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Abstract In this article a numerical solution of the time

dependent, coupled system equations of magnetohydrody-

namics (MHD) flow is obtained, using the strong-form local

meshless point collocation (LMPC) method. The approxima-

tion of the field variables is obtained with the moving least

squares (MLS) approximation. Regular and irregular nodal

distributions are used. Thus, a numerical solver is developed

for the unsteady coupled MHD problems, using the collo-

cation formulation, for regular and irregular cross sections,

as are the rectangular, triangular and circular. Arbitrary wall

conductivity conditions are applied when a uniform mag-

netic field is imposed at characteristic directions relative to

the flow one. Velocity and induced magnetic field across the

section have been evaluated at various time intervals for sev-

eral Hartmann numbers (up to 105) and wall conductivities.

The numerical results of the strong-form MPC method are

compared with those obtained using two weak-form mesh-

less methods, that is, the local boundary integral equation

(LBIE) meshless method and the meshless local Petrov–

Galerkin (MLPG) method, and with the analytical solutions,
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where they are available. Furthermore, the accuracy of the

method is assessed in terms of the error norms L2 and L∞,

the number of nodes in the domain of influence and the time

step length depicting the convergence rate of the method. Run

time results are also presented demonstrating the efficiency

and the applicability of the method for real world problems.
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1 Introduction

In the fields of physics and engineering, a challenging and

popular problem, which often arising, is the flow of an incom-

pressible, viscous, and electrically conducting fluid in a chan-

nel with partially conducting and partially non-conducting

walls under a uniform transverse magnetic field. The afore-

mentioned problem has many practical applications in the

field of magnetohydrodynamics (MHD).

Magnetohydrodynamics studies the motion of electrically

conducting fluids in the presence of magnetic fields. More

precisely, from the physical point of view, the magnetic field

influences the fluid motion, while, the fluid motion changes

the magnetic field. Thus, the governing equations are inher-

ently coupled in terms of the fluid velocity and the induced

magnetic field. For the first time Hartmann [1] investigated

the MHD flow of a viscous, incompressible, electrically con-

ducting fluid between two parallel plates in the presence of a

transverse magnetic field. Since then, a number of researches

have investigated the flow of an electrically conducting fluid

through channels (ducts) because of its important applica-

tions in MHD generators, pumps, accelerators, flow-meters,

astrophysics, geology, power generation, thermonuclear
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reactor technology, designing cooling systems with liquid

metals, medicine (biofluids and drug delivery), etc. It is

not surprising that a lot of theoretical and experimental

work has been carried out in this direction during the last

decades.

For a limited number of MHD flow problems the solution

can be obtained analytically [2,3]. These analytical solutions

are usually available only for some non-complex geometries,

subject to simple boundary conditions. However, the major-

ity of the problems arising in the real world are difficult to

solve in an analytical way, making the use of numerical meth-

ods inevitable. In the field of numerical computations several

numerical techniques were developed and applied in order

to solve this complex physical problem. Thus, numerous

numerical methods such as FDM, FEM, closely related FVM

and BEM were used for both steady and time-dependent

MHD flows. More precisely, for steady state problems the

authors in [4,5] have used FDM to solve MHD flow through

channels of triangular cross-section for small values of the

Hartmann number. Regarding FEM, solutions were presented

in [6–8] for arbitrary cross-section ducts for Hartmann num-

bers less than M = 10. Moreover, authors in [9] extended

these studies to moderate Hartmann numbers up to M = 100,

using standard FEM with linear and quadratic elements. Fur-

thermore, at [10] the analytical finite element method has

been used to obtain a numerical solution in the limit of the

Hartmann number M ≤ 1,000. Additionally, FEM solution

obtained for high values of M using very fine mesh within

the Hartmann layers [11]. Thus, it was possible to increase

M up to 1,000 and also to use general wall conductivities.

Moreover, in [12] a fundamental solution was derived for

coupled magnetohydrodynamic flow equations and results

were presented for Hartmann number M ≤ 300. Alterna-

tively, BEM have been applied for solving MHD duct flow,

however several problems have risen from the difficulties

of solving huge systems and high computational costs due

to the domain discretization. Papers at [13–17] are repre-

sentative studies on the BEM solutions of MHD duct flow

problems. All these BEM solutions have been obtained for

small and moderate values of Hartmann number (M ≤ 50).

Furthermore, authors in [18] using the finite element method

obtained numerical results for very high values of Hartmann

number up to M = 105.

Numerical solutions of time-dependent MHD flow equa-

tions have been given in two [19] and three dimensions [20],

using finite element methods. In [21] authors proposed a

FDM scheme for three-dimensional unsteady MHD flows

along with a temperature variation using an explicit Runge–

Kutta method for step-by-step computations in time. Addi-

tionally, in [22] a convection–diffusion-reaction model was

presented for solving unsteady MHD flow applying an FDM

on non-staggered grids with a transport scheme in each ADI

(predictor–corrector) spatial sweep. The solution algorithm

in each of these unsteady MHD flow studies is based on

explicit time-stepping schemes starting with the given initial

conditions. Thus, the time increment must be taken very small

to deal with the stability problems, therefore they are com-

putationally expensive. A numerical scheme which is a com-

bination of the dual reciprocity boundary element method

(DRBEM) in space and the differential quadrature method

(DQM) in time has been proposed in [23], for solving

unsteady MHD flow problems in a rectangular duct with insu-

lating walls. The solution procedure can be used with large

time intervals to obtain the solution directly at the required

time value. Computations have been carried out for moderate

values of the Hartmann number.

Over the last decade, owing to the difficulty of the tradi-

tional numerical schemes in the mesh generation, new numer-

ical methods, generally called “meshless” methods (also

called “meshfree” methods), have been developed. Thus,

meshless methods emerged as a potential alternative for solu-

tions in computational mechanics, and a variety of such

approaches have appeared. Several meshfree methods have

been proposed; a review of the relative literature is presented

in [24,25]. It should be noted that the majority of these

methods are not really meshless, since they need to use a

background mesh for the numerical integration. However,

the finite point method (FPM), the point collocation method

(MPC), and the meshless local Petrov–Galerkin (MLPG)

method are inherently meshless methods.

Herein, the meshless point collocation method is used for

the numerical solution of the coupled transient MHD flow in

a straight duct having a rectangular, a triangular and a circular

cross section, respectively. To the authors’ knowledge a very

limited number of research works using meshless strong-

form collocation methods for solving MHD flow problems

exists. Namely, the authors in [25] used the meshless point

collocation method, to solve steady state MHD problems

for rectangular, circular, elliptical and irregular cross section

for high Hartmann numbers up to M = 100,000. element

free-Galerkin (EFG) method was used in [26] to solve the

steady-state MHD flow. The formulation was applied to the

study of two-dimensional magnetohydrodynamic flow prob-

lems for moderate Hartmann numbers (M = 500), and as the

authors claimed, the computed results confirm the accuracy

and correctness of the proposed formulation. Moreover, var-

ious weak-form meshless methods have been applied for the

solution of unsteady MHD flows. Authors in [27] used the

local boundary integral equation (LBIE) meshless method to

obtain the numerical solution of the coupled equations for

the velocity and the magnetic field for unsteady MHD flow

through a pipe of rectangular and circular sections with non-

conducting walls for low Hartmann numbers up to M = 40.

The MLPG method was used in [28] for the numerical solu-

tion of the coupled equations in velocity and magnetic field

for unsteady MHD flow through a pipe of rectangular section
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having arbitrary conducting walls. Results were presented for

different Hartmann numbers up to 40.

As it is refereed in [29], hitherto, there has been less

research devoted to MFree strong-form methods, compared

to weak-form descriptions. This may be partly attributed to

the fact that the MFree strong-form method may be less sta-

ble than the one based on the weak-form, and partly because

research was concentrated on the finite element methods

(FEM) which use weak-form descriptions and thus, it was a

natural step to adopt the weak-form in MFree methods. In the

present paper, a strong-form meshless method is used for the

unsteady coupled MHD problems for rectangular, triangular

and circular cross sections. The solution is obtained using

the collocation formulation and the moving least squares

(MLS) approximation. Nevertheless, imposing the bound-

ary conditions is not a straightforward procedure. It is due

to the fact that the PCM is based on MLS approximations,

which are usually approximants and not interpolants. Elimi-

nation of this difficulty requires the introduction of additional

unknown parameters, such as Lagrange multipliers, however,

it can lead to poor conditioning of the matrix equations [26].

In the present article, we use an interpolatory formulation

for MLS approximants that allows the direct introduction

of boundary conditions, reduces the processing time and

improves the condition numbers, as in [25,26,29]. The for-

mulation is applied to the study of two-dimensional mag-

netohydrodynamic flow problems, and the computed results

confirm the accuracy and correctness of the proposed formu-

lation. Velocity and induced magnetic field across the section

have been calculated and the contour plots at various time

levels, for low (M ≤ 100), moderate (100 ≤ M ≤ 1,000),

and high Hartmann (M ≥ 1,000) numbers, are presented. A

variety of wall conductivity conditions are applied when a

uniform magnetic field is imposed perpendicular to the flow

direction. Regular and irregular nodal distributions are used,

ensuring the positivity conditions [30]. The numerical results

of the strong-form LMPC method are compared with those

obtained using two weak-form meshless methods, that is, the

LBIE meshless method and the MLPG method or the analyt-

ical solutions, where they are available. Additionally, for the

demonstration of the accuracy and efficiency of the LMPC

method, we present the error norms L2, L∞, the convergence

rate and the run time of the method.

2 Physical problem, governing equations and boundary

conditions

The unsteady MHD flows are governed by a set of partial

differential equations (PDEs), originated from both Navier–

Stokes and Maxwell equations, for the conducting fluids and

for the electromagnetic fields, respectively [26,31]. Thus,

ρ
∂u

∂t
+ ρ (u · ∇) · u = −∇ p + µ∇2u + J × B

+ρe E,∇ · u = 0, (1)

∇ × E = 0, ∇ · E =
ρe

ε0
, (2)

J = σ (E + u × B) + ρeu, (3)

∇ × B = µe J, ∇ · B = 0, (4)

where u is the velocity field, µ is the coefficient of viscosity

of the fluid, p is the pressure, B is the entire magnetic field

(external and induced), E is the induced electric field, σ is

the constant electrical conductivity, ρe is the electric charge

density, ε0 is the electric permittivity of free space, µe is the

magnetic permeability and ρ the mass density. The vector J

stands for the conduction electric current density.

We consider the unsteady, laminar flow of a viscous,

incompressible and electrically conducting fluid driven by a

constant applied pressure gradient in a duct having a bound-

ary described by the parametric expression

f (x, y) = 0. (5)

To specify the problem, it is supposed that the velocity

is zero at rigid boundaries, while the fluid motion is fully

developed (the duct is assumed to be of infinite length) and

the sides of the duct are electrically insulated or having vari-

able conductivity. Furthermore, the analysis will be restricted

to a plane which is perpendicular to the direction of the fluid

stream. The axis of the duct is chosen as the z-direction.

Thus, by convention the constant external magnetic field B0

is imposed along a random vector having an angle ϕ with the

y-axis. It is also assumed that all physical quantities (except

the pressure p) are independent of z-directional coordinates.

So, there is only one component Vz(x, y, t) of the velocity

field and one component Bz(x, y, t) of the induced magnetic

field in the z-direction and there is no net current flow in the

z-direction. Thus, the z components of the governing equa-

tions becomes

µ∇2Vz +
(B0)x

µe

∂ Bz

∂x
+

(B0)y

µe

∂ Bz

∂y
=

∂p

∂z
+ ρ

∂Vz

∂t
,

(6)

∇2 Bz + σµe(B0)x

∂Vz

∂x
+ σµe(B0)y

∂Vz

∂y
=

ρ

µ

∂ Bz

∂t
.

Thus, the partial differential equations in non-dimensional

form in terms of velocity V (x, y, t) and the induced magnetic

field B(x, y, t) are

∇2V + Mx

∂ B

∂x
+ My

∂ B

∂y
= −1 +

∂V

∂t
,

(7)

∇2 B + Mx

∂V

∂x
+ My

∂V

∂y
=

∂ B

∂t
,

where the non-dimensionalization was performed with a

characteristic length L0 and a characteristic velocity V0
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(mean axis velocity). The dimensionless variables are

x(dimensionless) =
x

L0
, y(dimensionless) =

y

L0
,

V =
Vz

V0
, B =

(σµ)−
1
2 Bz

V0µe

,

V0 =
−L2

0
∂p
∂z

µ
, t (dimensionless) =

tµ

L2
0ρ

(8)

and M is the Hartmann number given by

M =
B0 L0

√
σ

√
µ

. (9)

Regarding the boundary conditions, having variable elec-

trical conductivity on the walls of the duct means that we

have mixed-type boundary conditions for the magnetic field,

giving

∂ B

∂n
+ λB = 0 (10)

on the boundary of the flow region ∂� in dimensionless form.

Here λ = σ L0/σ
′h, where σ ′ is the electric conductivity at

the walls, h is the thickness of the walls which is assumed to

be small and n is the outward normal direction. When λ = 0,

the walls are perfectly conducting and as λ → ∞ the walls

are considered insulated. The initial conditions are

V (x, y, 0) = 0, B(x, y, 0) = 0, (x, y) ∈ �. (11)

3 Moving least squares approximation

Numerous techniques in the area of the meshless methods

have been developed in order to construct shape functions

[32]. The most widely used methods are the MLS approxi-

mation [33] and the radial point interpolation method (RPIM)

[34]. Among these methods, the MLS one has been widely

used for function approximation. The advantages of MLS can

be summarized as follows; firstly, there is no need for pre-

defined mesh connectivity during the construction of MLS

shape functions. Secondly, the high-order continuity of shape

functions eliminates the necessity of solving the weak-forms

of governing equations; and, finally, the availability of smooth

derivatives eliminates the need for costly procedure of gra-

dient approximation and recovery. Even though, there is an

alternative way to generate derivatives of shape functions for

the point collocation scheme [35,36], the classical method-

ology, presented in [32], was adopted.

3.1 Methodology

In the moving least-squares technique, the approximation

uh(x) is expressed as the inner product of a vector of the

linearly independent polynomial basis, p(x) and a vector

of the unknown coefficients, a(x), to be determined by the

approximation algorithm

uh(x) =
m

∑

i=1

pi (x)αi (x) ≡ pT (x)a(x), (12)

where p(x) ∈ R
m, a(x) ∈ R

m and m is the number of mono-

mials in the polynomial basis (We use the polynomial basis

of second order). The polynomial basis of order m in one and

two dimensions are given by

pT (x) = [1, x, x2, . . . , xm], (13)

pT (x) = pT (x, y)

=[1, x, y, x2, xy, y2, . . . , xm, . . . , xym−1, ym].
(14)

Herein, we use a second order (m = 2) polynomial basis,

obtaining

pT (x) = [1, (x − xi ), (y − yi ), (x − xi )
2,

(x − xi )(y − yi ), (y − yi )
2]. (15)

The local character of the MLS approximation can be

viewed as a generalization of the traditional least-squares

approximation in which the vector a is not a function of

x. Equation (12) is referred to as the global least-squares

approximation. In addition, there exists a unique local

approximation associated with each point in the domain. In

order to determine the form of a(x), a weighted discrete error

norm,

J (x) =
n

∑

I=1

wI (x)

⎡

⎣

m
∑

j=1

pT
j (x I )a(x) − u I

⎤

⎦

2

(16)

is constructed and minimized. Here, wI (x) ≡ w(x − x I )

denotes the weight function associated with node I , and

the quantity in brackets is the difference between the local

approximation at node I and the data at node I , u I , and n

is the number of nodes in the support domain of wI (x). The

minimization of Eq. (16) with respect to a(x) determines

a(x). The local approximation associated with point x is

only used in the minimization process, and is equivalent to

the global approximation at the single point x. Compact sup-

port of the weight functions provides the local character the

moving least-squares method.

3.2 Shape functions and their derivatives

The minimization of Eq. (16),

∂ J (x)

∂a(x)
= 0, (17)

results in the linear system

A(x)a(x) = B(x)U s, (18)

123



Comput Mech (2011) 47:137–159 141

Fig. 1 a Spatial domain and

nodal distribution, b support

domain illustration

(a) (b)

constant number 

where U s is a vector containing the nodal data, UT
s =

[u1, u2, . . . , un], and

A(x) =
n

∑

I=1

wI (x) p(x I ) pT(x I ), (19)

B(x) = [w1(x) p(x1) w2(x) p(x2) · · · wn(x) p(xn)], (20)

where A ∈ R
m×m and B ∈ R

m×n. The matrix A must be

inverted at every sampling point. Substitution of the solution

of Eq. (18) into the global approximation (Eq. (12)), com-

pletes the least-squares approximation.

uh(x) = pT(x)A−1(x)B(x)
︸ ︷︷ ︸

φ(x)

U s . (21)

Here, the spatial dependence has been lumped into one

row matrix, φ(x), and the approximation therefore takes the

form of a product of a matrix of shape functions with a vec-

tor of nodal data. Derivatives of the shape functions may be

calculated by applying the product rule to

φ = pT A−1 B. (22)

In order to obtain the spatial derivatives of the approxima-

tion function uh(x), it is necessary to obtain the derivatives

of the MLS shape functions φi (x),

∂

∂x j

uh(x) =
∂

∂x j

n
∑

i=1

φi (x)ui

=
n

∑

i=1

{
∂

∂x j

φi (x)

}

ui , x j = x, y, z. (23)

The derivative of the shape function is given as

∂φ(x)

∂x j

=
∂( pT A−1 Bi )

∂x j

=
∂ pT

∂x j

A−1 Bi + pT ∂(A−1)

∂x j

Bi

+ pT A−1 ∂ Bi

∂x j

, x j = x, y, z (24)

where ∂(A−1)
∂x j

= −A−1(x)
∂ A(x)
∂x j

A−1(x). Regarding the sec-

ond order derivative of the unknown function we get

∂2φ(x)

∂x2
j

=
∂

∂x j

(
∂φ(x)

∂x j

)

=
∂

∂x j

(

∂ pT

∂x j

A−1 Bi + pT ∂(A−1)

∂x j

Bi + pT A−1 ∂ Bi

∂x j

)

=
∂2 pT

∂x2
j

A−1 Bi +
∂ pT

∂x j

∂(A−1)

∂x j

Bi +
∂ pT

∂x j

A−1 ∂ Bi

∂x j

+
∂ pT

∂x j

∂(A−1)

∂x j

Bi + pT ∂2(A−1)

∂x2
j

Bi + pT ∂(A−1)

∂x j

∂ Bi

∂x j

+
∂ pT

∂x j

A−1 ∂ Bi

∂x j

+ pT ∂(A−1)

∂x j

∂ Bi

∂x j

+ pT A−1 ∂2 Bi

∂x2
j

,

(25)

where x j = x, y, z and ∂2(A−1)

∂x2
j

= − ∂(A−1)
∂x j

AA−1 − A−1 ∂ A
∂x j

A−1 − A−1 A ∂(A−1)
∂x j

.

3.3 Weight function

The weight function is non-zero over a small neighborhood

of xi , called the support domain of node i . The choice of

the weight function W (x − xi ) affects the resulting approx-

imation uh(xi ) significantly. In the present paper a Gaussian

weight function is used [32,37], yet the support domain does

not have a standard point density value. Instead, a constant

number of nodes are used for the approximation of the field

function, Fig. 1.

W (x − xi ) ≡ W (d) =

{

e
−

(
dI
a

)2

0

}

, (26)

where I = 1, 2, 3, . . . , q are the nodes that produce the sup-

port domain of node xi , and d = |x−xi |
a2

0

with a0 a prescribed

constant (often a0 = 0.2).
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4 Meshless point collocation method

The meshless point collocation method is a meshless “strong-

form” description one. The “strong-form” description of the

governing equations and boundary conditions is used and dis-

cretized by collocation techniques. The aforementioned for-

mulations possess the following attractive advantages. They

are truly meshless and the implementing procedure is

straightforward, while the algorithms and the implementa-

tion can be kept simple, particularly when handling problems

with Dirichlet boundary conditions [32]. Under these con-

ditions, strong-form methods are highly efficient computa-

tionally, even with polynomial approximation functions, and

the solution can be systematically obtained with increased

accuracy, compared to FEM, FDM, or other computational

methods. In general, MFree strong-form methods may still

suffer from some local stability and accuracy issues, depend-

ing on the problem [32]. However, these local restrictions

are now systematically avoided with the utilization of Type-

I nodal distribution and proper local point cloud refinement

procedures, in accordance with [25], even for natural or mixed

type boundary conditions.

In this section we present collocation scheme using the

MLS approximation to spatially discretize the unsteady

homogeneous diffusion equation. We also present a

θ -weighted time-stepping scheme for temporal discretiza-

tion. The use of an interpolatory formulation for MLS approx-

imants, allows the direct introduction of boundary conditions,

reduces the processing time and improves thus the condition

numbers.

Consider the governing equations of the unsteady problem

∇2V + Mx

∂ B

∂x
+ My

∂ B

∂y
= − f1 +

∂V

∂t
, (27)

∇2 B + Mx

∂V

∂x
+ My

∂V

∂y
= f2 +

∂ B

∂t
, (28)

where f1 = 1 and f2 = 0. We use these symbols for the sake

of generalization. The boundary conditions are

∂ B

∂n
+ λB = 0, V = 0, (x, y) ∈ ∂�

on the boundary of the flow region and, the initial conditions

are

V (x, y, 0) = 0, B(x, y, 0) = 0, (x, y) ∈ �.

By the MLS approximation we get u(x, t) =
∑N

i=1 �i (x)

ui (t) ≡ �U s for the unknown function, uq(x, t) =
∑N

i=1
∂�i (x)

∂q
ui (t) ≡ �qU s for the partial x, y derivative,

and uqq(x, t) =
∑N

i=1
∂2�i (x)

∂q2 ui (t) ≡ �qqU s for the second

x, y partial derivative. Additionally, we set nd as the number

of nodes in the interior and nb as the number of nodes on the

boundary and the total number of nodes as N (N = nd + nb).

The first equation, Eq. (27), can be written as

∂V

∂t
+

(

−∇2V − Mx

∂ B

∂x
− My

∂ B

∂y

)

= 1. (29)

From the notation described above and using the Euler’s

θ -weighted time-stepping scheme for temporal discretiza-

tion, for the interior nodes we get

�d

V n+1 − V n

δt
+ θ

(

−(�d,xx + �d, yy)V n+1

− Mx�d,x Bn+1 − My�d, y Bn+1
)

+(1 − θ)
(

−(�d,xx + �d, yy)V n − Mx�d,x Bn

− My�d, y Bn
)

= f n+1. (30)

Multiplying both parts with δt we can write

�d V n+1 − �d V n + θδt
(

−
(

�d,xx + �d, yy

)

V n+1
)

+ θδt
(

−Mx�d,x Bn+1
)

+ θδt
(

−My�d, y Bn+1
)

+ (1 − θ)δt
(

−
(

�d,xx + �d, yy

)

V n
)

+ (1−θ)δt
(

−Mx�d,x Bn
)

+(1 − θ)δt
(

−My�d, y Bn
)

= δt f n+1 (31)

and as matrix notation for the interior nodes nd and incor-

porating the boundary conditions at nb boundary nodes we

have

[

�d + θδt (−(�d,xx + �d, yy)) θδt (−Mx�d,x) + θδt (−My�d, y)

GV �b 0

] [

V n+1
N

Bn+1
N

]

=
[

� − (1 − θ)δt (−(�d,xx + �d, yy)) −(1 − θ)δt (−Mx�d,x) − (1 − θ)δt (−My�d, y)

0 0

] [

V n
N

Bn
N

]

+
[

δ t f n+1
1

gn+1
1

]

,

(32)

where GV is the operator defining the boundary conditions.

These equations can be written in a more compact manner

by setting
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H+
A =

[

�d + θδt
(

−
(

�d,xx + �d, yy

))

θδt
(

−Mx�d,x

)

+ θδt
(

−My�d, y

)

GV �b 0

]

,

H−
A =

[

�d − (1 − θ) δt
(

−
(

�d,xx + �d, yy

))

− (1 − θ) δt
(

−Mx�d,x

)

− (1 − θ) δt
(

−My�d, y

)

0 0

]

,

F A =

[

δt f n+1
1

gn+1
1

]

,

where H+
A ∈ R

N×2N , H−
A ∈ R

N×2N , F A ∈ R
N×1 and

0 ∈ R
nd×1.

Using the same procedure for Eq. (28) we obtain (in matrix

notation)

H+
B =

[

θδt
(

−Mx�d,x

)

+ θδt
(

−My�d, y

)

�d + θδt
(

−
(

�d,xx + �d, yy

))

0 G B�b

]

,

H−
B =

[

− (1 − θ) δt
(

−Mx�d,x

)

− (1 − θ) δt
(

−My�d, y

)

�d − (1 − θ) δt
(

−
(

�d,xx + �d, yy

))

0 0

]

,

F B =

[

δt f n+1
2

gn+1
2

]

,

where H+
B ∈ R

N×2N , H−
B ∈ R

N×2N and F B ∈ R
N×1.

The final system of the uncoupled partial differential equa-

tions of the MHD flow can be obtained as
[

H+
A

H+
B

] [

V n+1

Bn+1

]

=
[

H−
A

H−
B

] [

V n

Bn

]

+
[

F A

F B

]

(33)

Finally, setting

un =
[

V n

Bn

]

, F =
[

F A

F B

]

, Q+ =
[

H+
A

H+
B

]

,

Q− =
[

H−
A

H−
B

]

,

Eq. (27) then take the form

un+1 = ( Q+)−1( Q−un + F) (34)

where Q+ ∈ R
2N×2N , Q− ∈ R

2N×2N and F ∈ R
2N×1.

5 Numerical results

5.1 Unsteady MHD flow in a rectangular duct

with insulating or conducting walls

As a first numerical example, we examined a laminar, incom-

pressible and electrically conducting fluid in a square duct

with variable wall conductivity, with the applied magnetic

field along the direction of x-axis, as shown in Fig. 2.

The coupled MHD equations, discretized with the mesh-

less point collocation method, are solved using various types

of boundary conditions at a square pipe (|x | ≤ 1, |y| ≤ 1).

In order to establish the validity of the numerical results, we

first solved the steady state MHD flow problem, followed the

unsteady flow case and reaching the steady-state solution as

τ → ∞ for the time domain (0, τ ). The Type-I nodal dis-

tribution of the spatial domain � is used, providing the con-

vergence of the discrete Laplacian operator [38]. Numerical

results are presented at different time intervals for selected

nodes at small, moderate and high Hartmann numbers. The

numerical results were compared with those obtained from

others weak-form meshless numerical methods or the ana-

lytical solutions.

Case 1: Insulating walls

In Figs. 3 and 4, the velocity and the induced magnetic

field contours are presented at the steady state case for low

x
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Fig. 2 Square section of the duct with variable wall conductivity
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Fig. 3 Contours of velocity and induced magnetic field for M = 5 and λ → ∞

Fig. 4 Contours of velocity and induced magnetic field for M = 20 and λ → ∞

Hartmann numbers M = 5 and M = 20, respectively, for

non-conducting walls (λ → ∞). Furthermore, numerical

results are obtained for various time steps. As the Hartmann

number increases the time step δt needs to obtain smaller val-

ues in order to increase the accuracy. Thus, for low Hartmann

numbers (M ≤ 50) the calculations are performed using a

time step δt = 0.005, having the total number of regular

distributed nodes N = 961. On the other hand, for moderate

Hartmann numbers (M ≤ 1,000) the time step is decreased

to δt = 0.001. As the Hartmann number increases, bound-

ary layers are formed and the numerical solutions are very

sensitive to the presence of unwanted oscillations. In order

to avoid these oscillations the nodal distribution is again reg-

ular, with an aspect ratio 2:1, however, since the boundary

layers are formed at x = 1and x = −1. The numerical results

are compared with those obtained using the local boundary

integral method (LBIE) [27] and the meshless-local Petrov–

Galerkin (MLPG) method [28]. The comparison reveals that,

as time increases the numerical solutions of the proposed

scheme for the velocity and the induced magnetic field tend

to the exact solution of the steady state problem [3]. More

precisely, Tables 1 and 2 present the numerical solutions of

velocity for some selected points at different times for M = 5

and M = 20, respectively.

For future validation purposes, Table 3 presents the numer-

ical results of the velocity, with LMPCM, for selected points

at distinct time values for M = 500. For high Hartmann

numbers the solution reach the steady state in a small period

of time, and numerical results are presented for times values

near the initial one t = 0. Results obtained with FEM in [18]

are also presented.

As the Hartmann number is increased, M = 1,000 and

M = 10,000 (Fig. 5), the velocity of the flow becomes more

uniform throughout the region. However, at a very narrow

part of the domain, adjacent to the walls, boundary layers are

formed, initially near the boundaries x = 1 and x = −1,

(Figs. 3, 4) and finally, next to all of the boundaries (Fig. 5).

A layer formation is also observed for the induced magnetic

field, emanating from the boundaries x = 1 and x = −1.

The layers of the insulated walls are of order O(1/M) [31].

Case 2: Conducting walls

Now, we consider the unsteady MHD flow in a duct with

arbitrary conductivity on the walls of the duct. A constant

variation is assumed for each time step and the problems is

solved on the time domain (0, τ ) as τ → ∞ up to Hart-

man numbers M = 300 and λ = 300. Figure 6 shows the
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Table 1 Numerical solution of velocity for some selected points at different times for non-conducting walls and M = 5

(x, y) Numerical method t = 0.1 t = 0.2 t = 0.5 t = 1.0 Steady state (=exact)

(0.00,0.00) LMPC 0.09050 0.14346 0.17060 0.17159 → 0.17160

LBIE 0.09366 0.14398 0.17009 0.17105 → 0.17160

MLPG 0.0944 0.1450 0.1708 N/A → 0.1716

(0.25,0.25) LMPC 0.08662 0.13446 0.16061 0.16161 → 0.16162

LBIE 0.08717 0.13144 0.15728 0.15832 → 0.16162

MLPG 0.0902 0.1361 0.1610 N/A → 0.1616

(0.25,0.50) LMPC 0.07969 0.11764 0.13772 0.13849 → 0.13850

LBIE 0.07991 0.11449 0.13478 0.13558 → 0.13850

MLPG 0.0813 0.1223 0.1489 N/A → 0.1385

(0.00,0.25) LMPC 0.08904 0.13871 0.16383 0.16474 → 0.16475

LBIE 0.09200 0.13915 0.16331 0.16420 → 0.16475

MLPG 0.0928 0.1403 0.1641 N/A → 0.1648

(0.25,0.00) LMPC 0.08800 0.13902 0.16728 0.16837 → 0.16837

LBIE 0.08868 0.13594 0.16386 0.16500 → 0.16837

MLPG 0.0917 0.1406 0.1676 N/A → 0.1684

(0.00,0.50) LMPC 0.08179 0.12120 0.14049 0.14120 → 0.14121

LBIE 0.08411 0.12142 0.13998 0.14066 → 0.14121

MLPG 0.0850 0.1225 0.1408 N/A → 0.1412

(0.25,0.75) LMPC 0.05733 0.07860 0.08951 0.08993 → 0.08994

LBIE 0.05729 0.07687 0.08765 0.08808 → 0.08994

MLPG 0.0592 0.0794 0.0898 N/A → 0.0899

velocity, along the x-axis, for M = 2 and λ = 10, 100 at

different time levels, while Fig. 7 shows the velocity, along

the x-axis, for λ = 100 and M = 4, 5, respectively. In this

way, it is possible the comparison of the present results with

corresponding results of Figs. 2 and 3, obtained with MLPG

method in [28]. Simultaneously, we can see how the Hart-

mann number and the conductivity parameter λ, affect the

transition time to the steady state.

Figure 8 presents the contour plots of the induced mag-

netic field for two limiting cases, that is, when the walls

are conducting (λ = 0) and when the walls are insulating

(λ → ∞) at steady state for M = 5. One can observe that

in the conducting walls case (λ = 0), the induced mag-

netic field contours are practically perpendicular to the walls.

When λ increases (λ → ∞ means the walls are insulated),

the induced magnetic field contours obtain the behavior of

the solution of the MHD flow with insulated walls. Addition-

ally, Fig. 9 presents the velocity field for different values of

wall conductivity.

In order to observe the effect of the Hartmann number M

on the flow we present the velocity and the induced mag-

netic field line contours at Fig. 10, for M = 20, 300 and

conductivity parameter λ = 0. In the velocity contour lines,

we observe that the flow is separated symmetrically in the

y-direction, due to the applied magnetic field in the direction

of x-axis and to the pure conductivity of the wall (λ = 0).

As M increases the separation is more pronounced, the fluid

is nearly stagnant at the centre region, while boundary layers

are formed close to the boundaries at y = ±1.

At Fig. 11, a similar behavior for increasing M is depicted

for the velocity and the induced magnetic field at λ = 5. It

can be noticed that, when the conductivity of the walls in

increased, then the fluid is more stagnant at the centre region

of the duct.

Finally, in order to demonstrate the applicability of the

proposed scheme, we present the contour plots of the induced

magnetic field and the velocity field for Hartmann number

M = 300 and high values of conductivity parameter λ =
100, 300 at Fig. 12.

5.2 Unsteady MHD flow in a rectangular duct

with insulating walls, under the influence

of an oblique magnetic field

As a second numerical example, we examined a laminar,

incompressible and electrically conducting fluid in a square

duct with insulating walls where the applied magnetic field

configure an angle ϕ with the y-axis as shown in Fig. 13.
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Table 2 Numerical solution of velocity for some selected points at different times for non-conducting walls and M = 20

(x, y) Numerical method t = 0.025 t = 0.05 t = 0.10 t = 0.15 Steady state (=exact)

(0.00,0.00) LMPC 0.02489 0.04389 0.04986 0.04991 → 0.04992

LBIE 0.02479 0.04345 0.04986 0.04990 → 0.04992

MLPG N/A 0.0440 0.0499 0.0499 → 0.0499

(0.50,0.00) LMPC 0.02292 0.03712 0.04915 0.04975 → 0.04976

LBIE 0.02147 0.03479 0.04877 0.04966 → 0.04976

MLPG N/A 0.0370 0.0493 0.0498 → 0.0498

(0.00,0.25) LMPC 0.02488 0.04379 0.04960 0.04966 → 0.04966

LBIE 0.02478 0.04331 0.04959 0.04962 → 0.04966

MLPG N/A 0.0439 0.0497 0.0497 → 0.0497

(0.25,0.25) LMPC 0.02459 0.04183 0.04941 0.04956 → 0.04957

LBIE 0.02407 0.04010 0.04925 0.04946 → 0.04957

MLPG N/A 0.0419 0.0485 0.0490 → 0.0496

(0.50,0.25) LMPC 0.02291 0.03703 0.04872 0.04929 → 0.04930

LBIE 0.02146 0.03449 0.04827 0.04911 → 0.04930

MLPG N/A 0.0370 0.0489 0.0493 → 0.0493

(0.00,0.50) LMPC 0.02474 0.04259 0.04766 0.04771 → 0.04772

LBIE 0.02459 0.04206 0.04754 0.04757 → 0.04772

MLPG N/A 0.0428 0.0477 0.0478 → 0.0477

(0.25,0.50) LMPC 0.02445 0.04072 0.04732 0.04744 → 0.04745

LBIE 0.02390 0.03879 0.04694 0.04711 → 0.04745

MLPG N/A 0.0409 0.0475 0.0475 → 0.0475

(0.50,0.50) LMPC 0.02280 0.03608 0.04621 0.04667 → 0.04668

LBIE 0.02132 0.03374 0.04549 0.04616 → 0.04668

MLPG N/A 0.0361 0.0464 0.0468 → 0.0467

(0.25,0.75) LMPC 0.02182 0.03314 0.03721 0.03728 → 0.03730

LBIE 0.02125 0.03177 0.03670 0.03679 → 0.03730

MLPG N/A N/A N/A N/A

Table 3 Numerical solution of velocity for some selected points at different times for non-conducting walls and M = 500

(x,y) t = 0.015 t = 0.025 t = 0.040 t = 0.050 Steady state (LMPCM) FEM

(0.00,0.00) 0.001913 0.001750 0.001981 0.002080 → 0.002000 0.002000

(0.50,0.00) 0.001995 0.001959 0.001967 0.002008 → 0.002000 0.002000

(0.00,0.25) 0.001913 0.001750 0.001981 0.002080 → 0.002000 0.002000

(0.25,0.25) 0.001932 0.001808 0.001984 0.002051 → 0.002000 0.002000

(0.50,0.25) 0.001995 0.001959 0.001967 0.002008 → 0.002000 0.002000

(0.00,0.50) 0.001913 0.001750 0.001981 0.002080 → 0.002000 0.002000

(0.25,0.50) 0.001932 0.001808 0.001984 0.002051 → 0.002000 0.002000

(0.50,0.50) 0.001995 0.001959 0.001967 0.002008 → 0.002000 0.001999

(0.25,0.75) 0.001932 0.001808 0.001984 0.002051 → 0.002000 0.002000

The numerical solutions of various Hartmann numbers

are obtained for several time steps and at selected nodes.

The results for M = 5, M = 50 and M = 500 and angle

ϕ = π
3

are presented. The number of nodes used is 1681,

1681 and 6561 respectively, and δt = 0.005, the same as

before, since low and moderate Hartmann numbers are exam-

ined. In Tables 4 and 5, the values of the velocity V are pre-

sented for future validation. Contour plots of the velocity

field and the induced magnetic field for Hartmann numbers

M = 50, 100, 500 are presented at Fig. 14.
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Fig. 5 Contours of velocity and induced magnetic field for a M = 1,000 and b M = 10,000 for λ → ∞

Fig. 6 Velocity along the x-axis for M = 2 and λ = 10, 100 at different time levels

5.3 Unsteady MHD flow in a triangular duct with insulating

walls

As an irregular cross section for an MHD flow, we examined

the case of a triangular cross section as shown in Fig. 15. The

applied magnetic field is oblique, having an angle ϕ with the

y-axis.

The geometry in Fig. 15 is irregular and, inevitably, it is

difficult to have the nodes regularly distributed. However, this

obstacle has been overcame, following a procedure devel-

oped in [37]. Therein, a nodal distribution of the Type-I was

used, embedded at the prescribed geometry and, ensuring the

convergence and the stability of the discrete harmonic oper-

ator [38]. Defining the methodology for the construction of

an embedded regular grid of Type-I, we address the follow-

ing steps. Initially, the spatial dimensions of the geometry

are defined. Then, a regular grid containing the geometry is

constructed (Fig. 16). Finally, the grid is confined into the

boundaries of the geometry. Attention should be taken, such

that no degenerated nodes on the boundary exist.
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Fig. 7 Velocity along the x-axis for λ = 100 and M = 4, 5 at different time levels

Fig. 8 Induced magnetic field for a variable conductivity with λ = 0; b insulated walls for (λ → ∞), M = 5

Fig. 9 Velocity field for variable conductivity with a λ = 5; b λ = 30

For the triangular pipe with non-conducting walls

(λ → ∞), the steady state numerical solution is also obtai-

ned. Hartmann numbers up to M = 100,000 were examined

and the results for the velocity and the induced magnetic

field are presented at prescribed locations. The numerical

solutions of the velocity field and the induced magnetic field

are presented at Table 6 for Hartmann number M = 500.

The values are calculated at selected points for distinct time
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Fig. 10 Contours of velocity

and induced magnetic field for

λ = 0 and a M = 20,

b M = 300

Fig. 11 Contours of velocity

and induced magnetic field for

λ = 5 and a M = 50,

b M = 300
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Fig. 12 Contours of velocity and induced magnetic field for M = 300 when a λ = 100 and b λ = 300

steps. As the Hartmann number gradually increases, the time

step δt needs to obtain smaller values in order to increase

the accuracy. Thus, for moderate Hartmann numbers (100 ≤
M ≤ 1,000) the calculations are performed using a time

step δt = 0.001 and for total number N = 4,961 of regu-

larly distributed nodes. Boundary layers are formed as the

Hartmann number increases, and the numerical solutions are

very sensitive to the presence of unwanted oscillations.

The unwanted oscillations alter the numerical results, giv-

ing inaccurate solutions. Several strategies for meshless

methods were developed, such as nodal refinement, enlarge-

ment of the local support domain, fully upwind support

domain, and adaptive upwind support domain [39]. All the

aforementioned methods have several advantages and dis-

advantages. In view of nodal refinement, the increase at the

number of nodes offers more accurate results, although there

is a proportional increase in the computational time. By

enlarging the local support domain one captures the upstream

information more efficiently but the accuracy of the solution

is reduced [27]. This can be more evident whenever regions

with high gradients are present. By using an upwind support

domain, the accuracy and stability is improved for problems
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Fig. 13 Square section of the duct with variable wall conductivity

with high Hartmann numbers, still it gives very poor results

for low and moderate Hartmann ones. Thus, the nodal refine-

ment with an aspect ratio 2:1 was adopted. In Fig. 17 the plots

of the velocity and the induced magnetic field are presented

for Hartmann numbers M = 100, 1,000 and 10,000, with-

out the presence of the unwanted oscillations and following
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Table 4 Numerical solution of

velocity for some selected

points at different times for

non-conducting walls and

M = 5, 50

(x, y) t = 0.1 t = 0.2 t = 0.5 t = 1.0 Steady state (=exact)

(0.00,0.00)

M = 5 0.09086 0.14546 0.17431 0.17542 → 0.17543

M = 50 0.02287 0.02287 0.02287 0.02287 → 0.02288

(0.25,0.25)

M = 5 0.08727 0.13828 0.16880 0.17000 → 0.17001

M = 50 0.02286 0.02286 0.02286 0.02286 → 0.02286

(0.25,0.50)

M = 5 0.08098 0.12475 0.15281 0.15408 → 0.15409

M = 50 0.02210 0.02210 0.02210 0.02210 → 0.02210

(0.00,0.25)

M = 5 0.08931 0.14091 0.16847 0.16954 → 0.16955

M = 50 0.02242 0.02242 0.02242 0.02242 → 0.02242

(0.25,0.00)

M = 5 0.08858 0.14068 0.16983 0.17099 → 0.17100

M = 50 0.02263 0.02263 0.02263 0.02263 → 0.02263

(0.00,0.50)

M = 5 0.08245 0.12506 0.14847 0.14942 → 0.14943

M = 50 0.02057 0.02057 0.02057 0.02057 → 0.02057

(0.25,0.75)

M = 5 0.06157 0.09062 0.11044 0.11139 → 0.11140

M = 50 0.01939 0.01939 0.01939 0.01939 → 0.01939

the nodal refinement. Finally, in Fig. 18, we present results

for the case of irregular nodal distribution. In this case, the

ensuring of positivity conditions [30] is a prerequisite for the

convergence of the numerical solution.

5.4 Unsteady MHD flow in a circular duct with insulating

walls

As a second example of an irregular cross section MHD flow,

we examined the case of a circular cross section as shown at

Fig. 19.

The procedure presented before, for the nodal distribu-

tion description and embedded grids, is adopted. The applied

magnetic field is perpendicular to the y-axis while, Hartmann

numbers up to M = 100,000 were examined. We present

the numerical solution for the MHD flow on a circular pipe

x2 + y2 = 1 for Hartmann numbers M = 5, 100 and 200

(Fig. 20).

In Table 7 the numerical results of the velocity and the

magnetic fields are presented at selected points and at differ-

ent time steps for Hartmann number M = 5. The grid used

here was a regular, Type-I, 41×41 grid and the total number

of nodes used was 1,681 (where the 180 nodes was along the

circumference of the circular disk). The numerical results of

the meshless point collocation method are in a good agree-

ment with the corresponding ones obtained using the mesh-

Table 5 Numerical solution of velocity for some selected points at

different times for non-conducting walls at M = 500

(x, y) t = 0.025 t = 0.05 t = 0.5 Steady state

(0.00,0.00) 0.96332e-03 0.00111e-03 0.00101 → 0.00230

(0.25,0.25) 0.96627e-03 0.00108e-03 0.00098 → 0.00230

(0.25,0.50) 0.96627e-03 0.00108e-03 0.00098 → 0.00230

(0.00,0.25) 0.96332e-03 0.00111e-03 0.00101 → 0.00230

(0.25,0.00) 0.96627e-03 0.00108e-03 0.00098 → 0.00230

(0.00,0.50) 0.96332e-03 0.00111e-03 0.00101 → 0.00214

(0.25,0.75) 0.96627e-03 0.00108e-03 0.00098 → 0.00194

less local boundary integral method (LBIE) [27], as well as,

with results obtained with FEM and BEM method [40].

As aforementioned, when the Hartmann number increases,

then boundary layers are formed and the numerical solutions

become sensitive to the presence of unwanted oscillations. In

order to attain accuracy, the total number of nodes is increased

and the time step δt is decreased to smaller values. For mod-

erate Hartmann numbers the calculations were performed

using time step δt = 0.001. At Table 8 numerical results

are presented at prescribed points and various time steps for

Hartmann number M = 100.
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Fig. 14 Contours of velocity and induced magnetic field for ϕ = π
3

and λ → ∞, when a M = 50, b M = 100, c M = 500
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Fig. 15 Triangular section of the duct with variable wall conductivity

6 Convergence and efficiency of the proposed scheme

In order to examine the accuracy and the efficiency of the

proposed scheme, results showing the errors norms L2 and

L∞, the CPU time for different grid sizes, as well as the

convergence rate, are presented.

The accuracy of the scheme is measured computing the

following error norms, that is, the L2 and L∞ defined as

L2 = ‖uexact − unum‖2 =

√
√
√
√h

N
∑

j=0

|(uexact ) j − (unum) j |2

(35)
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Fig. 16 a Regular grid

containing the geometry, b Grid

conformed at the geometry

Table 6 Numerical solution of

velocity and induced magnetic

field for some selected points at

different times for

non-conducting walls and

M = 500

(x, y) t = 0.1 t = 0.3 t = 0.5 t = 1.0 Steady state

(0.10,0.30)

u 0.7098e-003 0.6984e-003 0.7069e-003 0.7045e-003 → 0.7000e-003

B −0.1558e-003 −0.2060e-003 −0.1994e-003 −0.2004e-003 → −0.2000e-003

(0.10,0.60)

u 0.4156e-003 0.4116e-003 0.3933e-003 0.4009e-003 → 0.3999e-003

B 0.2264e-003 −0.1996e-003 −0.2004e-003 −0.1993e-003 → −0.1999e-003

(0.30,0.30)

u 0.6527e-003 0.6973e-003 0.7005e-003 0.7011e-003 → 0.7016e-003

B −0.5885e-003 −0.5910e-003 −0.5941e-003 −0.6019e-003 → −0.6016e-003

(0.30,0.40)

u −0.0000e-003 −0.0000e-003 −0.0000e-003 −0.0000e-003 → 0.0000e-003

B 0.0000e-003 0.0000e-003 0.0000e-003 0.0000e-003 → −0.0000e-003

and

L∞ =‖uexact − unum‖∞ = max
j

|(uexact ) j − (unum) j |

(36)

where uexact and unum represent the exact and approximate

solutions respectively and h is the minimum distance between

any two collocation points of the domain set, since the node

distribution is uniform. The corresponding results are pre-

sented in Table 9. Considering the run time of the mesh-

less methods, the shape functions are not pre-defined and

they must be constructed once, before the numerical solu-

tion of the resulting algebraic system. Thus, in our in-house

code, the numerical procedure is primarily decomposed into

two parts. Initially, the construction of the shape functions

takes place, and then the solution of the resulting linear

system is addressed. The CPU time (in seconds) for the pre-

scribed number of nodes is shown only for the solution of the

resulting algebraic linear system. The hardware characteris-

tics used for this benchmarking are trivial, such as a CPU

Pentium IV, 2.4 Hz with 2 GB RAM. From the numerical

results given in Table 9, it is clear that the performance of the

proposed meshfree method is both accurate and efficient.

Since we have computed the L∞ norm for each hi we

are able to compute the convergence rate of the proposed

scheme. For this reason in Fig. 21a we plot the − log10(L∞)

as the vertical axis against log10(hi ) taken as the horizontal

axis and, the slope of the plotted line is the convergence rate.

Corresponding results are presented in Fig. 21b for the con-

vergence rate when δt is decreased. Computations are carried

out with different spatial and time step sizes to examine the

point rates of convergence in space and in time.

123



154 Comput Mech (2011) 47:137–159

Fig. 17 Contour plots of the velocity field and the induced magnetic field for a M = 100, b M = 1,000 and c M = 10,000

Regarding of the convergence rate in time for the proposed

scheme, numerical tests were performed with different time

steps δt = 0.1, 0.05, 0.025, 0.005 for M = 5 and M = 20.

More precisely, the number of the collocation points is kept

fixed at N = 1681(41 × 41) and the time step size varies in

order to compute the time rate of convergence. The numer-

ical results are computed at time t = 1, where the transient

problem reaches the steady state. The numerical results are

listed in Table 10.

7 Conclusions

The strong-form localized meshless point collocation

(LMPC) formulation with “interpolating” MLS shape func-

tions were developed for the numerical solution of the time

dependent, coupled system equations of magnetohydrody-

namics flow for regular and irregular domains. Regular and

irregular nodal distributions were used. Arbitrary wall con-

ductivity conditions were applied and a uniform magnetic
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Fig. 18 Irregular nodal

distribution and contour plots of

the induced magnetic field for

M = 1,000

Table 7 Numerical solution of

velocity and magnetic field for

some selected points at different

time levels for M = 5

For every value of t , the first and

second rows of data correspond

to the use of LMPC and LBIE

method, respectively. Moreover,

the third and fourth rows of data

correspond to results obtained

using FEM and BEM method,

respectively

(x, y) Numerical method t = 0.1 t = 0.2 t = 0.5 t = 1.0 Steady state

u

(0.0,0.0) LMPC 0.0918 0.1341 0.1525 0.1530 → 0.1530

LBIE 0.0913 0.1339 0.1527 0.1530 → 0.1530

FEM N/A N/A N/A N/A → 0.1530

BEM N/A N/A N/A N/A → 0.1530

(1/3,0.0) LMPC 0.0862 0.1263 0.1461 0.1466 → 0.1466

LBIE 0.0858 0.1260 0.1462 0.1466 → 0.1466

FEM N/A N/A N/A N/A → 0.1466

BEM N/A N/A N/A N/A → 0.1466

(2/3,0.0) LMPC 0.0658 0.0968 0.1159 0.1165 → 0.1165

LBIE 0.0659 0.0970 0.1163 0.1165 → 0.1165

FEM N/A N/A N/A N/A → 0.1165

BEM N/A N/A N/A N/A → 0.1165

(0.0,2/3) LMPC 0.0636 0.0832 0.0916 0.0918 → 0.0918

LBIE 0.0635 0.0834 0.0917 0.0918 → 0.0918

FEM N/A N/A N/A N/A → 0.0918

BEM N/A N/A N/A N/A → 0.0918

−B

(0.0,0.0) LMPC 0.0000 0.0000 0.0000 0.0000 → 0.0000

LBIE 0.0000 0.0000 0.0000 0.0000 → 0.0000

FEM N/A N/A N/A N/A → 0.0000

BEM N/A N/A N/A N/A → 0.0000

(1/3,0.0) LMPC 0.0096 0.0281 0.0404 0.0408 → 0.0408

LBIE 0.0096 0.0278 0.0401 0.0408 → 0.0408

FEM N/A N/A N/A N/A → 0.0407

BEM N/A N/A N/A N/A → 0.0407

(2/3,0.0) LMPC 0.0200 0.0448 0.0619 0.0624 → 0.0624

LBIE 0.0201 0.0448 0.0623 0.0624 → 0.0624

FEM N/A N/A N/A N/A → 0.0624

BEM N/A N/A N/A N/A → 0.0624
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Table 8 Numerical solution of

velocity and magnetic field for

some selected points at different

time levels for M = 100

(x, y) t = 0.005 t = 0.01 t = 0.015 t = 1.0 Steady state

u

(0.0,0.0) 0.0050 0.0094 0.0098 0.0099 → 0.0010

(1/3,0.0) 0.0050 0.0083 0.0098 0.0099 → 0.0010

(2/3,0.0) 0.0042 0.0066 0.0090 0.0099 → 0.0010

(0.0,2/3) 0.0050 0.0072 0.0072 0.0073 → 0.0073

−B

(0.0,0.0) 0.0000 0.0000 0.0000 0.0000 → 0.0000

(1/3,0.0) 0.0000 0.0017 0.0032 0.0033 → 0.0033

(2/3,0.0) 0.0008 0.0033 0.0057 0.0066 → 0.0066

0 x

y

0u B= =

0B

Fig. 19 Circular section of the duct with insulating walls

Table 9 CPU time and error norms for various grid size

Hartmann Grid CPU time (s) L2 L∞

M = 5 41 × 41 0.25 5.8341e-005 1.2847e-004

81 × 81 1.4375 1.1781e-005 3.5685e-005

121 × 121 4.5937 4.5226e-006 1.6552e-005

161 × 161 10.7187 2.5827e-006 1.1208e-005

M = 20 41 × 41 0.1718 1.0355e-005 2.4788e-005

81 × 81 1.4062 2.2615e-006 9.6702e-006

121 × 121 4.6093 9.5792e-007 5.7883e-006

161 × 161 10.2343 7.0876e-007 4.6477e-006

M = 500 41 × 41 0.1875 s 5.5115e-005 1.2056e-004

81 × 81 1.3750 2.0318e-007 7.4418e-007

121 × 121 4.5312 5.3492e-009 4.1434e-008

161 × 161 10.5625 5.2371e-009 4.1264e-008

field was imposed at characteristic directions relative to the

flow one. The LMPC method is a truly meshless method and

it does not need the estimation of any integrand, while the

main advantage is its simplicity. The main problem of these

strong-form MFree techniques is some global or local stabil-

Table 10 CPU time and error norms for various time steps at t = 1 s

Hartmann Grid Time step L2 L∞

M = 5 41 × 41 0.1 7.7019e-005 1.8504e-004

41 × 41 0.05 6.0817e-005 1.3149e-004

41 × 41 0.025 6.0741e-005 1.3200e-004

41 × 41 0.005 3.9113e-005 8.9498e-005

M = 20 41 × 41 0.1 5.9645e-004 1.2796 e-003

41 × 41 0.05 1.3864e-005 3.3376e-005

41 × 41 0.025 1.1937e-005 2.7987e-005

41 × 41 0.005 2.8099e-006 9.1293e-006

ity issues at boundaries sites or internal points of increased

complexity. These obstacles were overcame with the use of

suitable nodal distributions (Type I grids), the local refine-

ment procedure, the ensuring of positivity conditions, spe-

cifically for the case of irregular nodal distributions and the

use of an interpolatory formulation for MLS approximants,

which allows the direct introduction of boundary conditions,

reducing the processing time and improving the condition

numbers.

The numerical results of the strong-form LMPC method

were compared with those obtained using two weak-form

meshless methods, that is, the LBIE meshless method and

the MLPG method, and with the analytical solutions, where

they are available. The computed results confirm the accu-

racy and correctness of the proposed formulation. Velocity

and induced magnetic field across the section have been eval-

uated at various time intervals for high Hartmann numbers

(up to 105) and different values of wall conductivity.

Finally, the accuracy of the method was assessed in terms

of the error norms L2, L∞, the number of nodes in the domain

of influence and the time step length depicting the conver-

gence rate of the method. Run time results were also pre-

sented demonstrating the efficiency and the applicability of

the method for real world problems.
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Fig. 20 Contour plots of the velocity field and the induced magnetic field for a M = 5, b M = 100 and c M = 200
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Fig. 21 Convergence rate with a different space steps and b different time steps

References

1. Hartmann J (1937) Theory of the laminar flow of an electrically

conductive liquid in a homogeneous magnetic field. Math Fys Med

6:15

2. Gold RR (1953) Magnetohydrodynamic pipe flow Part 1. J Fluid

Mech 21:577–590

3. Shercliff JA (1953) Steady motion of conducting fluids in pipes

under transverse magnetic fields. Proc Camb Phil Soc 49:136–144

4. Singh B, Lal J (1978) MHD axial flow in a triangular pipe under

transverse magnetic field. Ind J Pure Appl Math 9:101–115

5. Singh B, Lal J (1979) MHD axial flow in a triangular pipe under

transverse magnetic field parallel to a side of the triangle. Ind J

Technol 17:184–189

6. Singh B, Lal J (1982) Finite element method in MHD channel flow

problems. Int J Numer Methods Eng 18:1104–1111

7. Singh B, Lal J (1984) Finite element method of MHD channel flow

with arbitrary wall conductivity. J Math Phys Sci 18:501–516

8. Gardner LRT, Gardner GA (1995) A two-dimensional bi-cubic

B-spline finite element used in a study of MHD duct flow. Comput

Methods Appl Mech Eng 124:365–375

9. Tezer-Sezgin M, Köksal S (1989) Finite element method for solv-

ing MHD flow in a rectangular duct. Int J Numer Methods Eng

28:445–459

10. Demendy Z, Nagy T (1997) A new algorithm for solution of equa-

tions of MHD channel flows at moderate Hartmann numbers. Acta

Mech 123:135–149

11. Barrett KE (2001) Duct flow with a transverse magnetic field at

high Hartmann numbers. Int J Numer Methods Eng 50:1893–

1906

12. Bozkaya C, Tezer-Sezgin M (2007) Fundamental solution for cou-

pled magnetohydrodynamic flow equations. J Comput Appl Math

203:125–144

13. Singh B, Agarwal PK (1984) Numerical solution of a singular inte-

gral equation appearing in MHD. ZAMP 35:760–769

14. Tezer-Sezgin M (1994) BEM solution of MHD flow in a rectangu-

lar duct. Int J Numer Methods Fluids 18:937–952

15. Liu HW, Zhu SP (2002) The dual reciprocity boundary element

method for magnetohydrodynamic channel flows. ANZIAM J

44:305–322

16. Tezer-Sezgin M, Aydın SH (2002) Dual reciprocity BEM for MHD

flow using radial basis functions. Int J Comput Fluid Dyn 16:49–63

17. Carabineanu A, Dinu A, Oprea I (1995) The application of the

boundary element method to the magnetohydrodynamic duct flow.

ZAMP 46:971–981

18. Nesliturk AI, Tezer-Sezgin M (2005) The finite element method

for MHD flow at high Hartmann numbers. Comput Methods Appl

Mech Eng 194:1201–1224

19. Singh B, Lal J (1984) Finite element method for unsteady MHD

flow through pipes with arbitrary wall conductivity. Int J Numer

Methods Fluids 4:291–302

20. Salah NB, Soulaimani A, Habashi WG (2001) A finite element

method for magnetohydrodynamic. Comput Methods Appl Mech

Eng 190:5867–5892

21. Seungsoo L, Dulikravich GS (1991) Magnetohydrodynamic

steady flow computation in three dimensions. Int J Numer

Methods Fluids 13:917–936

22. Sheu TWH, Lin RK (2004) Development of a convection–

diffusion–reaction magnetohydrodynamic solver on non-staggered

grids. Int J Numer Methods Fluids 45:1209–1233

23. Bozkaya C, Tezer-Sezgin M (2006) Boundary element method

solution of unsteady magnetohydrodynamic duct flow with differ-

ential quadrature time integration scheme. Int J Numer Methods

Fluids 51:567–584

24. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl

P (1996) Meshless methods; an overview and recent developments.

Comput Meth Appl Mech Eng 139:3–47

25. Bourantas GC, Skouras ED, Loukopoulos VC, Nikiforidis

GC (2009) An accurate, stable and efficient domain-type meshless

method for the solution of MHD flow problems. J Comput Phys

228:8135–8160

26. Verardi SLL, Machado JM, Shiyou Y (2003) The application of

interpolating MLS approximations to the analysis of MHD flows.

Fin Elem Anal Design 39:1173–1187

27. Dehghan M, Mirzaei D (2009) Meshless local boundary integral

equation (LBIE) method for the unsteady magnetohydrodynamic

(MHD) flow in rectangular and circular pipes. Comput Phys Com-

mun 180:1458–1466

28. Dehghan M, Mirzaei D (2009) Meshless local Petrov–Galerkin

(MLPG) method for the unsteady magnetohydrodynamic (MHD)

flow through pipe with arbitrary wall conductivity. Appl Numer

Math 59:1043–1058

29. Liu GR, Gu YT (2005) An introduction to Meshfree methods and

their programming. Springer, Berlin

30. Aluru NR (2000) A point collocation method based on reproducing

kernel approximations. Int J Numer Methods Eng 47:1083–1121

31. Dragos L (1975) Magneto-fluid dynamics. Academic Press,

England

32. Liu GR (2002) Mesh free methods, moving beyond the finite ele-

ments method. CRC Press, Boca Raton

123



Comput Mech (2011) 47:137–159 159

33. Lancaster P, Salkauskas K (1981) Surface generated by moving

least squares methods. Math Comp 37:141–158

34. Wang JG, Liu GR (2002) A point interpolation meshless method

based on radial basis functions. Int J Numer Methods Eng 54:

1623–1648

35. Kim YS, Kim DW, Jun SK, Lee JH (2007) Meshfree point collo-

cation method for the stream-vorticity formulation of 2D incom-

pressible Navier–Stokes equations. Comput Methods Appl Mech

Eng 196:3095–3109

36. Kim DW, Kim YS (2003) Point collocation methods using the

fast moving least square reproducing kernel approximation. Int J

Numer Methods Eng 56:1445–1464

37. Bourantas GC, Skouras ED, Nikiforidis GC (2009) Adaptive

support domain implementation on the moving least squares

approximation for mfree methods applied on elliptic and parabolic

pde problems using strong-form description. Comput Model Eng

Sci 43:1–25

38. Kim DW, Liu WK (2006) Maximum principle and convergence

analysis for the meshfree point collocation method. Siam J Numer

Anal 44:515–539

39. Gu YT, Liu GR (2006) Meshless techniques for convection dom-

inated problems. Comput Mech 38:171–182

40. Tezer-Sezgin M, Aydın SH (2006) Solution of magnetohydrody-

manic flow problems using the boundary element method. Eng

Anal Bound Elem 30:411–418

123


	Localized meshless point collocation method for time-dependent magnetohydrodynamics flow through pipes under a variety of wall conductivity conditions
	Abstract
	1 Introduction
	2 Physical problem, governing equations and boundary conditions
	3 Moving least squares approximation
	3.1 Methodology
	3.2 Shape functions and their derivatives
	3.3 Weight function

	4 Meshless point collocation method
	5 Numerical results
	5.1 Unsteady MHD flow in a rectangular duct  with insulating or conducting walls
	5.2 Unsteady MHD flow in a rectangular duct  with insulating walls, under the influence of an oblique magnetic field
	5.3 Unsteady MHD flow in a triangular duct with insulating walls
	5.4 Unsteady MHD flow in a circular duct with insulating walls

	6 Convergence and efficiency of the proposed scheme
	7 Conclusions
	References


