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Localized measurement of longitudinal and transverse flow velocities
in colloidal suspensions using optical coherence tomography
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We report on localized measurement of the longitudinal and transverse flow velocities in a colloidal suspension
using optical coherence tomography. We present a model for the path-length resolved autocorrelation function
including diffusion and flow, which we experimentally verify. For flow that is not perpendicular to the incident
beam, the longitudinal velocity gradient over the coherence gate causes additional decorrelation, which is
described by our model. We demonstrate simultaneous imaging of sample morphology and longitudinal and
transverse flow at micrometer scale in a single measurement.
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I. INTRODUCTION

Modern experiments to study mass transport phenomena
in complex rheological systems such as microfluidics [1],
polymer solutions [2], biofilms [3], blood microcirculation
[4], and blood [5,6] demand spatially and time resolved
probing of concentration fields, pressure gradients, velocity
profiles, wall shear stress, and diffusion coefficients. Optical
techniques to measure fluid flow velocity are interesting
because of their noncontact operation and high spatiotemporal
resolution. Typically, optical techniques use a (coherent) light
source to illuminate the sample and detect the fluctuations
of the scattered light. Among conventionally used optical
techniques are laser Doppler flowmetry (LDF) [7], laser
speckle velocimetry (LSV) [8], and particle image velocimetry
(PIV) [9]. In LDF, scattered light interferes with a local
oscillator, and the intensity fluctuations of the detected light
are related to the Doppler shift generated by flow in the
sample. In LSV, the velocity of the scatterers is quantified
by the intensity fluctuations that originate from the movement
of the scatterers through the probing field. In PIV, the flow
velocity is estimated by tracking the position over time of
tracer particles present in the fluid. In LDF, LSV, and PIV the
exact path-length distribution of the scattered light is unknown,
making it impossible to quantify the velocity distribution
deep inside the sample, thereby providing only volumetrically
averaged information of the sample dynamics.

Optical coherence tomography (OCT) is an imaging tech-
nique in which low coherence interferometry is used to produce
path-length resolved complex-valued backscatter profiles of
(biological) samples up to a few millimeters deep [10]. In
OCT, the transverse and longitudinal localization accuracies
are given by the focusing optics and by the coherence of the
light source, respectively. Functional extensions of OCT allow
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for localized measurements of static properties, such as layer
thickness [11], birefringence [12], scattering and absorption
coefficients [13], and scattering anisotropy [14], as well as
sample dynamics, such as longitudinal flow [15] and particle
diffusion [16,17]. Various studies have demonstrated that OCT
can accurately determine the longitudinal component of the
local flow velocity [18,19]. Determination of the transverse
flow velocity has been pursued by analyzing the spectral
bandwidth of the Doppler frequency shift [20–22], by using
two distinct wave vectors for the incident light [23], by
an autocorrelation method [24], by extracting the Doppler
angle from the sample morphology [25], and by dynamic
light scattering [26]. However, up until now no accurate
quantification of the local transverse flow has been achieved.

In this paper, we present a theory for the path-length
resolved OCT signal and its normalized autocorrelation
function for the case of arbitrarily oriented flow in the
presence of diffusion. We validate the theory by measuring
the transverse and longitudinal flow velocities locally in
a colloidal suspension. We show that sample morphology
and flow velocity are determined simultaneously with high
spatiotemporal resolution.

II. MODEL FOR THE NORMALIZED
AUTOCORRELATION OF THE OCT SIGNAL

We start by writing the signal at the detector, following
Ref. [27], as

i(t) = γ
√

Pr (t)Ps(t)Re

∞∫∫∫
−∞

r(x − xs,y − ys,z − zs)

×h(x,y)e−j2k(t)zdx dy dz , (1)

where γ is the photon-to-electron conversion efficiency,
Pr (t) is the reference arm power, Ps(t) is the maximum
sample arm power, Re is the real-part operator, r(x,y,z) is
the backscattering amplitude of the sample, (xs,ys,zs) is the
position of the scattering sample, h(x,y) is the profile of the
transverse illuminating beam, and k(t) = k0 + k1t is the time
dependent wave number, with k = 2π/λ, t ∈ [−T/2,T /2],
with T being the period of the swept laser. We assume that
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the characteristic time constant of the scattering dynamics is
sufficiently smaller than T .

The transverse illuminating beam is assumed to be
Gaussian:

h(x,y) = e
−2 x2

w2
x e

−2 y2

w2
y , (2)

where wx and wy are the beam radii as the (1/e) radius
of the field and the factor of 2 in the exponent accounts for
the coupling efficiency of a single-mode fiber [28]. Note that
the effect of the longitudinal confocal gate is neglected since
for Fourier domain OCT systems the Rayleigh length is, in
general, much larger than the coherence length (280 vs 8.1 μm
for the swept-source OCT system used here).

By inverse Fourier transforming Eq. (1) and assuming
a Gaussian spectral envelope, the OCT signal aOCT (ẑ,t) is
written as [27]

aOCT (ẑ,t) ≈
∞∫∫∫

−∞
r(x − xs,y − ys,z − zs)

×h(x,y)e−j2k0ze
− [ẑ−z]2

w2
z dx dy dz , (3)

where wz is the waist [(1/e) radius] of the coherence function.
For simplicity we restrict the analysis to the (x,z) plane.

Assuming that the reflection r consists of N point scatterers,
Eq. (3) is written as

aOCT (ẑ,t) ≈
∞∫∫

−∞

N∑
ν=1

δ(x − xν)δ(z − zν)

×h(x)e−j2k0ze
− [ẑ−z]2

w2
z dx dz, (4)

with N being the total number of scatterers in the probed
volume and (xν,xν) being the position of the νth scatterer.
Now, solving the integrals, we write the OCT signal as

aOCT (ẑ,t) ≈
N∑

ν=1

e
−2 x2

ν

w2
x e−j2k0zν e

− [ẑ−zν ]2

w2
z . (5)

Assuming stationarity, we write the normalized autocorre-
lation function as

g(ẑ,τ ) = 〈aOCT (ẑ,τ )a∗
OCT (ẑ,0)〉 , (6)

where the asterisk indicates the complex-conjugate operation
and the brackets indicate an ensemble average.

For the application described here we write the position of
the scatterers as a summation of a diffusive and a directional
component [29]:

xν(τ ) = x ′
ν(τ ) + vxτ ,

zν(τ ) = z′
ν(τ ) + vzτ . (7)

Assuming the diffusive motion to be independent of the initial
position of the scatterers, we separate the ensemble average as
the product of a diffusional and a translational average [29,30]:

g(ẑ,τ ) =
N∑

ν,ξ=1

〈
e−j2k0[z′

ν (τ )−z′
ξ (0)]

〉〈
e
−2 [x′

ν (τ )+vx τ ]2

w2
x e

−2
x′
ξ

(0)2

w2
x e−j2k0vzτ

e
− {ẑ−[z′ν (τ )+vzτ ]}2

w2
z e

− [ẑ−z′
ξ

(0)]2

w2
z

〉
. (8)

Now, assuming that the scatterers are randomly placed
throughout the scattering volume, all terms with ν 	= ξ in
Eq. (8) are zero since the diffusive phase terms average
out. Further, the sum can be dropped since all scatterers are
assumed to be identical and all constant terms depending on
N are dropped. The diffusional average is known [31] and has
been measured by OCT in Ref. [16]:

〈e−j2k0[z′(τ )−z′(0)]〉 = e−Dq2τ , τ � 0 , (9)

where D is the diffusion coefficient given by the Stokes-
Einstein equation D = kBTK/6πηr , with kB being Boltz-
mann’s constant, TK being the absolute temperature, η

being the viscosity, and r being the hydrodynamic particle
radius. The absolute value of the scattering vector is q =
4πn sin (α/2)/λ, with n being the refractive index of the
medium, λ being the wavelength in vacuum, and α being the
scattering angle. Generally, OCT is performed in backscat-
tering with low numerical aperture objectives. Further, we
assume no number fluctuations, independence of particle
concentration, and single scattering.

The translational average can be computed as the average
over the initial position of the scatterers [30]:

〈
e
−2 [x′

ν (τ )+vx τ ]2

w2
x e

−2 x′
ν (0)2

w2
x e−j2k0vzτ e

− {ẑ−[z′ν (τ )+vzτ ]}2
w2

z e
− [ẑ−z′ν (0)]2

w2
z

〉

=
∞∫∫

−∞
e
−2 [x+vx τ ]2

w2
x e

−2 x2

w2
x e−j2k0vzτ e

− {ẑ−[z+vzτ ]}2
w2

z e
− [ẑ−z]2

w2
z dx dz ,

(10)

where we have neglected the influence of diffusion on the
amplitude terms. The transverse contribution is similar to that
known in speckle velocimetry [8] and is calculated as∫ ∞

−∞
e
−2 [x+vx τ ]2

w2
x e

−2 x2

w2
x dx = e

− [vx τ ]2

w2
x , (11)

where the spread of vx over the coherence gate is neglected.
Finally, the normalized autocorrelation function of the

complex-valued OCT signal is written as

g(ẑ,τ ) = e−Dq2τ e
− [vx τ ]2

w2
x

∫ ∞

−∞
e−j2k0vzτ

× e
− {ẑ−[z+vzτ ]}2

w2
z e

− [ẑ−z]2

w2
z dz , τ � 0 , (12)

where the exponential term describes the longitudinal diffusive
dynamics, the Gaussian term in front of the integral describes
the transverse directional dynamics, and the integral describes
the longitudinal directional dynamics as a convolution of the
Doppler phase term with the coherence detection gate. The
normalization was taken with respect to g(ẑ,0). Note that this
equation is similar to the one previously derived by Edwards
et al. in the context of laser Doppler flowmetry [30]. The
main difference here is that we have included the coherence
detection gate in the derivation.

III. MATERIALS AND METHODS

A. Optical coherence tomography system

The experiments are performed with a home built fiber-
based swept-source OCT system. The system operates at a
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FIG. 1. Schematic of the experimental swept-source OCT setup.
PD: photodetector, FBG: fiber Bragg grating, PC: polarization
controllers, C: collimating lens, F: focusing lens, and FC: flow
capillary. Gravity is in the z direction.

center wavelength of 1312 nm with a bandwidth of 92 nm
and a sweep frequency of 50 kHz (Axsun Technologies).
The average output power is 20.9 mW, and the duty cycle
is 59.4%. Data are sampled (ATS9350, AlazarTech) with an
interferometrically derived external clock signal at equidistant
wave-number intervals. To ensure phase stability each sweep
is triggered by the signal of a fiber Bragg grating centered at
1266 nm (OE Land) [32]. The interferometric signal is detected
with a 150 MHz balanced photodetector (PDB450C, Thorlabs)
and a 80 MHz low-pass filter (VLF-80+, Mini-Circuits). The
trigger signal is detected with a 125 MHz photodetector (1811,
New Focus). The optics of the sample and reference arms
are composed of a collimating lens (PAF-X-18-C, Thorlabs)
and an achromatic doublet focusing lens (AC254-040-C,
Thorlabs) with a numerical aperture of 0.04. The power ratio
of the sample and reference arms is 90 : 10. We measured
wx = 10.8 ± 0.2 μm and wz = 8.1 ± 0.3 μm in air with a
mirror reflector. For our OCT setup, the spread of q over
the bandwidth is small; therefore, we set q = qc at the
center wavelength and α = 180◦ [16]. A schematic of the
experimental setup is shown in Fig. 1.

Since the longitudinal decorrelation is determined by the
coherence function of the light source, we measured it using a
mirror reflector in air. The dots in Fig. 2 show the coherence
gate of the swept light source measured by translating a
mirror in the longitudinal direction mounted on a piezo-stage
(M-664.164, Physik Instrumente) by steps of 1 μm. As can
be seen, the coherence gate has asymmetric side lobes, which
is attributed to the non-Gaussian shape of the light source.
The coherence gate was fitted as the sum of two Gaussians,
which are shown as the gray dashed lines in Fig. 2. The sum
of the individual Gaussians is shown as the gray solid line.
Note that the formalism presented in Sec. II is not restricted
to a Gaussian spectrum of the light source, where the Fourier
transform in Eq. (1) can be taken with an arbitrary spectral
shape.

B. Flow system

Flow is generated by gravity and directed through a cylindri-
cal glass capillary with an inner diameter of 562 ± 25 μm. The

FIG. 2. Measured coherence gate fitted with the sum of two
Gaussian functions. The dots represent the measured data, the gray
solid line shows the fit to the data, and the gray dashed lines show the
individual Gaussian functions.

flowing suspension consists of 1 vol % Intralipid (Fresenius
Kabi) dissolved in 74 vol % distilled water and 25 vol %
glycerol (Acros Organics). The latter is used to reduce the
Brownian motion of the particles in the suspension. The
capillary is submerged in distilled water to reduce reflections
from the outer glass walls. As a reference, the flow velocity is
quantified by a mass discharge measurement. The measured
refractive index of the medium is n = 1.38.

C. Data analysis

Processing of the data is performed as follows: raw
interferometric data consisting of 1088 data points are Fourier
transformed to calculate the complex-valued OCT signal.
For every path length we calculate the autocovariance of
the real part of the OCT signal over 1000 time-adjacent
acquisitions. This process is repeated 10 times and averaged.
The longitudinal and transverse velocities are determined
in the time domain by fitting the real part of Eq. (12) to
the autocovariance of the data. In this fit, vx and vz are
the free running parameters, while the diffusion coefficient
of the colloidal suspension was set to 1.6 ± 0.2 μm2 s−1, as
measured in a no-flow condition [16].

IV. RESULTS

First, we analyze measurements for transverse flow, i.e.,
perpendicular to the optical beam (θ = 90◦). Figures 3(a)–3(c)
show log-log plots of the magnitude of the Fourier transform
of Eq. (12) for three depths in the capillary overlaid on
the experimental data. Figure 3(a) shows data for a depth
close to the capillary wall (z = −0.85R). The gray dashed
line shows the model in Eq. (12) with only the transverse
directional term and without the contribution of diffusion. A
clear discrepancy is observed for the higher frequency content
of the signal. The gray solid line shows that including the effect
of diffusion [the exponential term in Eq. (12)] demonstrates
good agreement between the directional-diffusive model and
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FIG. 3. Log-log plots of the power spectral density for a perpendicular measurement: (a) at a depth of z = −0.85R close to the capillary
wall, (b) at the center, and (c) at a depth of z = 0.82R. The dots represent measured data, the gray dashed line represents the model with only
directional dynamics, and the gray solid line represents the model including diffusion. (d) Depth resolved flow velocities in the capillary. The
gray parabolas show the confidence interval of the reference velocity measurement. The arrows correspond to the depths shown in (a)–(c).

the data. Figure 3(b) shows a similar plot, but for a depth at the
center of the capillary. The diffusive-directional model also
agrees well with the data. The slight discrepancy at the larger
frequencies is attributed to noise, which is not included in Eq.
(12). Figure 3(c) shows data for a depth of z = 0.82R. As can
be observed, the power at the higher frequencies is slightly
larger (10−4 compared to 10−5 at 20 kHz) than predicted
by theory. We attribute this to noise and multiple scattering
present at larger depths, which can increase the linewidth of the
power spectrum [19,33]. Figure 3(d) shows the measured depth
resolved flow velocity profile through the capillary. The dots
represent mean values over five measurements, and the error
bars show the corresponding standard deviations. The gray
parabolas show the confidence region of the reference velocity
measurement. As can be observed, the computed flow velocity
is in good agreement with the expected reference parabolas.
The velocities obtained from the fit near the solid-liquid
interface are slightly larger than expected from the reference.
We attribute this to the relatively large effect of diffusion
compared to the flow velocity at these locations on the OCT
signal decorrelation.

Next, we analyze measurements for the nonperpendicular
direction. Figure 4 shows results from an experiment in which
the flow velocity vector is oriented at θ = 79.5◦. Again,
Figs. 4(a)–4(c) show log-log plots of the magnitude of the
Fourier transform of Eq. (12) overlaid on the measured data for
three depths. Figure 4(a) shows data for a depth of z = −0.89R

for two cases. For the first case (gray dashed line), the effect
of the longitudinal velocity gradient over the coherence gate

is neglected; that is, the integral in Eq. (12) is replaced by
the Doppler phase term. As can be observed, the frequency
at which the power spectrum peaks corresponds well to the
Doppler frequency shift. However, the Gaussian and exponen-
tial terms describing the transverse directional and longitudinal
diffusive dynamics are not sufficient to describe the broadening
of the Doppler peak. For the second case (gray solid line),
the integration of the coherence gate over the longitudinal
flow profile is included, and as can be observed, the model
is in good agreement with the measurement: the nonuniform
distribution of Doppler frequencies in the scattering volume
in the presence of a longitudinal velocity gradient explains the
additional broadening of the Doppler peak [34]. Figure 4(b)
shows a similar plot, but at a depth corresponding to the center
of the capillary. Here, the additional broadening is negligible
since at the center of the flow profile the flow gradient vanishes
(gray dashed and solid lines are indistinguishable). Figure 4(c)
shows data for the opposite side of the flow profile at a depth
of z = 0.82R. The Doppler broadening is well described by
including the gradient effect. Similar to the results shown in
Fig. 3, at higher frequencies the measured power is larger
than predicted by theory, which is attributed to the effect
of multiple scattering at larger depths [19,33]. The power
spectra shown in Figs. 4(a) and 4(c) are skewed in opposite
directions. This is caused by the asymmetric shape of the
coherence gate due to the non-Gaussian shape of the source’s
spectral shape (cf. Fig. 2). Figure 4(d) shows the measured
depth resolved transverse and longitudinal flow velocities
through the capillary using the reference method and a fit of
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FIG. 4. Log-log plots of the power spectral density for a measurement on a tilted capillary at θ = 79.5◦: (a) depth close to the wall of the
capillary z = −0.89R, (b) depth at the center, and (c) at a depth of z = 0.82R. The dots represent the measured data, the gray dashed line is
the model without the convolution with the coherence gate, and the gray solid line includes it. (d) Depth resolved transverse and longitudinal
flow velocities in the capillary for the two cases described above. The gray parabolas show the bounds of the reference velocity measurement.
The arrows correspond to the depths shown in (a)–(c).

Eq. (12) to the data. The two higher flow velocity profiles
correspond to the transverse velocity determined with and
without the velocity gradient, and the lower flow velocity
profile corresponds to the longitudinal velocity. The error bars
for the longitudinal velocity are indistinguishable in the scale
of the plot. The gray parabolas show the confidence intervals
of the reference velocities. As can be observed, when ignoring
the longitudinal velocity gradient within the measurement
volume, the broadening of the Doppler peak shown in the
previous figures translates into a significant overestimation of
the transverse flow velocity (black dots) away from the center
of the flow channel. The data that include the convolution of the
coherence gate with the longitudinal phase term in Eq. (12)
describe the expected transverse parabolic profile very well
(gray dots). At large depths a small residual deviation of the
transverse velocity is still observable, which we attribute to
multiple scattering effects.

As an example application for simultaneous high speed
imaging of depth resolved sample morphology and quantita-
tive flow, Fig. 5 shows contour plots of the longitudinal and
transverse flow velocities through the cross section of the cap-
illary and the corresponding OCT magnitude image. The flow
velocity vector is tilted at θ = 87.4◦. The images are composed
of 37 depth resolved lines with a total acquisition time of 37
s. Using the described method, the measured maximum flow
velocity vmax =

√
v2

x,max + v2
z,max = 26.3 ± 1.0 mm/s at the

center of the capillary is in good agreement with the reference
velocity of 24.0 ± 2.3 mm/s.

V. DISCUSSION

Our results show that we can determine with high accuracy
both the longitudinal and transverse flow. The maximum
longitudinal and transverse velocities that can be measured are
determined by the Nyquist frequency of the time sampling,
which is limited by the sweep rate of the laser [32]. The
lower bound for the longitudinal velocity is determined
by the signal-to-noise ratio [35]. The lower bound for the
transverse velocity is determined by the fit of Eq. (12) and
the dynamic time constants τ1 = (Dq2)−1 and τ2 = wx/vx .
For small transverse velocities the decorrelation of Eq. (12)
is dominated by the diffusive term given that τ1 � τ2. In
the presence of diffusion an accurate estimation of small
transverse velocities is therefore challenging. However, from
our theoretical analysis we observe that a smaller value
for wx increases the sensitivity towards the lower range of
transverse velocities. However, a smaller wx decreases the
sensitivity for the measurement of the diffusion coefficient
[36]. The presented method can be used to determine with
micrometer spatial resolution both the diffusion coefficient
and the flow velocity from the OCT autocorrelation function
simultaneously with the sample morphology. This provides an
excellent testing ground for, e.g., the study of the behavior
of the diffusion coefficient under shear stress, which is of
paramount importance in studies of shear thinning [37],
liquid-gel transitions [38], and anomalous diffusion [39].
Furthermore, using the presented technique, diffusion and flow
near solid-liquid interfaces and in complex geometries can be
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FIG. 5. (Color online) (a) OCT
magnitude image of the tilted flow
capillary. (b) and (c) Contour plots
of the longitudinal and transverse
flow velocities in the flow channel.
The flow velocity is only computed
in the region of interest determined
by the OCT magnitude image.

studied. These effects are of particular importance in, e.g.,
hemodynamic research, where the shear rate has been shown
to be a major factor in plaque rupture in arteries [40]. Finally,
with the presented technique the effect of flow on rotational
diffusion can be studied [17].

VI. CONCLUSION

We have presented and validated a theory to quantify the
local transverse and longitudinal directional dynamics of a
colloidal suspension by measuring the path-length resolved
autocorrelation function using optical coherence tomography.
In contrast to the studies in Refs. [20–22,26], we have an
analytical theoretical model, which incorporates the effects
of the longitudinal flow velocity gradient and the diffusive

dynamics to accurately measure the longitudinal and trans-
verse flow velocity. Based on this model, we have obtained
accurate results by fitting the model to the measured data
with no free or unknown parameters. Our technique yields the
local velocity and the sample morphology with high spatial
and temporal resolution, which we demonstrated on flow in
a capillary. We anticipate that the presented method opens
up new opportunities for the study of a range of rheological
properties of a variety of (non-)Newtonian fluids in complex
flow geometries.
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