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ABSTRACT

Motivation: Discovery of nucleotide motifs that are localized with
respect to a certain biological landmark is important in several appli-
cations, such as in regulatory sequences flanking the transcription
start site, in the neighborhood of known transcription factor binding
sites, and in transcription factor binding regions discovered by
massively parallel sequencing (ChIP-Seq).
Results: We report an algorithm called LocalMotif to discover such
localized motifs. The algorithm is based on a novel scoring function,
called spatial confinement score, which can determine the exact
interval of localization of a motif. This score is combined with
other existing scoring measures including over-representation and
relative entropy to determine the overall prominence of the motif.
The approach successfully discovers biologically relevant motifs and
their intervals of localization in scenarios where the motifs cannot
be discovered by general motif finding tools. It is especially useful
for discovering multiple co-localized motifs in a set of regulatory
sequences, such as those identified by ChIP-Seq.
Availability and Implementation: The LocalMotif software is
available at http://www.comp.nus.edu.sg/∼bioinfo/LocalMotif
Contact: ksung@comp.nus.edu.sg
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Regulation of gene expression primarily occurs at the stage
of transcription of the gene. A key event in the regulation
of transcription is the binding of trans-acting proteins called
transcription factors (TFs) to cis-acting DNA sequences in the
vicinity of the gene. The TFs bind to short 5–20 bp segments of
DNA called transcription factor binding sites (TFBSs). The TFBSs
are not easily recognized in DNA sequences as they are of short
length and frequently have mutations in their pattern. However, they
can be discovered computationally within a set of sequences that are
enriched with their occurrences. The computational algorithm looks
for a short, conserved and often repeated pattern called the motif in
these sequences. The motif is likely to be the TFBS. A number of
computational algorithms for motif discovery have been developed
over more than a decade (Bailey and Elkan, 1994; Buhler and Tompa,
2002; Eskin and Pevzner, 2002; Ettwiller et al., 2007; Fratkin et al.,
2006; Henikoff et al., 1995; Lawrence et al., 1993; Linhart et al.,

∗To whom correspondence should be addressed.

2008; Liu et al., 2001; Marsan and Sagot, 2000; Pavesi et al., 2004;
Pevzner and Sze, 2000; Roth et al., 1998; Thijs et al., 2002).

Motif finding algorithms can usually discover the real motif
(i.e. which truly represents the TFBSs) when the TFBSs are
significantly over-represented compared to random (or background)
patterns in the given set of sequences. However, when analyzing
long sequences or a set of sequences in which the TFBSs are not
significantly enriched, random patterns can appear equally or more
conserved than the real motif and thus the real motif cannot be
discovered (Buhler and Tompa, 2002; Keich and Pevzner, 2002a,
2002b). In such datasets, additional information about the real motif
can aid its discovery.

A useful piece of information that has not been adequately
exploited in the existing motif finding algorithms is the positional
localization of TFBSs. TFBSs usually occur in specific positions
relative to a biological landmark within gene regulatory sequences.
For instance, many TFBSs are located in specific position intervals
relative to the transcription start site (TSS) (Smale and Kadonaga,
2003). TFBSs of cooperating TFs also occur at specific distances
from each other (Vardhanabhuti et al., 2007). Similarly, in a set of TF
binding sequences obtained by high-throughput techniques such as
ChIP-Chip or massively parallel sequencing (ChIP-Seq), the TFBSs
are localized around the positions of maximum signal intensity (such
as a peak in ChIP-Seq). Such information of positional localization
of TFBSs can be utilized to distinguish the real motif from random
patterns.

Localization information has been used previously to improve
the performance of motif discovery. For example, Ohler et al.
(2002) analyzed motifs in 1941 Drosophila regulatory sequences
of length 300 bp each aligned (−250, +50) relative to the TSS. The
analysis of complete 300 bp sequences did not reveal many of the
core promoter motifs. However, in a separate analysis of the local
region (−60, +40), most core promoter motifs were discovered.
Similarly, Molina and Grotewold (2005) analyzed the (−50, −1)
and (+1, +50) regions of Arabidopsis thaliana promoters separately
in order to discover the core promoter motifs. Vardhanabhuti et al.
(2007) considered both positional localization around the TSS and
pairwise distances among the motifs to identify novel TFBSs in
human promoters. Qi et al. (2006) imposed a positional prior on the
motif in TFBSs identified by ChIP-Chip to improve motif discovery.
The prior was proportional to the ChIP signal intensity at a given
position, which was estimated by combining the intensities of all
neighboring probes.

Recently, some generic motif finding algorithms have
incorporated the facility to define positional priors during
motif search. For example, the AMADEUS algorithm (Linhart
et al., 2008) incorporates the facility to score motifs according
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Fig. 1. (a) In the localized motif finding problem, the instances of a motif M occur confined within an unknown position interval (p1, p2) of the input
sequences relative to an anchor point. The objective is to discover the motif M and the interval (p1, p2). (b) LocalMotif studies the positional distribution of
the motif occurrences relative to the anchor point. (c) Different motifs could be localized within different intervals around the anchor point. (d) A localized
motif is prominently over-represented in a certain interval with respect to the entire sequence length, (e) whereas a random pattern may be over-represented
in certain intervals but not with respect to the entire sequence.

to their distribution around the TSS. Tharakaraman et al. (2005)
incorporated positional preference in their motif finding algorithm
GLAM by performing gapless local alignment over windowed
subsequences of the original sequence set (aligned relative to the
TSS) instead of the complete length. These applications use a
positional prior on the motif, i.e. the localization interval of the
motif is defined a priori. However, in most practical scenarios
both the position and the length of the localization interval are
unknown. None of the existing algorithms has addressed this
problem.

A solution could be to subdivide the sequences (aligned relative
to the biological landmark) into short intervals and analyze each
interval separately with the existing algorithms. However, this
is impractical due to several reasons. First, it is difficult to
decide the interval length. If the interval is too short or too long
compared to the actual region of localization, the motif will not
be discovered. Furthermore, discovering multiple motifs spread
over different intervals would require selection of different interval
lengths (Fig. 1c). Secondly, this approach would report a number
of random patterns that are over-represented in a short sequence
interval by chance, but which are not truly localized motifs. There
is a difference between a localized motif and a motif that is over-
represented in a short sequence interval. As shown in Figure 1d
and e, a localized motif has a distinct confinement of TFBSs in a
certain interval in the context of the entire sequence length, while
a motif that is over-represented in a certain short interval may
not have such confinement in the global context. Therefore, local
analysis without considering the global context of the motif may be
misleading. This is illustrated in the study of Friberg et al. (2005),

where scoring functions with a positional bias resulted in a large
number of false motifs. Thirdly, the task of fragmenting the
sequences and combining together results for several intervals is
laborious and time consuming. Thus, it would be useful to have
an automated, efficient algorithm to accurately discover localized
motifs.

This article presents a computational algorithm called LocalMotif
for the discovery of localized motifs in sequences that have been
aligned relative to a biological landmark (henceforth referred to as
the anchor point). A new scoring measure called spatial confinement
score is introduced that assesses whether or not a motif has localized
occurrence within the sequences, and allows accurate demarcation of
the localization interval. The spatial confinement score is combined
with the existing scoring measures of motif over-representation and
relative entropy to evaluate the overall prominence of the motif. The
existing scoring measures are reformulated using information theory
so that all scores can be easily combined into a single score. A time
and memory efficient greedy search algorithm utilizes this scoring
function for localized motif discovery.

Experiments on simulated datasets show that LocalMotif has
consistently better performance than existing tools in detecting
motifs in cases where they are localized in a certain sequence
interval. The interval length predictions made by LocalMotif are also
highly accurate. Experiments on real datasets show that LocalMotif
can discover localized motifs around the TSS, co-regulatory motifs
around known motifs and motifs in ChIP-Seq datasets where the
existing motif finding tools fail. Furthermore, the interval predictions
made by LocalMotif provide biologically useful information about
TF–TF interactions.

1153

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/9/1152/199409 by guest on 21 August 2022



[13:58 18/4/2010 Bioinformatics-btq106.tex] Page: 1154 1152–1159

V.Narang et al.

2 METHODS
The LocalMotif algorithm is described below in the following aspects: the
motif model, the scoring function and the algorithm.

2.1 Motif model
The LocalMotif algorithm has two modules—a core module that discovers
prominent non-redundant motifs, and a refinement module that fine-tunes
these motifs.

The core module uses the consensus (l, d) representation, which describes
the motif as a nucleotide pattern of length l such that any binding site differs
from this pattern up to a maximum of d point substitutions (Pevzner and Sze,
2000). This representation allows mismatches to occur at any position within
the motif with equal frequency. Although this is not a valid assumption in real
protein–DNA interactions where some positions are more admissive of base
substitutions than the others, it is advantageous for ab initio motif finding as
it reduces the search space and does not impose an initial assumption on the
nature of mutations in the motif (Keich and Pevzner, 2002a; Pavesi et al.,
2004; Pevzner and Sze, 2000; Sinha and Tompa, 2003).

The motifs discovered by the core module are provided to a refinement
module. The refinement module uses the positional weight matrix (PWM)
representation (Stormo, 2000), which more accurately represents the
different binding preferences at various positions in a motif. For each (l, d)
motif discovered by the core module, the refinement module determines the
optimal PWM.

2.2 Problem formulation
The localized motif finding problem is stated here as a modification of the
(l, d) motif problem defined by Pevzner and Sze (Pevzner and Sze, 2000).
Consider a set of N input DNA sequences S={S1,S2, ... ,SN } of length L
each, aligned relative to an anchor point A (which is a biological landmark
such as the TSS) as shown in Figure 1a. Suppose that the instances of an
unknown (l, d) motif M occur confined within an unknown interval (p1, p2)
of the sequences. The objective is to discover M and (p1, p2) given S, l and
d.

2.3 Scoring function
LocalMotif combines three different scoring functions that individually
describe three different characteristics of a motif: the relative entropy
score (RES) which measures the degree of surprise in the motif nucleotide
pattern with respect to the background distribution of nucleotides, the
over-representation score (ORS) which measures the overabundance of the
number of instances of the motif relative to background, and the spatial
confinement score (SCS) which measures the disproportionate confinement
of motif instances in a certain sequence interval. While the former two
scoring measures exist in the literature, the spatial confinement score has
been introduced in LocalMotif to aid the discovery of localized motifs. All
scoring measures are brought to a consistent form as normalized entropy
measurements, so that they may be combined together and are comparable
across motifs with different (l, d). Detailed derivations of the formulae
are provided in Supplementary Section A. Computation of RES and ORS
requires definition of a background model for the sequences. Following the
state-of-the-art motif finding algorithms, LocalMotif uses an order-q Markov
process to model the background (Thijs et al., 2002), where q is a user-defined
constant.

2.3.1 Over-representation score A motif is enriched in the sequences if its
number of observed instances significantly exceeds the number of instances
expected by chance (according to background). The ORS is a statistical
measure of the difference between the observed and chance occurrence
counts. In random sequences sampled from a Markov background, the
number of chance occurrences follows the binomial distribution. Let e0

be the chance proportion of the instances of motif M in the background.

Among any t observed patterns, the probability of observing k instances is

given by the binomial formula P
(

k,t|e0
) = nCk

(
e0

)k (
1−e0

)t−k
. Now let

the number of instances of the motif M in the sequences be a proportion,
e1, of all N

(
L−l+1

)
length l patterns in the sequences. The ORS of

M is measured as the Kullback–Leibler divergence between the binomial
distributions P

(
k,t|e0

)
and P

(
k,t|e1

)
:

ORS=D
(
E0||E1

)= 1

φ
(
l,d

)
[

e0 ln

(
e0

e1

)
+(

1−e0
)
ln

(
1−e0

1−e1

)]
, (1)

where φ
(
l,d

)=(
1
/

4l
) d∑

i=0

lCi3i is a normalization factor equal to the fraction

of length l patterns that have up to d mismatches from a given pattern.

2.3.2 Relative entropy score The TFBSs are expected to be distinct
from the background since the TF can distinguish them from surrounding
nucleotide patterns. RES (Hertz and Stormo, 1999; Stormo, 2000; Thijs
et al., 2002) measures the difference between the motif and background.
Let all observed TFBSs of the motif be aligned vertically, and the average
frequency of occurrence of each nucleotide b∈{A,C,G,T} at each position
i=1,2, ... ,l be fb,i. The entropy of the motif M relative to the background
model B is usually measured as the Kullback–Leibler divergence D

(
M ‖B

)
:

RES=D
(
M||B)=

L∑
i=1

∑
b

fb,i ln

(
fb,i

pb

)
(2)

where pb,b∈{A,C,G,T} are the a priori frequencies of the nucleotides in
the background. The RES is normalized as:

RESnorm = 1

l ln4

l∑
i=1

∑
b

fb,i ln
(

fb,i
)− 1

ln4

∑
b

f̄b ln
(
pb

)
(3)

where f̄b = 1
l

l∑
i=1

fb,i. The normalized RES is independent of the motif length

l and usually lies in the range (0,1).

2.3.3 Spatial confinement score Motif finding algorithms usually consider
the TFBSs to be randomly distributed across the entire sequence length.
However, LocalMotif considers the non-uniform distribution of TFBSs in
the sequences relative to the anchor point. Let c denote the proportion of
TFBSs that fall within the interval (p1, p2), i.e. if n is the total number of
TFBS across entire sequence length L, and n1 is the number of TFBS in the
interval (p1, p2), then c = n1/n. If the TFBSs are uniformly distributed across
the entire sequence length L, then it is expected that the proportion of TFBSs
falling within any interval (p1, p2) will be c=c0 =|p2 −p1|

/
L. For example,

in any interval of length L/2 one would expect to find 50% of the TFBSs.
However, if the TFBS distribution is non-uniform, the proportion would be
higher in some intervals and lower in others. LocalMotif intends to discover
the shortest interval that encompasses the maximum proportion of TFBSs. It
thus compares the proportion of TFBSs that lies within the interval and the
proportion that lies outside it. The interval that maximally separates the two
has the highest spatial confinement score. Let ĉ be the observed proportion
of TFBSs that lie within an interval (p1, p2). The spatial confinement score
for the interval is given by the entropy difference (KL-divergence) between
the observed proportion, ĉ, and uniform proportion, c0:

SCS=D
(
ĉ||c0

)= ĉln

(
ĉ

c0

)
+(

1− ĉ
)
ln

(
1− ĉ

1−c0

)
(4)

Note that a short interval with high density of TFBSs may not have a spatial
confinement score as high as a longer interval with lesser density of TFBS if
the longer interval encompasses a large proportion of the TFBS compared to
its surroundings. For example, in Figure 1d the score for interval B is higher
than that for interval A. Therefore, the maximization of SCS of a motif over
all intervals gives the interval where the motif is maximally localized. In
addition, a localized motif has high SCS since most of its TFBS are confined
within the localization interval, whereas a locally over-represented motif has
low SCS (Fig. 1e) since a significant fraction of its TFBS are also distributed
in rest of the sequence length.
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2.3.4 Combined score The three scoring measures mentioned above,
viz. RES, ORS and SCS, measure three independent characteristics of a
motif. They have been expressed as entropies measured as KL divergence
between an observed and a reference probability distribution. Thus, they
are independent of situational parameters such as motif length l, number of
allowed substitutions d, sequence length L and the interval length |p2 −p1|.
Furthermore, they have been normalized to usually range between (0, 1) and
have consistent values barring extreme situations. The scores can thus be
combined in various ways. One of the ways is to consider each score as a
separate coordinate and define the total score as the distance from the origin.
In this case, the combined score is:

Linear combination score =
√

w1RES2
norm +w2ORS2 +w3SCS2, (5)

where w1, w2 and w3 are user-specified weights for the three scores. By
default, all the weights are set to 1. This linear combination score assigns
higher rank to a motif that is exceptional in any one of the three scores.
Another way could be a geometric combination of the three scores as:

Geometric combination score = |RESnorm|w1 ·|ORS|w2 ·|SCS|w3 . (6)

This score assigns higher rank to a motif that performs well in all three
individual scoring measures. There could be various other ways of combining
the scores. It remains an open problem how to optimally combine the three
scores.

2.3.5 P-values The P-values of RES, ORS and SCS are computed
individually. Since the KL divergence, D, is directly related to the likelihood
ratio (LR) test (Eguchi and Copas, 2006), the Wilks’ theorem can be
used to estimate the P-value of D. The LR test statistic �RES = 2n×RES
is χ2 distributed with 3l degrees of freedom, while the statistics
�ORS = 2t(e0 +e1)× ORS and �SCS = 2n×SCS are both χ2 distributed with
one degree of freedom. The P-value can be computed as area under the tail
of the χ2 distribution to the right of the LR test statistic.

2.4 Algorithm
The core and refinement modules of the LocalMotif algorithm are briefly
described below, with details provided in Supplementary Section B.

The LocalMotif core module scores candidate (l, d) motifs in different
sequence intervals and reports the best scoring ones. An exhaustive
enumeration strategy would require scoring all possible 4l candidate patterns
in all possible sequence intervals, leading to a complexity of O

(
4l .L2

)
.

Therefore, a greedy search approach is used, where initially only the l-mers
occurring directly within the sequences are considered as candidates. Scoring
each candidate l-mer in all possible position intervals

(
p1, p2

) :0≤p1 <p2 ≤
L, would be formidable. Thus, only the intervals

(
p1, p2

) :p1 <p2;p1,p2 ∈
{0,s,2s,3s,...,L} are considered, where s, called step size, is a small integer
value. Interestingly, the score for a longer interval can be computed directly
from the scores for shorter constituent intervals, resulting in considerable
computational savings (Supplementary Material).As the candidate l-mers are
being scored in different position intervals, a list of top n scores is maintained,
where n can be set depending upon available memory. If two candidates have
similar pattern (similarity >65% evaluated using Needleman–Wunsch global
alignment) and overlapping position intervals, the lower scoring candidate is
discarded. Following this initial search, a heuristic algorithm similar to SP-
STAR (Pevzner and Sze, 2000) extends the search to other probable patterns
that do not occur directly within the sequences.

The results of separate runs with varying (l,d) are combined directly since
the LocalMotif scoring function does not depend upon l and d. Between two
motifs with similar pattern (similarity >65% measured relative to the shorter
motif) and overlapping intervals, the one with lower score is discarded.

The (l, d) motifs discovered are then fed to the refinement module that
generates an optimal PWM corresponding to each motif. The refinement
module begins with an initial PWM for the motif constructed from all of
its d-mismatch instances. The PWM is then updated iteratively by a Fitness

Expectation Maximization (FEM) algorithm (Wierstra et al., 2008), which
seeks to maximize the LocalMotif scoring function for the PWM. A low
value of forget factor is employed in the EM iterations so that the algorithm
converges to a local minimum nearby the initial PWM in the solution space
rather than approaching the global minimum. The algorithm converges within
a few (<10) iterations giving the optimal PWM for a motif.

2.5 Implementation
The basic LocalMotif algorithm is implemented in platform independent
C++, and is supplemented by a user-friendly interface written in Python. The
source code and complied binaries are available freely at the authors’website:
http://www.comp.nus.edu.sg/∼bioinfo/LocalMotif. The user can specify the
following parameters to suit the dataset and available computing resources:
(i) Background model, (ii) Number of candidates n to be retained in memory,
(iii) Maximum interval length (when analyzing long sequences, setting a
maximum interval length such as 1 kb makes the analysis faster), (iv) Number
of motifs to output, (v) Choice of single or double strand analysis, and
(vi) choice of linear or geometric combination of the three scoring functions
and their respective weights.

The program outputs the discovered motifs with their intervals of
localization, the three individual scores (RES, ORS and SCS), and the
combined (weighted) scores. The individual scores reveal the prominent
characteristics of a motif and may be used to reject outliers.

3 RESULTS
The advantage of LocalMotif scoring function is first demonstrated
in this section through a simulation experiment. Then the
performance of motif discovery is evaluated over both synthetic and
real datasets. Comparison is made with four other freely available
motif finding tools: MEME (Bailey and Elkan, 1994), Weeder
(Pavesi et al., 2004), Trawler (Ettwiller et al., 2007) and Amadeus
(Linhart et al., 2008).

3.1 Analysis of the scoring function
The LocalMotif scoring function is illustrated through a planted
motif problem. Fifty sequences, each 3000 bp long, were generated
using a zero-order uniform Markov model. An instance of a
(7,1) motif ATGCATG was implanted in 75% of the sequences
within the interval (2000, 2500). Mathematical analysis (Buhler
and Tompa, 2002; Keich and Pevzner, 2002b) shows that the (7,1)
motif is indistinguishable from random patterns within the 3000 bp
length sequences, but is significantly over-represented in the 500 bp
interval.

Five top scoring motifs reported by LocalMotif and their scores
are shown in Table 1. The planted (7,1) pattern was correctly
identified as the top motif and its interval of localization was
accurately determined. Although the planted motif has a low ORS
compared to competing random patterns, it has a substantially higher
SCS of 0.485 as compared to the spurious motifs whose SCS is <0.3.
The RES is similar for all motifs because of the uniform background.
Thus, the planted motif is correctly recognized due to the SCS.

Contours of ORS and SCS for the planted motif in various position
intervals are shown in Figure 2. The x- and y-axes in the contour plot
correspond to the positions p1 and p2, respectively for the interval
(p1, p2) and the shade of the contour indicates the magnitude of
ORS or SCS in the interval. The ORS is large wherever there is a
local concentration of binding sites, whereas SCS is large only in
the motif’s localization interval (2000, 2500). The SCS thus plays
an important role in predicting the accurate interval of localization.
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Table 1. Results of analyzing with Local Motif a set of simulated sequences
of length 3000 bp containing a planted (7, 1) pattern ATGCATG

Motif Pattern Motif interval Motif score Score components

RES ORS SCS

ATGCATG (2060, 2445) 0.757 0.481 0.326 0.485
GGACGCT (15, 115) 0.733 0.481 0.500 0.235
AGCGCCG (455, 575) 0.712 0.481 0.439 0.289
GTCCGAT (85, 200) 0.691 0.482 0.408 0.282
TCCCTGC (2340, 2450) 0.690 0.481 0.411 0.275

Five top scoring motifs and their reported localization intervals are shown.

Fig. 2. Contours of local over-representation score (upper triangle), and
spatial confinement score (lower triangle) of the planted motif ATGCGTAC
in different position intervals (p1, p2) of the simulated sequence set.

Table 2. Ranges of parameters studied in simulated sequence data

Parameter N L k p̄

Range 50–100 200–1000 bp 20–100% 0.1–1.0

3.2 Performance on simulated datasets
The test on simulated sequences evaluates the accuracy and
robustness of motif and localization interval predictions made by
Localmotif. Each dataset contains N nucleotide sequences of the
same length L selected randomly from the human genome. In about
k percentage of the sequences, a known binding site for a single TF
obtained from TRANSFAC (Matys et al., 2003) is implanted within
the position interval I = (p1, p2). A total of 100 such datasets were
generated while randomly varying the parameters N , L, k, p̄ and
the TF as shown in Table 2. Note that p̄=|I|/L denotes the ratio of
interval length to sequence length, with |I|=(

p2 −p1
)
. The TFs were

chosen among 10 different vertebrate TFs each of which has at least
60 binding sites in the TRANSFAC database (refer Supplementary
Section C). Thus, a fair variety of test conditions were simulated.

The performance of motif detection is shown in Figure 3.
Accuracy of motif detection is measured according to whether the
known motif is reported as the top scoring motif. Linear score
combination with equal weights for the three scores was specified
for LocalMotif. The same background model was used for all
tools tested, which was constructed from the set of 1 kb upstream
promoter and 1 kb exon sequences of all human refseq genes
(Supplementary Section C). The motif becomes increasingly subtle
with increasing sequence length L or decreasing fraction k of the
sequences that contain a binding site. This is because the number
of competing random motifs increases. Diminishing accuracy of
motif detection is thus seen for all tools in Figure 3. However, the
accuracy of LocalMotif is consistently higher compared to other
tools because LocalMotif’s performance depends on localization
interval length |I| instead of sequence length L. The localized search
reduces competing random motifs, leading to an increase in the
accuracy. However, for datasets where motifs are not localized, the
comparatively higher accuracy of LocalMotif may not hold.

The accuracy of LocalMotif’s interval predictions has been
measured in terms of the percentage of overlap between the actual
interval, Ia, and predicted interval, Ip. Precisely,

overlap percentage= |Ia ∩Ip|
max(|Ia|,|Ip|) . (7)

The mismatch in the predicted and actual interval lengths is also
penalized in this formula by taking the ratio with respect to the longer
interval. As seen in Figure 3c, LocalMotif determined the position
interval very accurately (overlap ≥0.8) in >60% of the cases. This
confirms the effectiveness of LocalMotif’s scoring function.

3.3 Performance on real datasets
LocalMotif has been further tested to find localized biological
motifs in real sequences in three different scenarios: (i) regulatory
sequences surrounding the TSS, (ii) segments flanking a known
TFBS and (iii) sequences surrounding the peaks in ChIP-Seq data.

3.3.1 Sequences flanking the TSS Promoter sequences
surrounding the TSS usually contain highly localized conserved
motifs. LocalMotif was tested on insect and mammalian promoter
datasets where localized motifs have been previously reported.
The insect dataset comprised of 1941 Drosophila core promoter
sequences compiled by (Ohler et al., 2002). The sequences are
of length 300 bp each aligned −250 to +50 relative to the TSS.
Ohler et al. determined the core promoter motifs by two separate
runs of MEME—one over full 300 bp length, and the other over a
sub-interval −60 to +40 relative to the TSS. The full 300 bp length
was examined with LocalMotif. As shown in Figure 4, MEME
discovered the prominent core promoter motifs only when analyzing
the −60 to +40 sub-interval, whereas LocalMotif discovered these
motifs given the full 300 bp region. All biologically meaningful
motifs reported by LocalMotif had a SCS of 0.14 or above, while
two spurious motifs (rows 8 and 9) had SCS <0.06. Thus, SCS
allows the discovery of localized core promoter motifs and rejection
of spurious motifs. In addition, LocalMotif accurately reported
the localization intervals of the motifs which are useful in their
identification. For example, the downstream promoter element
(DPE) is confirmed as it is found in the (+25, +45) interval.
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Fig. 3. Performance of LocalMotif, Amadeus, Trawler, Weeder and MEME in simulated short sequence datasets with (a) varying sequence length, L,
(b) varying percentage, k, of sequences containing motif instances. The accuracy of LocalMotif’s interval predictions is shown in (c).

LocalMotif Results (-250 to +50)

Rank Motif Score RES SCS ORS Position 

1 TCAGTC 1.92 [-5,+15] → Initiator 
2 GTCACACT 1.37 [-10,+20] → new motif 
3 CTATAAAA 1.27 [-35,-15] → TATA box 
4 CAGTTG 1.26 [-5,+15] → Initiator 
5 CGGACGTG 1.12 [+25,+45] → DPE 
6 CTATCGAT 1.11 [-75, 0] → DRE 
7 TCCGTT 0.92 [-5,+15] → Initiator 
8 ATATATAT 0.88 [-205,-90] 
9 CTCTCTCT 0.86 [-120,-70] 
10 GCGTTCGG 0.85 [+10,+40] → DPE 

 )04+ ot 06-( stluseR EMEM )05+ ot 052-( stluseR EMEM
Rank Motif Score Rank Motif Score 

1 GGTCACACT 5.0e-369 → new motif 1 GGTCACACT 5.1e-415 → new motif 
2 CTCTCTC 1.7e-203 2 TATCGATA 1.7e-183 → DRE 
3 CGCCGCC 1.1e-151 3 TATAAA 2.1e-138 → TATA box 
4 TTTTTTT 1.5e-155 4 TCAGTT 3.4e-117 → Initiator 
5 TATCGATA 4.4e-78 → DRE 5 CAGCTG 2.9e-93 
6 CAGCCTG 1.5e-80 6 GTATTTT 1.9e-62 
7 GGCAACGC 1.4e-55 7 CATCTCT 1.9e-63 
8 GTGTGTGT 6.4e-96 8 GGCAACGC 5.1e-29 
9 TGCTTTTG 1.2e-39 9 GCGTGCGG 1.9e-12 → DPE 
10 GCGCTTTAC 9.5e-24 10 CGAACGGAACG 8.3e-9 

Fig. 4. Motifs discovered by MEME and LocalMotif in Drosophila promoters. LocalMotif scores RES, ORS and SCS are shown for each motif with their
P-values in the parentheses.

The human dataset included nine different sets of promoters
where binding sites for the TFs Oct4, Sox2, Nanog, HNF1A,
HNF4A, HNF6, FOXA2, USF1 and CREB1 have been recognized
by ChIP-Chip experiments within −8 kb to +2 kb region flanking the
TSS (Boyer et al., 2005; Odom et al., 2006). These nine datasets
were recently reported to show a sharp peak of the ChIP-Chip signal
within 300 bp upstream of the TSS (Koudritsky and Domany, 2008).
The full 10 kb region was analyzed for motifs using LocalMotif,
Trawler and Amadeus, all of which are capable of handling such
large genome-wide datasets. The background model for these tools
was constructed from the set of 1 kb upstream promoter and
1 kb exon sequences of all human refseq genes (Supplementary
Section C). Each of these tools compares its reported motifs with
known PWMs in TRANSFAC. LocalMotif’s reported motifs were
compared with TRANSFAC using the publically available STAMP
tool (Mahony and Benos, 2007) with its default parameters and
limiting the similarity E-value to a maximum of 0.001.

In the CREB1 and USF1 datasets, the ChIP TF motif was
recognized as the top ranking motif by all tools. In all other datasets,
the ChIP TF motif was not recognized as the top ranking motif by
any of the tools. This is because in sequences of length 10 kb, the
ChIP TF motif is weak compared to random patterns. We studied if
the localization of the ChIP TF motifs gives any particular advantage
to LocalMotif in being able to rank the ChIP TF motif better than
the other tools. In Figure 5, we report the rank of the ChIP TF motif
within the results of all the tools tested. If the desired motif was not
reported at all, the column is left blank. It is seen that LocalMotif
discovered the ChIP TF motif more frequently and with better ranks
than the other tools. Most ChIP TF motifs reported by LocalMotif
were localized within 1 kb upstream of the TSS (Fig. 5b). LocalMotif
also reported a number of other motifs that are clearly localized near
the TSS, including Sp1, CAAT box, AP-2, CREB, initiator, E2F,

(a)

(b)

Fig. 5. Results of Trawler, Amadeus and LocalMotif on human promoter
datasets: (a) table showing whether the ChIP TF motif was reported within
the top 10 motifs. (b) Distribution around the TSS of motifs reported by
Localmotif.

ETS and STAT (Supplementary Section C). Thus, LocalMotif gives
advantage in this case by localizing the motif instances in a shorter
interval and thus amplifying the motif signal with respect to the
random noise.

3.3.2 Sequences flanking a known TFBS An example of co-
occurring TFBSs in vertebrate sequences is the close interaction
between estrogen receptor (ER) and Forkhead (FoxA1) (Carroll
et al., 2005). The dataset in this example consists of 57 ER
target sequences from human chromosomes 21 and 22 discovered
by ChIP analysis of in vivo ER–chromatin complexes (Carroll
et al., 2005). Almost all sequences lie distal from the TSS
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Fig. 6. Motifs discovered by MEME, Weeder, Trawler, Amadeus and LocalMotif in ER ChIP-Seq dataset (Welboren, et al., 2009). LocalMotif scores RES,
ORS and SCS are shown for each motif with their P-values in the parentheses.

beyond the promoter region and have lengths ranging from 0.2 to
2.5 kb. Thirty-four sequences contain the full ERE motif (length
15 bp, consensus AGGTCANNNTGACCT). The binding sites for
Forkhead (consensus TTGTTTNCTT) are experimentally validated
proximal to the ER binding sites (Carroll et al., 2005). To verify
whether the Forkhead binding adjacent to the ER sites can be
discovered in silico, the 34 sequences containing full ERE motif
were analyzed using MEME, Weeder, Traweler, Amadeus and
LocalMotif. The ERE was selected as the anchor point, and its
±500 bp flanking region was analyzed for motifs. The positions
of Forkhead binding sites relative to the ERE are shown in
Supplementary Section C. Most sites lie close to the ERE. Results
of motif finding are reported in the Supplementary Material.
Only Amadeus and LocalMotif reported the Forkhead motif
with consensus TTTTTTTCTT. About 60% of the experimentally
validated Forkhead sites are within the list of sites reported by
LocalMotif.

3.3.3 Sequences obtained from ChIP-Seq ChIP-Seq is an
emerging high-throughput technology useful for discovering
genome-wide in vivo binding regions of a TF. The binding regions
of the TF are visible as ‘peaks’ in the ChIP Seq density profile
(Johnson et al., 2007). The TFBS usually lies within ±100 bp of
the peak maxima. Thus, the ChIP TF motif can be easily discovered
in this dataset using any motif finding tool. However, it is more
interesting to discover in this dataset the co-regulatory motifs that
interact with the ChIP TF. Co-regulatory motifs can occur within
100 bp to 1 kb distance of the peak and show a clear localization
around the peak. The LocalMotif scoring function is therefore very
useful for discovering co-regulatory motifs in this data. In the present
study, two ChIP-Seq datasets were considered.

The first dataset was derived from the recent ChIP-Seq study of
15 TFs in mouse embryonic stem cells (Chen et al., 2008). For each
of the 15 ChIP-Seq datasets, the ±200 bp sequences surrounding the
1000 highest intensity peaks were analyzed for motifs. The same
background model was used for LocalMotif, Trawler and Amadeus.
The background was constructed from 1 kb upstream promoter and
1 kb exon sequences of all mouse refseq genes. The highest ranking
motifs reported by Trawler, Amadeus and LocalMotif in each dataset

are shown in the Supplementary Section C. Motifs discovered by
Amadeus and LocalMotif compared well with the published ChIPTF
motifs. Additionally, the LocalMotif motifs with high SCS indicated
their concentration around the peak center.

The second dataset comprised of 1000 highest scoring peaks from
the ER ChIP-Seq reported in Welboren et al. (2009). LocalMotif
was used to analyze the ±1 kb region around the peaks. MEME,
Weeder, Trawler and Amadeus were used to separately analyze the
±200 bp and ±500 bp regions around the peaks. The background
model for LocalMotif, Trawler and Amadeus was constructed from
the set of 1 kb upstream promoter and 1 kb exon sequences of
all human refseq genes. Weeder was used with its default human
background, while MEME did not require a background model.
The geometric combination score with equal weights for the three
scores was used for LocalMotif. The reported motifs are shown
in Figure 6 and their distributions around the center are shown in
Supplementary Section C. Results for ±500 bp region are not shown
as they are less significant. The reported motifs were compared with
TRANSFAC PWMs using the STAMP tool (Mahony and Benos,
2007) with its default parameters and similarity E-value cutoff of
0.001. Trawler reported only one motif, the CREB, while Weeder
reported only the ERE and Pax-6 motifs. They appear to be less
sensitive to weaker motifs when a stronger motif is present.Amadeus
and MEME reported more distinct motifs. Amadeus reported ERE,
PITX2, NKX-2.5, AP-1, MEF-2 and two novel motifs, while MEME
reported ERE, FoxA1, Sp1, STAF, PITX2 and five novel motifs.
Only FoxA1, AP-1 and Sp1 have evidence of functioning as
co-factors of ER (Carroll et al., 2006; Lin et al., 2007). None of the
novel motifs reported by MEME or Amadeus are center-enriched.
LocalMotif reported 11 known motifs apart from ERE, all of which
except Motif7 (FoxA1) are center enriched around the peaks.Among
these, six factors including AP-1, FoxA1, Oct-1, NF-E2, p53 and
AR have evidence of functioning as co-factors of ER (Carroll et al.,
2006; Lin et al., 2007). Three other motifs, Pax-6, GCNF and T3R
are quite similar to ERE. The motifs AP-2α and SMAD-4 appear
significant because of the SCS though they have low ORS. Thus
using SCS, LocalMotif can discover motifs in ChIP-Seq datasets
which are not highly enriched but have localization around the
peaks.
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4 CONCLUSION
The LocalMotif algorithm has been developed for discovering
motifs localized relative to a biological landmark in long regulatory
sequences. A localized motif differs from a locally over-represented
pattern by the virtue of its spatial confinement within the local
interval. A new scoring function called SCS has been developed
to measure the spatial confinement. SCS is found to accurately
identify the interval of localization. In a sequence set where the
motif appears subtle to a usual motif finding algorithm, localization
property allows the motif to still be discovered with high accuracy
using the LocalMotif scoring function.

Information theoretic framework has been found useful for
formulating the scoring function to be consistent for motifs of
different lengths and mutations. This allows selection of best motifs
while removing their redundant forms. The new formulation gives
a clear quantitative as well as qualitative picture of the motif’s
relevance considering its over-representation, relative entropy and
spatial confinement. The three individual scoring measures can
be combined in various ways to rank motifs according to their
performance in one of more of the three characteristics.

Three specific examples where positional localization of motifs
is found useful were reported. These include regulatory sequences
surrounding the TSS, sequences flanking a known TFBS and
sequences flanking the peaks in a ChIP-Seq dataset. LocalMotif
could detect motifs in longer sequences as compared to other tools
which are sensitive to sequence length, and could amplify weak
motifs in case they were localized. For similar reasons, LocalMotif
also detected a number of co-regulatory motifs flanking a main
motif. With the emergence of ChIP-Seq, co-motif discovery using
positional localization is extremely relevant. The interval predictions
reported by LocalMotif provide additional insight into the range of
TF–TF interactions.

LocalMotif is presently based on the (l, d) motif model. There
are emerging opinions in the literature to give a more accurate
description of the motif, such as gapped motifs, or motifs based
on IUPAC character set. It will be interesting to study which motif
representations lead to more accurate results on biological data. The
LocalMotif algorithm could also be improved from a heuristic search
to exact search in the future using efficient data structures such as
suffix tree and FM index.
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