of the case studies of Section 5.2

Spectrum Hs (m) σ Solutions of Eq. (6) with ζβ > 0 ζmax

H2
s

16
δ(k − k0) 5 +∞ ζ ∈ (−ζmax, ζmax)\{0}, Hs

2

√
q
p

≈ 0.2036,

α(ζ ) = pk0, β(ζ ) = sign(ζ )

√
pq
4 H2

s −p2ζ 2

4π
cf. Eq. (29)

Narrow Ochi–Hubble 5 76.5 Single curve of the form: ≈ 0.165

ζ ∈ (−ζmax, ζmax)\{0},
α(ζ ) ≈ pk0, β(ζ ) ≈ sign(ζ )β(|ζ |)

Broad Ochi–Hubble 5 66.5 Main curve of the form: ≈ 0.13

ζ ∈ (−ζmax, ζmax)\{0},
α(ζ ) ≈ pk0, β(ζ ) ≈ sign(ζ )β(|ζ |),
plus some isolated solutions

5.2 Case study for the Ochi–Hubble spectrum

Now, we can use Eq. (53) as a practical way to look for

solutions of the Penrose condition in (ζ, α, β) space for

general spectra P(k). In particular, we can investigate the

formation of localized instabilities out of a background wave

train consistent with an Ochi–Hubble spectrum. We inves-

tigate the case with central wavenumber k0 = 0.24 m−1

(corresponding to wavelengths λ0 = 26.18 m) and negli-

gible dissipation, D = 10−8. By virtue of Sect. 4, we can

resolve completely the Penrose condition and the localized

unstable Penrose modes for a δ spectrum. Therefore, first, we

compare the δ-spectrum results with a narrow Ochi–Hubble

spectrum with Hs = 5 m, σ = 76.5, and check that the

observed ζmax ≈ 0.165, cf. Table 1. For a broader Ochi–

Hubble spectrum, σ = 66.5, we observe that for the same

Hs = 5 m, poorer localization of the unstable mode is found,

as evidenced by ζmax ≈ 0.13. The iso-surfaces of the fitness

function FP , which serve as an approximate solution of the

Penrose condition, are presented in Figs. 2 and 3. The results

are summarised in Table 1.

The first qualitative finding is that, for the narrow Ochi–

Hubble spectrum, we find a single branch of solutions of the

Penrose condition, effectively of the form (ζ, α0,±βζ ), for

ζ = (−ζmax, ζmax)\{0} (similar to the δ spectrum). Thus, the

analysis of Lemma 4.1 applies, and since ζmax ≈ 0.165 >
2k0
π

≈ 0.1528, Rogue Waves are expected. Using Eq. (44),

we see that this regime corresponds to a reference slope βp ≈
0.0477, i.e., a large but physically possible sea.

If we set σ = 66.5, we have a less peaked spectrum. While

the approximate solutions of the Penrose condition still con-

tain a recognizable main branch, isolated solutions account

for a larger percentage of the ζ bandwidth. In addition, we

find poorer localization of instabilities, in terms of smaller

ζmax ≈ 0.13. Technically, in this case, we do not have Rogue

Waves (understood as instabilities localized within a single

wavelength), although just barely.

If we were to further decrease σ below 66.5, keeping Hs

fixed, the set of solutions of the Penrose condition becomes

contained in a strip |ζ | ≪ 0.13 and more irregular (breaks

up to many disconnected pieces). To reach ζmax ≈ 0.15 for

small σ, larger Hs is required. Eventually, this requirement

becomes unphysical, in terms of the slope constraint Hs k0
8π

�

0.0505.

Moreover, for σ small enough (and keeping Hs = 5m

fixed), it seems that there will be no solutions whatsoever

of the Penrose condition, i.e., no unstable modes. Thus, we

find a trade-off between Hs (or equivalently m0) and the

effective support of the spectrum. Note that this outlines

a trade-off between spectral spread and Hs reminiscent of

the Benjamin–Feir index (Serio et al. 2005), and is consis-

tent with the findings of Gibbs and Taylor (2005). Using the

scheme of Sect. 5.1, we can investigate this trade-off taking

fully into account the shape of a given spectrum.

5.3 On the solvability of the Penrose condition

Let P(k) = A2σ S(σ (k − k0)) be a given background spec-

trum, where S(k) is a probability density function, S(k) � 0,∫
k

S(k)dk = 1, which is smooth enough and with fast enough

decay (e.g., a Schwarz test function, S ∈ S(R)). The param-

eter A2 > 0 controls the amplitude of the background waves,

while σ > 0 controls how broad the spectrum is (larger σ

leads to more sharply localized spectrum). Without loss of

generality, we will assume k0 = 0 in the remainder of this

section.

Now, if we neglect dissipation, D = 0, the Penrose con-

dition becomes

2π

q
=
∫

k∈R

P(k − ζ
4π

) − P(k + ζ
4π

)

ζ(pk − 
)
dk

123



J. Ocean Eng. Mar. Energy (2017) 3:353–372 367

Fig. 2 Top left a narrow Ochi–Hubble Fourier spectrum for η, Eq.

(43), with Hs = 5m, k0 = 0.24m−1, σ = 76.5, and its piece-

wise constant approximation, cf. Eq. (45), with 79 intervals. Top

right Projection on the α, β plane of the iso-surface FP (ζ, α, β) =
1

1,322,314
max(ζ ′,α′,β ′)∈B FP (ζ ′, α′, β ′), where B = [0.021, 0.2]ζ ×

[−1.605,−1.597]α ×[0.000015, 0.037]β is the parallelepiped spanned

by the axes of the plots. The number of points used is 453 × 451 × 455.

We work for ζ > 0, since the situation is essentially symmetric for

ζ < 0. Bottom The same surface projected on the ζ, α and ζ, β planes

⇔
2πp

A2qσ 2
=
∫

k∈R

S(k − σ
ζ

4π
) − S(k + σ

ζ
4π

)

σζ

1

k − σ 

p

dk.

(54)

Denoting

Fζ,σ (k) :=
S(k − σζ

4π
) − S(k + σζ

4π
)

σζ
,

Fζ,σ (
) = p.v.

∫

k∈R

Fζ,σ (k)

k − σ

p

dk,

the Penrose condition now can be reformulated as

given σ > 0, ζ ∈ R, is there 
 such that Fζ,σ (
)=
2πp

A2qσ 2
?

(55)

As before, ζ Im 
 > 0 is required for instability.

Remark 5.1 The divided difference Fζ,σ (k) has the proper-

ties Fζ,σ (k) = F−ζ,σ (k) and limζ→0 Fζ,σ (k) = − 1
8π

S′(k).

The merit of the formulation (55) is that complex-analytic

function machinery can be readily adapted from (Bardos and

Besse 2013; Penrose 1960) to yield the following
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Fig. 3 Same as Fig. 2, but σ = 66.5 and the iso-surface plotted is defined by FP (ζ, α, β) = 1
1,186,513

max
(ζ ′,α′,β ′)∈B

FP (ζ ′, α′, β ′). Apart from the

main line, several small lines of isolated solutions are observed

Lemma 5.2 (Conditions for solvability of the Penrose con-

dition) Given ζ, σ there is a solution 
 of Eq. (55) in the

upper complex half plane if and only if the closed curve
⎧
⎨
⎩z+(t) = p.v.

∫

k∈R

Fζ,σ (k)

k − t
dk + iπ

σ

|p|
Fζ,σ (t), t ∈ R

⎫
⎬
⎭

on the complex plane encloses the real point
2πp

A2qσ 2 .

Similarly, there is a solution 
 of Eq. (55) in the lower

complex half plane if and only if the closed curve
⎧
⎨
⎩z−(t) = p.v.

∫

k∈R

Fζ,σ (k)

k − t
dk − iπ

σ

|p|
Fζ,σ (t), t ∈ R

⎫
⎬
⎭

on the complex plane encloses the real point
2πp

A2qσ 2 .

Proof First of all, observe that Fζ,σ is a bounded analytic

function in each of the upper and lower half planes, vanishing

at infinity (Bardos and Besse 2013). Moreover, the boundary

values are well defined on the real axis, although they exhibit

a jump across it. Indeed, for x ∈ R

lim
ε→0+

Fζ,σ (x ± iε) = lim
ε→0+

p.v.

∫

k∈R

Fζ,σ (k)

k − σ
p
(x ± iε)

dk

= lim
ε→0+

p.v.

∫

k∈R

Fζ,σ (k)
k + σ

p
x ∓ i σ

p
ε

(k + σ
p

x)2 + σ 2

p2 ε2
dk
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= Fζ,σ (
σ

p
x) ± i lim

ε→0+

∫

k∈R

Fζ,σ (k)

σ
|p|ε

(k + i σ
p

x)2 + σ 2

p2 ε2
dk,

where in the last step, we passed into the limit for the real part

and took into account the fact that p < 0. We complete the

computation by observing that, for any f ∈ S(R), X ∈ R,

lim
ε→0+

+∞∫

−∞

f (ξ − X)
ε

ξ2 + ε2
dξ = π f (X).

Thus, we recover a kind of Sokhotsky–Plemelj formula (King

2009, Section 3.7) for our problem, namely

lim
ε→0+

Fζ,σ (x ± iε) = Fζ,σ (x) ± iπ
σ

|p|
Fζ,σ (x).

In particular, the limit values at the real axis, either from

above or from below, are bounded and continuous.

Without loss of generality, we will carry out the rest of the

proof for 
 in the upper half plane only. Indeed, by virtue of

the argument principle, a value Z0 is attained Z0 = Fζ,σ (
)

for some Im 
 > 0 if and only if the curve Fζ,σ (R + i0) has

positive winding number around Z0.

While the structure of the nonlinearity is different here,

the overall proof is in the spirit of Bardos and Besse (2013);

Penrose (1960). The proof is complete. ⊓⊔

Lemma 5.3 (Radial unimodal spectra) Let S be even, S(k) =
S(−k), and decreasing away from zero S′(k) < 0 ∀k > 0.

Then, there exist unstable Penrose modes for the spectrum S

if and only if

p.v.

∫

k∈R

Fζ,σ (k)

k
dk >

2πp

A2qσ 2
(56)

Proof We will need to break the proof up in several steps:

Claim Fζ,σ (k) = 0 if and only if k = 0.

Proof of the claim: First of all,

Fζ,σ (0) =
S(−σζ

4π
) − S(

σζ
4π

)

σζ
= 0.

Moreover, observe that our assumptions imply that the

restriction S : [0,∞) → R is one-to-one. Now, we can

compute

Fζ,σ (k) = 0 ⇒ S

(
k −

σζ

4π

)
= S

(
k +

σζ

4π

)

⇒ k −
σζ

4π
= ±

(
k +

σζ

4π

)
⇒

{
ζ = 0, or

k = 0.

Since ζ = 0 is unphysical and we exclude it, the claim fol-

lows.

Fig. 4 Vizualization of Lemma 5.2 for a Gaussian envelope spectrum,

P(k) = A2 σ√
π

e−σ 2k2
. The black point in the third plot is the real

number
2πp

A2qσ 2 . Observe that this curve looks like a reflection along the

imaginary axis of the corresponding curve for the defocusing Vlasov–

Poisson equation (Penrose 1960). This is due to the focusing character

of the problem here, leading to (large enough) unimodal profiles being

in general unstable

Claim Each of the curves z±(t) tends to 0 or t → ±∞.

Proof of the claim

lim
t→∞

z+(t) = lim
t→∞

⎛
⎝p.v.

∫

k∈R

Fζ,σ (k)

k − t
dk + iπ

σ

|p|
Fζ,σ (t)

⎞
⎠

= lim
t→∞

p.v.

∫

k∈R

Fζ,σ (k)

k − t
dk = 0

by the standard results on the Hilbert transform (King 2009).

In fact, since Fζ,σ (k) has zero mean, the Hilbert transform

p.v.
∫

k∈R

Fζ,σ (k)

k−t
dk inherits from Fζ,σ (k) the superpolyno-

mial decay in t (King 2009, Section 4.7). The other cases

follow similarly.

The proof of the claim is complete.

To complete the proof, we need to extract the geom-

etry encoded in these claims. The only points where the

curve z+(t) intersects the real axis are t = 0, where

z+(t) = p.v.
∫

k∈R

Fζ,σ (k)

k−t
dk, and in the limit t → ±∞,

where z+(+∞) = z+(−∞) = 0. Thus, the only way the real

number
2πp

A2qσ 2 is enclosed in the curve, is if it lies between

0 and z+(0). Moreover, this does not depend on whether 


belongs in the upper or lower half plane. Cf. Fig. 4.

The proof is complete. ⊓⊔
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By substituting S(k) = 1√
π

e−k2
in Lemma 5.3, we obtain

the following

Corollary 5.4 (Gaussian spectra) There are unstable modes

for the Gaussian spectrum P(k)=A2 σ√
π

e−σ 2k2
if and only if

∞∫

k=0

e−(k− σζ
4π

)2 − e−(k+ σζ
4π

)2

σζk
dk >

π
3
2 p

A2qσ 2

Fixing all parameters and taking A large enough, one

quickly sees that eventually (i.e., for A large enough), there

will be unstable Penrose modes irrespective of the precise

values of σ, ζ. Similarly, fixing all parameters and taking ζ

large enough, one sees that the inequality eventually cannot

hold. In other words, the unstable Penrose numbers have to

be contained in a bounded interval.

6 Conclusions

In this paper, we construct a methodology to compute

Benjamin–Feir-type linearly unstable modes growing out of

any background Fourier spectrum. These are spatially peri-

odic modes which grow exponentially in time, and their

parameters are obtained by resolving the Penrose condition,

Eq. (6). Localized unstable modes can arise by superposition

of the spatially periodic ones, cf. Lemma 4.1. It turns out

that the ζ bandwidth of different spatially periodic modes

controls the sharpest possible localization. This computa-

tion leads naturally to the description of Rogue Waves as

unstable modes, localized in a region not larger than a sin-

gle wavelength, Definition 4.3. In other words, appropriate

superposition of unstable Penrose modes, when they exist,

hints towards the existence of breather-like solutions emerg-

ing out of homogeneous backgrounds with spectrum P(k).

Thus, linear instability and the emergence of Rogue Waves

are clearly distinguished; the former is a necessary but not

sufficient condition for the latter.

This is illustrated in a simple case, where analytic calcu-

lations are possible (narrowband limit). In more complicated

settings, we can use the numerical scheme of Eq. (53) to

resolve the Penrose condition. It is found that for narrow

spectra, generation of Rogue Waves seems to be within

the physically realistic region of parameters. As the spec-

trum becomes broader (keeping Hs fixed), the localization

of unstable modes deteriorates, and beyond a certain thresh-

old, it is completely destroyed. This is natural in the sense

that breather-like solutions can emerge from “any narrow-

band enough” spectrum P(k); however, once the background

spectrum becomes broadband enough, these breathers disap-

pear. In particular, we find a “stabilization via spectral broad-

ening” trend, which will be more precisely quantified with

further work. It is worth noting that similar trends have been

identified in Gibbs and Taylor (2005) through detailed fine-

scale computations using nonlinear numerical simulations.

It must also be mentioned that the localized instabilities

we find seem to grow over a few wave periods T0 uniformly in

k0; this is both physically reasonable and in agreement with

other studies in the topic Birkholz et al. (2015); Cousins and

Sapsis (2016). It is desirable to understand better the non-

linear evolution of these localized instabilities, which seem

to correspond to breathers emerging from an almost periodic

background.

Finally, let us comment on the numerical scheme of Sect.

5.1 for the resolution of the Penrose condition. It amounts

essentially to solving a nonlinear system of equations with a

spanning method. While it does give reasonable approxima-

tions for the loci of possible solutions, it is not completely

satisfactory as a stand-alone solver; in particular, it can-

not reliably determine whether solutions exist (as opposed

to near solutions). It is complemented by a semi-analytic

method for determining the existence of solutions, elaborated

in Sect. 5.3. This latter method uses adapted Sokhotsky–

Plemelj formulas to come up with a geometric criterion for

the solvability of the Penrose condition for given ζ, and

involves only quadrature errors in the computation of cer-

tain integrals. Under additional assumptions on the shape of

the spectrum, it can yield compact criteria, shedding some

light in the tradeoffs between power m0 and the effective

width of the spectrum. In particular, all symmetric spectra

decreasing away from the peak wavenumber have unstable

Penrose modes for high enough power, cf. Lemma 5.3.
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