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ABSTRACT  

We have developed highly sensitive, low power gas sensors through the novel integration 

method of porous SnO2 nanotubes (NTs) on a micro-electro-mechanical-systems (MEMS) 

platform. As a template material, ZnO nanowires (NWs) were directly synthesized on beam-

shaped, suspended microheaters through in-situ localized hydrothermal reaction induced by 
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 2 

local thermal energy around the Joule-heated area. Also, liquid phase deposition (LPD) process 

enabled the formation of porous SnO2 thin film on the surface of ZnO NWs and simultaneous 

etching of ZnO core, eventually to generate porous SnO2 NTs. Due to the localized synthesis 

of SnO2 NTs on the suspended microheater, very low power for the gas sensor operation (< 6 

mW) has been realized. Moreover, sensing performance (e.g. sensitivity and response time) of 

synthesized SnO2 NTs was dramatically enhanced compared to those of ZnO NWs. In addition, 

the sensing performance was further improved by forming SnO2-ZnO hybrid nanostructures 

due to the heterojunction effect. 

 

INTRODUCTION 

Nowadays, there are growing demands for mobile and personalized environmental 

monitoring. For example, personal mobile gas sensors are used to monitor indoor air quality or 

natural disasters, as well as for healthcare applications such as breath-based early diagnosis of 

diseases. Also, mobile gas sensors are used in the industry to increase the yield of products or 

to ensure the safety of workers. Among various types of gas sensors, semiconductor metal 

oxide (SMO) gas sensors are suitable for mobile applications due to their small size, low cost 

and high sensitivity.1 However, they usually need high operation temperatures ranging from 

200 °C to 400 °C, requiring high electrical power for heating. In order to reduce the operating 

power, researchers have tried to combine micro-heating platforms and sensing nanomaterials. 

Most widely used approaches are based on drop casting or printing (e.g. inkjet printing, screen 

printing etc.) of nanomaterials that were pre-synthesized through CVD, PVD and sol-gel 

methods.2-4 Although these methods are simple, they require additional steps to form a stable 

liquid solution of nanomaterials and suffer from limited downscaling of integration area due to 

poor patterning resolution. For example, Zhou et al. developed ultra-low power microheaters 
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 3 

that require only 2 mW of power at 300 ºC for SMO gas sensors.5 They developed a beam-

shaped suspended structure to isolate the small heating spot. However, previously mentioned 

deposition methods did not allow fine integration of sensing nanomaterials on small selected 

areas, except for thin film deposited with a shadow mask. Meanwhile, Long et al., and Xu et 

al. introduced a direct synthesis method of porous SnO2 films on microheating platforms using 

an explosive evaporation method and a polystyrene (PS) bead-templated method, 

respectively.6-7 Although nanoscale sensing materials were well formed on microheaters, there 

were limitations in applying them on a suspended microstructure6 or on a very small area (eg. 

diameter < 10 μm)7 due to their fabrication mechanisms. 

In our previous study, we reported a localized hydrothermal synthesis method for ZnO 

nanowires, CuO nanospikes and TiO2 nanotubes.8-13 When an electrical voltage is applied 

across the pre-fabricated microheaters submerged in the liquid precursor, the temperature rise 

around localized Joule-heated region induces a hydrothermal reaction of precursor chemicals. 

Also, as convective heat transfer followed by convective mass transfer of precursor is generated, 

fresh precursors are continuously supplied to the reaction area where endothermal reaction 

continues a selective synthesis of nanomaterials. This method has enabled a direct integration 

of one-dimensional nanomaterials onto desired spot along microheaters. However, 

microheaters were bound on the substrate (i.e. not suspended from the substrate) and thus 

required high electrical power for heating due to the significant conductive heat dissipation to 

the substrate. Furthermore, this method could not be applied to one dimensional SnO2 

nanomaterials, which is known to possess outstanding gas sensing performances and excellent 

stability,14 due to the lack of their hydrothermal synthesis methods in liquid environment under 

atmospheric pressure conditions. 

This paper introduces a novel integration method of one dimensional (1-D) SnO2 

nanomaterials on suspended MEMS microheaters to achieve high sensitivity, great stability, 
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 4 

outstanding response speed and low power consumption for the detection of toxic gases. The 

suspended structure of MEMS microheaters thermally isolate the heating spot from the Si 

substrate. Through the optimal design of the suspended microheater, heat loss to the substrate 

has been dramatically reduced, facilitating very low heating power for the gas detection (< 6 

mW). Also, we directly synthesized porous SnO2 NTs on suspended microheaters in a low cost, 

fast and low-temperature liquid-phase process. First, ZnO NWs were synthesized on MEMS 

microheaters through a localized hydrothermal reaction. In order to enhance the gas sensing 

performances (i.e. sensitivity, response speed and stability), we substituted pre-synthesized 

ZnO NWs with SnO2 NTs via liquid phase deposition (LPD) process along ZnO NW templates. 

Due to the acidic condition (i.e. low pH) of the LPD solution, ZnO NWs were etched out 

simultaneously. In this step, we could control the amount of ZnO remaining in the SnO2 NTs 

by controlling the condition of LPD for the modulation of sensing characteristics. This method 

allows facile integration of high performance 1-D sensing nanomaterials on selective and 

suspended microscale spots, which is difficult to be achieved by other conventional methods. 

Furthermore, we demonstrated that this method can be applied to a complex-shaped 

microheaters such as a suspended structure that were not previously realized, resulting in an 

application to low power gas sensors. 

 

MATERIALS AND METHODS 

Design and Fabrication of Microheaters. In order to minimize the operating power of the 

gas sensor, the MEMS microheater was designed with optimized geometry. In order to 

minimize the amount of heat dissipation to the silicon substrate and the size of the heating area, 

a beam-shaped heater structure was selected. The width and length of the beam can be 

optimized through the heat transfer analysis and constraint of fabrication capability. The heat 

dissipation from the microheater is caused by conductive, convective, and radiative heat 
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 5 

transfer modes. Considering the microscale size of the heating area, the operating temperature 

range (25-300 °C), and the magnitude of the various heat transfer coefficients, convective and 

radiative heat losses are negligibly small compared to the conductive heat loss (See the section 

“Design of Microheaters” in the Supporting Information for more detail). Therefore, only the 

conductive heat transfer to the substrate through the heater beam and air was considered, while 

the convective and radiative heat dissipation were neglected. As a consequence, the optimal 

geometry of beam to minimize the heat loss was 3 μm in width and 110 μm in length (See 

Figure S1 in the Supporting Information). 

Figure 1a shows the structure of MEMS microheater including a structural layer, an 

insulation layer and metal electrodes. The microheater was fabricated using conventional 

MEMS processes. (1) First, a SiO2 layer was deposited with a thickness of 1 μm by plasma-

enhanced chemical vapor deposition (PECVD) process on the silicon wafer. (2) Then, 

polymethylglutarimide (PMGI) and photoresist (AZ5214, MicroChemicals, Germany) were 

spin-coated to lift-off the Pt heater, and the shape of the microheater was patterned with UV-

photolithography. (3) Subsequently, Ti / Pt (thickness of 10 nm / 200 nm, respectively) was 

deposited by electron beam evaporation, and the PMGI layer and AZ5214 layer were removed 

with a developer (AZ300 MIF, AZ Electronic Materials, USA) and acetone. (4) An 800 nm 

thick SiO2 layer was deposited by PECVD process for the electrical insulation between the 

heater and sensing electrodes. (5) Cr / Au (10 nm / 200 nm thickness each) sensing electrodes 

were patterned by the same method as that in step (3). (6) SiO2 insulating layer covering the 

pad of the Pt heater was removed by photolithography and buffered oxide etchant (BOE) 

etching. (7) Before the Si bulk etching, an etching window was patterned by UV-

photolithography (AZ9260 photoresist, AZ Electronic Materials, USA) and a reactive ion 

etching (RIE) to expose the Si substrate. (8) Samples were annealed in a nitrogen atmosphere 

at 350 °C for 1 hour to relax residual stresses of the PECVD SiO2 layer. (9) Finally, Si bulk 
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 6 

etching was carried out using tetramethylammonium hydroxide (TMAH) wet etching to obtain 

suspended microheater beam. 

Numerical simulations and resistive temperature detection (RTD) were conducted to verify 

the heating performance of the fabricated microheater. The temperature distribution of the 

Joule-heated region in liquid precursor and mass convection of precursor were estimated with 

Joule heating, heat conduction and convective flow models in COMSOL Multiphysics® to 

verify the area where the hydrothermal reaction occurs. Also, the relationship between 

temperature and heating power in atmosphere was measured via resistive temperature detection 

(RTD) method to estimate the operating power of the gas sensor (Experimental detail is 

explained in the Supporting Information). 

 

 

Figure 1 Scheme of localized synthesis of ZnO NW and SnO2 NT on MEMS microheater: (a) 

Illustration of whole layers of the microheater; (b-c) localized hydrothermal synthesis of ZnO 

NWs on the Joule heated area; (d-e) LPD for substituting locally synthesized ZnO NWs to 

Si substrate (TMAH-etched)

PECVD SiO2 (1 μm)

PECVD SiO2 (0.8 μm)

Pt heater (0.2 μm)

Au electrode (0.2 μm)

Rinsing & drying
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Liquid phase deposition
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 7 

SnO2 NTs. Deposition of SnO2 thin film and dissolution of ZnO NWs occur simultaneously. 

Etching rate of ZnO is determined by the pH of LPD precursor. A small amount of 1 M NaOH 

was added to adjust the pH to 4 and 6. Each condition generates SnO2 NTs and SnO2-ZnO 

hybrid nanostructures. 

 

Synthesis of ZnO Nanowires and SnO2 Nanotubes. Overall processes to synthesize ZnO 

NWs and SnO2 NTs are illustrated in Figure 1b-e. As seeds to grow ZnO NWs, ZnO 

nanoparticles were deposited by sputtering (100 W, 3 min) on fabricated MEMS microheaters. 

ZnO precursor was prepared by dissolving 25 mM of zinc nitrate hydrate, 25 mM of 

hexamethylenetetramine (HMTA), and 6 mM of polyethyleneimine (PEI) in DI water (All 

chemicals were purchased from Sigma Aldrich).15 A PDMS well was attached to the sensor 

chip and filled with a few μL of ZnO precursor solution to submerge the fabricated microheater 

within the precursor solution. The voltage was applied to the microheater using tungsten probes 

and a source meter. When the microheater was heated with a power higher than 45 mW (voltage 

of 1.5 V and current of 30 mA), the precursor solution was boiled and bubbles were formed 

around the microheater. Therefore, the power was maintained at 45 mW, which is supposed to 

induce a local temperature of 90-100 °C around the microheater. The synthesis was carried out 

for 15 minutes (total energy = 40.5 J). To avoid the damage of suspended microheater during 

drying process, ethanol with low surface tension (22.1 mN/m at 20 °C) was utilized in the final 

rinsing and drying step.  

After washing and drying, synthesized ZnO NWs were substituted to SnO2 NTs by filling 

the LPD precursor solution in the PDMS well attached to the senor chip. LPD precursor was 

prepared by dissolving 3.75 mM SnF2, 15 mM of HF, 7.5 mM of H2O2, and 37.5 mM of H3BO3 

in DI water.16-17 Initial pH of LPD precursor solution was ~ 2. In order to control the amount 

of residual ZnO that exist on the inner surface of the SnO2 NT, pH of the LPD precursor 
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 8 

solution was modulated by adding 1M NaOH solution (controlled pH = 4 and 6). The condition 

(pH = 4) for relatively high etching rate of ZnO was expected to form SnO2 NTs, while the 

condition (pH = 6) for slower etching rate of ZnO was expected to form a hybrid nanostructure 

(i.e. SnO2 NTs + ZnO residue). Processing time was fixed as 15 min for both pH conditions. 

After completion of the whole processes, samples were rinsed and dried with ethanol as before. 

The detailed mechanism of LPD is explained in the section “Mechanism of Liquid Phase 

Deposition of SnO2” in the Supporting Information. 

Measurement of Gas Concentration. We selected H2S gas as a target gas that is generated 

in rotten foods, natural gas and oil refinery. High concentration H2S gas causes serious health 

problems and its 8 hour permissible exposure limit (PEL) is 10 ppm. The H2S gas sensing 

performance of the fabricated sensors was demonstrated by measuring their sensitivity to H2S 

gas under various operating powers. (3, 4, 5 and 6 mW). 1 to 20 ppm of H2S gas was supplied 

into the chamber by balancing the flow rates of air and H2S gas, and the total flow rate was 500 

sccm. An electrical power for the microheater was provided using a DC power supply (E3642A, 

Agilent, USA) and the resistances of three sensing materials (ZnO NW, SnO2 NT, and ZnO-

SnO2 hybrid nanostructure) were simultaneously measured by a source meter (SMU 2400, 

Keithley, USA). 

 

RESULTS AND DISCUSSION 

Figure 2a is an optical image of the fabricated sensor chip. The entire chip has a size of 1 × 

1 cm. Figure 2b-c show SEM images of 2 × 2 array of microheaters on a single sensor chip and 

a suspended structure of a microheater. In the center of the sensor chip, a 600 μm-sized trench 

is located for an easy penetration of aqueous ZnO precursor beneath the microheater. 

Figure 2d shows the three dimensional model including whole layers of a microheater and 

surrounding media (air or precursor solution) for numerical simulation of heat and mass 
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 9 

transfer. As shown in Figure 2e, the maximum temperature reached about 95 °C, and the 

temperature gradually decreased toward the outside of the beam. Also, it is expected that 

molecules and ions used for the synthesis of ZnO NWs will be continuously supplied to the 

microheater by the free convection of the precursor solution by the local heating of the 

microheater. 

We measured the heating power of microheater in atmospheric air condition using RTD 

method. The graph in Figure 2f shows the relationship between the maximum temperature on 

the microheater and the heating power. By carrying out several compensation explained in the 

Supporting Information (“Temperature – power relationship” section), the following relation 

was obtained. 𝑀𝑀𝑀𝑀𝑀𝑀.𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(°𝐶𝐶) = 40.9 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇(𝑇𝑇𝑚𝑚) + 15.2       (1) 

 The power required to reach 300 °C from the equation is about 6.9 mW. Also, RTD data is 

close to the data derived from the numerical simulation (RMS error = 14.9 °C in 1-6 mW range). 

 

 

Figure 2 (a) Photo of fabricated sensor chip; (b-c) SEM images of fabricated microheaters: 2 

× 2 arrays of the microheater on a single chip (b) and a suspended and beam-shaped microheater 
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 10 

(c); (d) Geometries and materials of the microheater for numerical simulation; (e) Results of 

the numerical simulation for temperature distribution around the microheater in aqueous ZnO 

precursor at top view (top) and side view (bottom). Free convection of aqueous precursor was 

generated due to local heating; (f) Estimated relationship between maximum temperature and 

heating power of microheater in the room temperature air environment through experimental 

data (resistive temperature detection) and numerically calculated data.  

 

As shown in Figure 3a-b, ZnO NWs were locally synthesized on the beam-shaped suspended 

microheater. Similar to the temperature distribution along the microheater (Figure 1e), ZnO 

NWs were the longest at the center of the beam, and gradually became shorter toward the 

anchor of the beam. The average (standard deviation) of diameters and lengths of ZnO NWs 

synthesized near the center of the beam were 67.7 nm (±27 nm) and 1.6 μm (±0.4 μm), 

respectively (Figure 3c). Here, ZnO NWs form a complex network through numerous junctions 

between NWs. Figure 3d shows ZnO NWs before LPD and Figure 3e-f show SnO2 NTs after 

15 minutes of LPD at pH = 4. Core ZnO NWs were etched out due to acidic condition of the 

LPD precursor. Therefore, translucent, porous and granular tube-like structures were well 

formed, and can be observed in the TEM image of a SnO2 NT synthesized at pH = 4 (Figure 

3f). Figure 3g shows the x-ray diffraction (XRD) patterns of synthesized ZnO NWs and SnO2 

NTs. After LPD, the diffraction peaks from ZnO remarkably decreased while those of rutile 

SnO2 were clearly observed. This result also indicates that the surface of the ZnO NWs was 

well coated with crystallized SnO2 and the ZnO was effectively removed.  
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 11 

 

Figure 3 SEM images of (a) a miroheater before synthesizing ZnO NWs and (b, c) after 

synthesizing ZnO NWs by localized hydrothermal reaction; SEM images of locally synthesized 

(d) ZnO NWs before LPD and (e) SnO2 NTs after LPD (pH = 4) for 15min; (f) A TEM image 

of SnO2 NTs synthesized by LPD at pH = 4; (g) XRD patterns of ZnO NWs and SnO2 NTs 

synthesized at pH 4. 

 

Figure 4 shows the SEM-Energy dispersive spectroscopy (EDS) analysis of locally 

synthesized ZnO NWs and chemically converted SnO2 NTs at different pH conditions on a 

microheater. Figure panels 4a-d show the presence of Zn and Sn in the ZnO NWs through EDS 

element mapping. Zn (red dots) is much denser than the Sn (yellow dots), which is represented 

quantitatively in Table 1 (Atomic ratio: Zn = 25.23% and Sn = 0.08%, Here, the presence of 

Sn is ignorable due to measurement noise). Figure panels 4e-h show the presence of Zn and Sn 

in SnO2 NTs synthesized at pH = 4. As compared with ZnO NWs, Zn (red dots) is almost 

negligible, while Sn (yellow dots) is dramatically increased (Atomic ratio: Zn = 0.1% and Sn 

= 9.66%, see Table 1. Here, the presence of Zn is ignorable due to measurement noise). This 

is because the ZnO was quickly etched while SnO2 layer was formed on the surface of ZnO 
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 12 

NW template (15 min) at pH=4. On the other hand, Figure panels 4i-l show similar presence 

of both Zn and Sn on the hybrid nanostructure synthesized at pH = 6. As expected, the amount 

of residual Zn (Atomic ratio: Zn = 7.53% and Sn = 6.24%) was larger in this structure than that 

of the SnO2 NTs synthesized at pH = 4. As a conclusion, it is possible to control the amount of 

ZnO remaining in the NTs by controlling the etching rate of ZnO at different pH of the LPD 

solution. TEM images of ZnO NWs, SnO2 NTs and SnO2-ZnO hybrid nanostructure are 

provided in Figure S4 in the Supporting Information. 

 

 

Figure 4 SEM-EDS analysis of locally synthesized nanostructures on MEMS microheater: (a) 

scanning area, (b-c) elemental mapping for Zn and Sn, (d) EDS spectra of ZnO NWs. (e-h), (i-

l) Results in the case of SnO2 NTs (LPD at pH=4 and pH=6, respectively) in the same order.  

 

Table 1 Element composition of ZnO NWs, SnO2 NTs, and SnO2-ZnO hybrid nanostructures 

obtained by EDS analysis 
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 13 

SnO2 nanotubes SnO2-ZnO 

Hybrid nanostructures 

Weight% Atomic% Weight% Atomic% Weight% Atomic% 

O K 18.03 37.25 28.61 54.22 31.83 58.62 

Si K 31.80 37.43 33.37 36.02 26.32 27.61 

Zn L 49.89 25.23 0.21 0.10 16.71 7.53 

Sn L 0.29 0.08 37.81 9.66 25.14 6.24 

 

The adsorption state of oxygen molecules on the surface of the metal oxide depends on the 

temperature. The physisorption of O2
- and O- species with high adsorption-desorption rates 

dominates in the low temperature range, while chemisorption of O2- with the low adsorption-

desorption rate dominates in the high temperature range.18 In the physisorption region, the 

amount of adsorbed oxygen molecules is large, resulting in the high sensitivity. However, the 

adsorption of OH- dissociated from the water molecule is also active, and thus the sensor signal 

is greatly influenced by the humidity. On the other hand, in the chemisorption region, the OH- 

group is desorbed and the influence of moisture is reduced while the amount of O- adsorbed on 

the surface is reduced, resulting in the low sensitivity. Therefore, it is desirable to select the 

operating temperature in the transition region located between these two adsorption regimes. 

In order to select the proper operating power of the microheater based on this theoretical 

background, the change of the sensing resistance according to the heating power (∝ heating 

temperature) was measured. Semiconductor materials generally exhibit decreasing electrical 

resistance at higher temperature by the generation of the electron-hole pairs induced by the 

thermal excitation. In the case of the metal oxide, as the temperature increases, a fluctuation of 

electrical resistance occurs in the declining tendency due to the changes of surface coverage of 

oxygen.19 Figure panels 6a-b show the resistance change of ZnO NWs and SnO2 NTs by 
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 14 

varying the heating power of microheater. Measurements were carried out in dry air (< 5 %RH) 

after the resistance of heated sensing material was sufficiently stabilized. In the case of ZnO 

NWs, the resistance decreases until 3 mW (~138 °C), slightly rises in 3-3.5 mW (~ 138-158 °C), 

and decreases again above 4 mW (~ 179 °C). It indicates that the physisorption is dominant in 

the low power range (< 3 mW, 138 °C), while the chemisorption is dominant in the high power 

range (> 4 mW, 179 °C). Since the operating power of the SMO gas sensor is determined in 

the transition region between physisorption and chemisorption as described above, the 

operating power of the ZnO NW can be chosen in the range between 3 and 4 mW. Similarly, 

Figure 5b shows the resistance change of SnO2 NTs at different heating powers of microheater. 

The resistance decreases until 4.5 mW (~ 199 °C), stagnates at 5 - 6 mW (~220-261 °C), 

decreases again above 6.5 mW (~ 281 °C). Thus, the operating power of SnO2 NTs can be 

determined in the range of 4.5 - 6 mW (~ 199-260 °C). In general, it has been reported that the 

transition of O- / O2
- to O2- on the surface of SnO2 takes place in the range of 190 - 300 °C 18, 

which is similar to the temperature range determined from the experimental results. Therefore, 

the gas sensing tests for ZnO NW and SnO2 NT sensors were carried out in the range of 3 - 6 

mW. 
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 15 

 

Figure 5 Relationship of sensor resistance and heating power of (a) ZnO NWs and (b) SnO2 

NTs. Dashed lines represent physisorption and chemisorption regime; H2S sensing results of 

fabricated sensor devices: (c-e) Dynamic responses of bare ZnO NWs, SnO2 NTs (synthesized 

at pH = 4) and SnO2 NTs-ZnO hybrid nanostructures (synthesized at pH = 6), respectively, for 
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 16 

different heating power; (f-h) 80% response time and recovery time for each material and gas 

concentration (1, 5, 10 and 20 ppm). 

 

Sensitivity was defined as Ra / Rg (Ra = sensor resistance in ambient air, Rg = sensor 

resistance exposed to H2S gas). Since ZnO NWs and SnO2 NTs are both n-type semiconductors, 

their resistances decrease when exposed to H2S (reducing gas). Figure 5c shows the dynamic 

response of the ZnO NW sensor locally synthesized on a microheater. The highest sensitivity 

was obtained when the ZnO NW was heated at 6 mW (Ra / Rg = 2.06 at 1 ppm; Ra / Rg = 2.98 

at 5 ppm; Ra / Rg = 3.26; and Ra / Rg = 3.60 at 20 ppm). Figure 5d shows the 80% response and 

recovery times of ZnO NWs. The response and recovery times were the shortest at 5mW (trec 

= 205 sec / tres = 93 sec at 1 ppm; trec = 154 sec / tres = 64 sec at 5 ppm; trec = 134 sec / tres = 48 

sec at 10 ppm; and trec = 129 sec / tres = 259 sec at 20 ppm). From these results, ZnO NW sensor 

shows slightly long response and recovery times. Figure 5e shows the dynamic response of a 

SnO2 NT sensor synthesized at pH=4 on a microheater. SnO2 NTs shows the highest sensitivity 

at 5 mW of heating power (Ra / Rg = 6.16 at 1 ppm; Ra / Rg = 12.12 at 5 ppm; Ra / Rg = 16.1 at 

10 ppm; and Ra / Rg = 21.07 at 20 ppm). The sensitivity of SnO2 NTs was 1.3 times (5 ppm, 3 

mW) to 7.4 times (20 ppm, 5 mW) higher than that of ZnO NWs with the same power at all 

gas concentration ranges. Figure 5f summarizes the 80% response and recovery times of SnO2 

NTs. In all power ranges except 3 mW, SnO2 NTs showed very short response time (< 30 

seconds). The recovery time was in the range of 79 - 465 seconds, which showed faster 

recovery than ZnO NWs only except for low concentration (1 and 5 ppm). Figure 5g shows the 

dynamic response of a SnO2-ZnO hybrid nanostructure synthesized at pH = 6 on the 

microheater. The highest sensitivity was obtained at 6 mW (Ra / Rg = 6.07 at 1 ppm; Ra / Rg = 

15.0 at 5 ppm; Ra / Rg = 27.69 at 10 ppm; and Ra / Rg = 35.31 at 20 ppm). The sensitivity of 

SnO2-ZnO hybrid nanomaterials was higher than that of the SnO2 NTs in all concentration 
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 17 

ranges. However, as shown in Figure 5h, the 80% response time (36 - 55 sec) of SnO2-ZnO 

hybrid nanostructure heated at a power over 4 mW was longer than that of SnO2 NTs. The 

reason for the improved sensing performance of SnO2 NTs and SnO2-ZnO hybrid 

nanostructures can be explained by the following two principles. The first is the effect of 

increased surface area. The NTs formed via the LPD process is expected to be air-permeable 

due to the porous and granular shell layer. Therefore, gas molecules can be in contact with the 

inner surface of the NTs, and thus the surface area-volume ratio can be remarkably increased 

compared to that of the NWs. Second is the effect of heterojunction. Numerous n-n junctions 

of SnO2 and ZnO are formed due to the remaining ZnO on the inner surface of the SnO2 NTs. 

The difference of work function between these two materials (ΦSnO2 = 4.9 eV and ΦZnO = 5.2 

eV) forms an additional carrier depletion layer. Therefore, it may cause a larger resistance 

change by reducing gas such as H2S. Such heterojunction effect improving the gas sensing 

performance has been experimentally demonstrated by various previous studies.20-28 It is 

expected that the optimum pH condition of the LPD solution to maximize the sensing 

performances (i.e. the sensitivity and the response time) can be found through further 

investigation. 

Repeatability and sample-to-sample variation were verified to confirm the reliability of 

fabricated sensor device. Repeatability tests were carried out by using two sensors with SnO2 

NTs and SnO2-ZnO hybrid nanostructures, respectively, with the same heating power (5 mW). 

The concentration of H2S gas was increased from 1 ppm to 20 ppm. In order to investigate the 

existence of irreversible degradation of sensitivity after exposure to highly concentrated gas, 

the concentration of gas was decreased in a reverse sequence (20 ppm to 1 ppm). Figure 6a 

shows results of the repeatability tests of SnO2 NT sensor. The errors (= standard deviation / 

mean X 100 (%)) were 8.9 % at 1 ppm, 4.2 % at 5 ppm, 1 % at 10 ppm and 0.02 % at 20 ppm. 

Figure 6b shows results of the repeatability test of the SnO2-ZnO hybrid nanostructure based 
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 18 

sensor. Likewise, errors were 7.4 % at 1 ppm, 7.5 % at 5 ppm, 2.6 % at 10 ppm and 0.09 % at 

20 ppm. Therefore, it is proved that both materials have excellent stability when repeatedly 

exposed to the gas, and the sensor signal stably appears without irreversible change even after 

exposure to high concentrations. In addition, an excellent mechanical reliability of the 

microheater was also confirmed by long-term operation for one week as shown in Figure S5 in 

the Supporting Information. Here, the electrical resistance of microheater maintained almost 

constant with a standard deviation of 0.196 % at a heating power of 5 mW. 

Next, we examined the sensitivity variation between the sensors of the same type. Four 

different sensors from the same LPD batch were tested twice for each at 5 mW of operating 

power, so that totally 8 tested results were used. The error rate was defined as standard 

deviation / mean X 100 (%). Figure 6c-d shows variation of the sensitivity of SnO2 NTs and 

SnO2-ZnO hybrid nanostructures. In both cases, errors were within 27 % and 21 %, respectively. 

These errors may have come from the accumulation of the processing deviation from the 

fabrication of the microheater to the final LPD process, and the random network formed by a 

number of one-dimensional nanostructures. It has been reported that the sensitivity-

concentration relationship of SMO gas sensors can be fitted to a power function (S = 1 + aPgas
b, 

S = Sensitivity (Ra / Rg), Pgas = partial pressure of gas, a, b = coefficient).19 The sensitivity–

concentration relationship for the SnO2 NT and SnO2-ZnO hybrid nanostructures was 

calculated as S = 1 + 2602Pgas
0.491 and S = 1 + 72930Pgas

0.729, respectively. Previous studies 

have shown that the coefficient b for SnO2 is close to 0.5 for the reducing gas, and the result 

from this study (b = 0.491) is also well matched.19 With this obtained sensitivity-concentration 

relationship, when the sensor is exposed to the arbitrary H2S gas, the concentration of gas can 

be estimated by inverse calculation from the sensor signal. It is well known that SMO gas 

sensors are not highly selective for a particular target gas. Here, the gas selectivity of our sensor 

was tested with 1 ppm of nitrogen dioxide (NO2), hydrogen sulfide (H2S), carbon monoxide 
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(CO), toluene (C6H5-CH3) and ammonia (NH3) gases. As shown in Figure S6 in the Supporting 

Information, hydrogen sulfide showed the greatest sensitivity (Ra/Rg = 3.4) among the reducing 

gases (i.e. hydrogen sulphide (H2S), carbon monoxide (CO), toluene (C6H5-CH3) and ammonia 

(NH3)). Nitrogen dioxide (NO2), which is an oxidizing gas, showed reverse sensitivity (Ra/Rg 

< 1) indicating the resistance increase. It will be possible to further increase the selectivity by 

coating the surface of sensing materials with catalysts (e.g. Pd or Pt), which can selectively 

react with specific gases.11, 29-32 
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Figure 6 Repeatability test for H2S sensing of (a) SnO2 NTs and (b) SnO2 NTs-ZnO hybrid 

nanostructures; Sample-to-sample variation and calibration graph (dashed line) of (c) SnO2 

NTs and (d) SnO2-ZnO hybrid nanostructures with respect to the H2S concentrations. 

 

CONCLUSION 

In summary, we have suggested a facile fabrication method to effectively combine MEMS 

heating platforms and 1-D nanomaterials for high performance SMO gas sensors. This method 

is based on sequential liquid-phase process consisting of localized hydrothermal synthesis and 

LPD. By using this sequential process, ZnO NWs could be locally synthesized in microscale 

area on freestanding MEMS device and then substituted to porous SnO2 NTs through LPD. By 

controlling the LPD condition (i.e. pH), the amount of ZnO remaining in the SnO2 tube could 

be modulated. As a result, we could synthesize SnO2-ZnO hybrid nanostructures as well as 

SnO2 NTs. Synthesized SnO2 NTs showed excellent sensitivity, response speed, and stability 

to H2S gas. Especially, SnO2-ZnO hybrid nanostructures showed further enhancement of 

sensitivity due to a heterojunction effect. By overcoming the limitations of downscaling of 

conventional nanomaterial integration methods, one of the lowest power SMO gas sensor with 

excellent performance could be achieved. The proposed method, based on a low-temperature 

liquid phase process requiring only a small amount of precursor solution, is environmentally 

friendly and low-cost compared to the conventional vapor synthesis method. In addition, it will 

be very useful for the fabrication of various oxide-based electronic devices. In the future, a 

low-power electronic nose system will be realized by integrating one-dimensional 

nanomaterial array (e.g. SnO2, CuO, ZnO, and TiO2) into a single chip through sequential 

liquid-phase process for multiplexed detection of various gas species.  
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