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Two-dimensional localized edge modes in optical honeycomb lattices are found and analyzed ana-
lytically and computationally. Weak nonlinearity and transverse modulation are found to introduce
self-phase modulation in the phase and create internal nonlinear interactions as the electromag-
netic field propagates through the lattice. Even with relatively strong nonlinearity localization and
persistence of modes along the edge is found.

I. INTRODUCTION

An interesting class of optical media are two-
dimensional-waveguide arrays, or photonic lattices,
where the material of the array has a significant non-
linear response in the presence of high intensity fields.
Researchers have observed in photonic lattices the for-
mation of localized waves, or solitons, which exhibit sta-
ble propagation in both one and two dimensional lattices.
This includes discrete solitons [1], dipole solitons [2], vor-
tex solitons [3] and soliton-trains [4]. It has been found
that periodic as well as more complex quasi-periodic lat-
tice backgrounds, cf. [5] and [6], can admit a wide variety
of stable nonlinear modes.

However, the periodic lattices used in the previous
cases were simple periodic lattices. A less well studied
and understood media, but one of growing importance, is
a photonic lattice with a honeycomb (HC) periodic struc-
ture. Due to both their geometry and increasing impor-
tance, honeycomb photonic lattices are commonly called
“optical graphene”. Researchers have observed such phe-
nomena as conical diffraction [7, 8], band gap-solitons [9],
and pseudo-magnetic response at optical frequencies [10]
in honeycomb lattices.

The novel phenomena in optical graphene is due to
the existence of Dirac points, which are points in the
Brillouin zone at which the dispersion bands meet in
intersecting cones. The conical intersection means the
bands have infinite curvature at the Dirac points, which,
in solid-state systems leads to zero effective mass and
near-relativistic dynamics. This striking common feature
between optical and solid state systems has motivated
researchers to explore what features present in carbon
based graphene can be found in the optical equivalent.

A related topic of considerable current research is the
effects of introducing interfaces into a photonic lattice.
In this case, researchers have studied the formation of
edge states in honeycomb lattice systems. Importantly,
in certain cases edge states have been found to exhibit
stable, localized, uni-directional propagation of motion
[11] with limited backscatter. While traditionally stud-
ied in the context of condensed-matter physics [12–15],
the appearance of edge states in optical graphene has
recently been experimentally observed in [16]. Further,

it has been shown that edge states can exist in strained
and compressed optical lattices [10, 17]. Interesting re-
cent research also include theoretical studies [18–20] and
experimental observation [21] of topologically-protected
optical edge states in special types of honeycomb lattices.

The above research, however, involves edge states mod-
eled by strictly linear systems where the edge states rep-
resent the ground state energy, or zero energy, modes.
Edge states in one-dimensional nonlinear lattices have
been studied in [22], and in [23], numerically constructed,
excited energy edge states are found for honeycomb pho-
tonic lattices. However, to our knowledge, the effects of
nonlinearity on the class of zero-energy edge modes have
not been analyzed. Further, previous theoretical results
on linear systems found edge modes via Fourier trans-
forms at a particular frequency; hence these edge modes
represent monochromatic plane waves oscillating in the
direction parallel to the edge.

Given the significant role that nonlinearity plays in
many optical systems, and the added structure of the
two-dimensional honeycomb lattice, it is a natural ques-
tion to explore the impact of these effects on an im-
portant class of physical phenomena. Thus in this pa-
per, we examine the how Kerr type nonlinearities modify
the propagation of two dimensional linear, ground state
edge modes. One of the questions we address is whether
nonlinearity plays a significant role in delocalizing two-
dimensional edge modes away from the edge by causing
them to scatter into the bulk of the lattice.

To generate these two-dimensional localized edge
modes, we modulate the monochromatic edge modes in
the spatial direction parallel to the edge; this allows us
to construct fully localized wave packets. We find there
is an important interplay between nonlinearity and the
modulation of the edge modes. To describe this balance,
we construct a slowly-modulated-wave packet, which is a
two dimensional wave packet with weak modulation in
the direction parallel to the edge. The effect of weak
nonlinearity on slowly-modulated-wave packets is to in-
troduce a self-phase modulation of the zero-energy linear
solution. This preserves localization of the mode along
the edge. We then show via numerical simulations that
localization is largely preserved even as the nonlinearity
and transverse modulation are suitably increased.
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A. Physical Model

The propagation of an electromagnetic field in a two di-
mensional, honeycomb lattice with nonlinear interactions
may be described via the following normalized nonlinear
Schrödinger equation with periodic potential,

i∂zψ = −∆ψ +
1

h2
V (x, y)ψ + σ|ψ|2ψ. (1)

Here, ψ is the normalized electric field, V is the linear
periodic index of refraction, h is the strength of the po-
tential, the lattice is taken to have honeycomb structure,
the coefficient σ = ±1 represents “normal” and “anoma-
lous” dispersion respectively, and z is the direction of
propagation.
The honeycomb structure is related to there being two

minima in the index of refraction V per fundamental
cell in the lattice. The nonlinearity is due to propa-
gation through a Kerr medium. Nonlinear Schrödinger
equations with potentials in the context of Bose-Einstein
condensates are also referred to as Gross-Pitaevskii equa-
tions.
Taking advantage of the field’s tendency to localize

around minima in the index of refraction, using a tight-
binding nearest neighbor approximation, cf. [24], in the
limit as h→ 0 produces a nonlinear lattice system of the
form

i
dAmn(z)

dz
+ (L−B)mn + σ̃|Amn|2Amn = 0, (2)

i
dBmn(z)

dz
+ (L+A)mn + σ̃|Bmn|2Bmn = 0, (3)

where

(L−B)mn = Bmn + ρe−iθ1Bm−1,n−1 + ρe−iθ2Bm+1,n−1,

(L+A)mn = Amn + ρeiθ1Am+1,n+1 + ρeiθ2Am−1,n+1.

The discrete system (2) – (3) was derived in [25]. The
functions Amn(z) and Bmn(z) represent the field strength
at the lattice sites with Amn representing the black dots,
and Bmn representing the grey as seen in Figure 1. The
functions A and B are arranged on a honeycomb lattice
that shows each A-site is surrounded by three nearest
neighbors that are at B-sites. Note, in [25], the discrete
system was indexed by the period vectors of the honey-
comb lattice. In this paper, we have instead indexed the
lattice in a row/column format, where m denotes the row
and n the column; see Figure 1 for reference. We de-
scribe the lattice throughout the text first as a sequence
of columns, each with a sequence of rows within each
column. For example, we describe the nth column of A-
sites as An, and then each entry of An is denoted by
Amn. Details regarding the lattice can be found in the
Appendix.
In (2) – (3), the values θj = k · vj are constant phases

reflecting the influence of the Brillouin zone, where k is
in the Brillouin zone and vj is one of the period vectors

Amn

A
m+1,n+1

A m-1,n+1

B
m+1,n-1

B
m-1,n-1

Bmn

Am+2,n Bm+2,n

A
m-2,n

B
m-2,n

FIG. 1. Indexing scheme for honeycomb lattice with
row(m)/column(n) format. The vertical bars indicate sep-
arate columns of lattice sites.

of the lattice. This is to say that taking tight-binding ap-
proximations at different places in the Brillouin zone im-
pacts nearest-neighbor interactions between lattice sites.
See [25] for more details about these terms. The effective
nonlinearity σ̃ is an O(1) term related to σ that likewise
may have either sign. The value ρ represents the amount
of deformation away from a perfect hexagonal honey-
comb, with ρ = 1 representing zero deformation. One
of the interesting aspects of this discrete system is that
for certain choices of θj corresponding to the locations
of the Dirac points in the Brillouin zone, the continuum
limit of the discrete system is the Dirac equation [25],
which has been shown to give rise to such phenomena as
conical diffraction. Various aspects of the dynamics of
these equations were also studied in [25], and a detailed
study of the validity of the tight-binding approximation
was presented in [26].

B. Definitions and Notational Conventions

It is convenient to write the nonlinear lattice system
in the compact matrix form

i
d

dz

(

A

B

)

+

(

0 L−

L+ 0

)(

A

B

)

+ σ̃

(

|A|2A
|B|2B

)

= 0. (4)

Throughout the text, we use the norms

||A||2 =

(

∞
∑

m=−∞

∞
∑

n=0

|Amn|2
)1/2

,

and

||A||4 =

(

∞
∑

m=−∞

∞
∑

n=0

|Amn|4
)1/4

.
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We also define the phases ϕ+ and ϕ−

ϕ+ = (θ2 + θ1)/2, ϕ− = (θ2 − θ1)/2 (5)

and the standard Fourier series basis via em(ω) where

em(ω) =
eimω

√
2π
.

We work on the periodic interval [−π+ϕ−, π+ϕ−], and
so we point out that one has

∫ π+ϕ
−

−π+ϕ
−

dω em(ω)e∗n(ω) = δmn,

where the ∗ denotes complex conjugation and δmn is the
discrete Dirac delta function.

C. Edges and Modulated-Wave Packets

In this paper, we simulate all edges by forcing the fields
at the A and B sites to be zero beyond a certain column
in the lattice. This can be done in several different ways
which results in several different edge geometries. The
two geometries that are the focus of this paper are the
so called bearded and zig-zag edges, cf. [13]. See Figure
2 for reference. The bearded edge has all columns to the

A0 A1B0

(a)
A1B0

(b)

FIG. 2. In (a) we see the bearded edge, while in (b) the zig-
zag edge is shown. In each figure A and B are zero to the left
of the edge. A0 refers to the 0th column of A-sites and B0

the 0th column of B-sites.

left of the 0th column set to zero. In the zig-zag edge, all
columns to the left of and including A0, the 0th column
of A-sites, are set to zero. Here we only introduce one
edge into the lattice and otherwise allow the lattice to
expand infinitely.
As we discuss below, there are several differences be-

tween the two edges. The bearded edge modes are lo-
calized in the A-sites with the B-sites having vanishing
field strength, while zig-zag edge modes are localized in
the B-sites etc... Further, we show that the different
edge cases only exist in certain frequency bands. These
bands are disjoint in the two cases with the edges be-
tween the bands being determined by the Dirac points in
the continuous problem (1).
For both edges though, we consider a weakly nonlinear

version of (4)

i
d

dz

(

A

B

)

+

(

0 L−

L+ 0

)(

A

B

)

+ ǫ

(

|A|2A
|B|2B

)

= 0, (6)

where we take 0 < ǫ ≪ 1. Note, for convenience we
have replaced σ̃ by ǫ. The introduction of the small non-
linearity allows us to develop a perturbative method for
studying the impact of nonlinearity. In particular, we
perturb around ground state solutions; i.e. solutions to
the steady linear problem

(

0 L−

L+ 0

)(

A

B

)

= 0.

The solutions to this leading order problem provide, as
we show, modes that are localized along the edge repre-
sented by the column n = 0; they are linear edge states.
This approach conforms with current applications of edge
states which treats nonlinearity as generally weak [16].
For the bearded case, the linear edge states that we

consider are of the form

(

A
(env)

0

)

,

where

A
(env)
mn =

1√
ν ||ᾱ||2

∫ π+ϕ
−

−π+ϕ
−

dωᾱ
(ω

ν

)

a
(Nu)
n (ω)em(ω).

(7)

The function a
(Nu)
n (ω), which is derived below, see equa-

tion (14), is given by

a
(Nu)
n (ω) =

(

1− 1

4 cos2(ω − ϕ−)

)1/2(
ei(π−ϕ+)

2ρ cos(ω − ϕ−)

)n

.

For ρ > 1/2, it is this term that causes the mode to be
localized along the edge at n = 0. The function ᾱ(ω) is a
positive function we call the envelope, and the term ||ᾱ||2
is its total energy found by the integral

||ᾱ||2 =

(∫ π

−π

dω ᾱ2(ω + ϕ−)

)1/2

.

Typical examples, using ᾱ(ω) = e−ω2

, of such modes are
seen in Figure 3. Integrating against the envelope in (7)
modulates the monochromatic edge mode a

Nu
n (ω) and

generates the wave packet, or an edge mode that decays
in both spatial directions on the lattice. The parameter
ν controls the width of the wave packet. We can see this,

for example, by choosing ᾱ(ω) = e−ω2

, and then plotting

|A(env)
m0 | for various values of ν; see Figure 4. As can be

seen, as ν decreases, the width of the beam increases, thus
leading to the notion of a slowly-modulated-wave packet.
This broadening due to decreasing ν is a consequence of
choosing A

(env) so that
∣

∣

∣

∣A
(env)

∣

∣

∣

∣

2
= 1 for any ν > 0.

The envelope ᾱ allows us to study effects arising from the
localization of the edge mode in both spatial directions;
i.e. we study two dimensionally localized modes. Note,
equivalent expressions to those above can be found for
zig-zag edges.
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FIG. 3. (Color online) Typical stationary bearded edge
modes. In (a), we have plotted (7) for ν = .2, and in (b),
we have plotted (7) for ν = .5. In both figures, ρ = 1 and
θ1 = θ2 = π/4.
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=
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FIG. 4. Comparison of envelopes along bearded edge (n = 0).
Smaller values of ν correspond to wider modes. In this figure,
ρ = 1 and θ1 = θ2 = π/4.

D. Synopsis of Results

The details of how we generate the wave packet edge
modes are presented in Section II. This is done for both
edge geometries. We also explain the impact of deforma-
tion of the lattice (ρ 6= 1) on the different edge geome-
tries. It is shown that the Dirac points in the continuous
problem (1) manifest themselves as Dirac points in the
dispersion bands of the discrete problem. Under defor-
mation, we further show how the Dirac points merge and
annihilate each other, which leads to the nonexistence
of localized edge modes in the bearded edge geometry.
Localized modes are supported in the zig-zag geometry
even after the Dirac points have annihilated each other.

In Section IV, we find solutions to the weakly nonlinear

problem of the form

(

A(z)
B(z)

)

∼
(

exp
(

iǫ
∣

∣

∣

∣A
(env)

∣

∣

∣

∣

4

4
z
)

A
(env)

0

)

+O(min(ǫ, ν))

(8)
for z = O(1/max(ǫ, ν)). As can be seen from the ap-
proximation, both the magnitude of the nonlinearity and
the modulation of the wave packet are important in the
underlying description. Note, while we have only stated
this result for the bearded edge, an identical result can
be shown for the zig-zag case, and so we only state the
derivation of (8) for the bearded case for brevity. We
thus get an O(min(ǫ, ν)) accurate approximation to the
nonlinear evolution on a O(1/max(ǫ, ν)) timescale. We
see that the nonlinearity introduces the slowly varying
phase, or self-phase modulation,

exp

(

iǫ
∣

∣

∣

∣

∣

∣A
(env)

∣

∣

∣

∣

∣

∣

4

4
z

)

, (9)

as the leading order effect on the linear edge state. We
likewise call (8) the self-phase modulation approximation.
So while there is evolution in the phase, small to moder-
ate nonlinearity does not cause the linear edge mode to
scatter further into the bulk. But as shown in the numer-
ical simulations for the bearded edge presented in Section
IIIA, this nonlinearity does cause small, delocalized ex-
citations along B-sites. There is excellent agreement be-
tween our asymptotic theory and numerical simulation.
The asymptotic approximation presented in Section IV

is accurate only in the case of weak nonlinearity and suf-
ficiently wide beams. However, in Section III B, we go
beyond the case of weak nonlinearity and wide beams
and present numerical simulations for cases of strong
nonlinearity and relatively narrower beams. As shown,
even strong nonlinearity does not significantly increase
the amount of scattering into the bulk. Therefore, in
all cases presented in this paper, we see localized zero-
energy edge modes are robust to a variety of effects not
previously studied.

II. ZERO-ENERGY LINEAR LOCALIZED

MODES

Below we show how to find the zero-energy edge modes,
i.e. ground states, or null solutions, for both edge geome-
tries. The method to find wave packets is explained in
detail in this section.

A. Bearded Edge

We assume the edge of the lattice is given by A0, and
the only nearest neighbors the A0 sites see are the lattice
sites in B0; see Figure 2(a). As shown in the Appendix,
zero energy modes of the linear problem necessarily re-
quire that B = 0, so that we are looking for solutions to
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L+A = 0. We then let

Amn = ane
imω,

so that the equation

Amn + ρeiθ1Am+1,n+1 + ρeiθ2Am−1,n+1 = 0,

becomes

an(ω) + ργan+1(ω) = 0, (10)

which has the solution

an(ω) =

(

− 1

γ(ω)ρ

)n

a0(ω), n ≥ 0, (11)

with

γ(ω) = ei(θ1+ω) + ei(θ2−ω) = 2eiϕ+ cos(ω − ϕ−), (12)

where the definitions of ϕ± are given in (5).
Note, we see the role the edge plays since (10) would

not have a decaying solution if n ran over all of the pos-
itive and negative integers. We get decay in (11) when
ρ|γ| > 1, which is equivalent to

|cos(ω − ϕ−)| >
1

2ρ
.

This inequality can only be satisfied if ρ > 1/2. Thus the
bearded edge ceases to exist if ρ ≤ 1/2. Further, we see
that as ρ|γ| gets closer to 1, or as ρ gets closer to 1/2,
the rate of decay, or degree of localization along the edge,
of (11) decreases. In the case that ρ > 1/2, we see that
ω ∈ ϕ− + Iθ̃ where

Iθ̃ = [−π,−π + θ̃) ∪ (−θ̃, θ̃) ∪ (π − θ̃, π], (13)

with

θ̃ = cos−1(1/2ρ).

Note, by ω ∈ ϕ− + Iθ̃ we mean those frequencies ω such
that

ω = ϕ− + ω̃, ω̃ ∈ Iθ̃.

We then choose a0(ω) =
(

1− 1
ρ2|γ|2

)1/2

and define

a
(Nu)
n (ω) =

(

1− 1

ρ2|γ|2
)1/2(

− 1

ργ

)n

(14)

so that we have that for ω ∈ ϕ− + Iθ̃,
∞
∑

n=0

∣

∣

∣
a
(Nu)
n (ω)

∣

∣

∣

2

= 1.

To construct two dimensionally localized zero energy
edge modes, we introduce an envelope α(ω) and compute

A
(Nu)
mn =

∫

ϕ
−
+I

θ̃

dω α(ω)a(Nu)
n (ω)em(ω). (15)

Note, we integrate strictly over the set ϕ−+Iθ̃ since this
represents the frequencies for which a zero-energy mode
on a bearded edge exists.
In (6), if we look for non-stationary linear (ǫ = 0)

solutions of the form
(

A(z)
B(z)

)

=

(

A

B

)

e−iλz,

where we take λ to be real and non-zero, we get the
problem

(

0 L−

L+ 0

)(

A

B

)

= λ

(

A

B

)

Letting A and B be

Amn = ane
iωm, Bmn = bne

iωm,

we get the reduced eigenvalue problem

(

0 L−
red

L+
red 0

)(

a

b

)

= λ

(

a

b

)

.

where

(L−
redb)n =ργ∗bn−1 + bn

(L+
reda)n =ργan+1 + an

In order to compute the dispersion relation for λ 6= 0,
it is convenient to reduce the two component system in
a and b to a system in b alone supplemented with the
boundary condition, due to the bearded edge, bn = 0
and an for n < 0. The reduced system becomes

γ∗bn−1 + γbn+1 = λ̃bn. (16)

with

λ̃ =

(

λ2 − 1

ρ

)

− ρ|γ|2.

Using the boundary conditions on bj , we can solve the

eigenvalue problem in λ̃. Letting bn = rn leads to the
quadratic equation

r2 − λ̃

γ
r +

γ∗

γ
= 0,

which has the roots

r =
1

2γ

(

λ̃±
√

λ̃2 − 4|γ|2
)

.

In order to satisfy the initial condition b1 = λ̃b0/γ, we
then get the solution

bn = b0

(

rn2 + r1
rn1 − rn2
r1 − r2

)

= b0vn,

where r1 denotes the “+” branch, and r2 denotes the “−”
branch.
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Since |γ∗/γ| = 1, then |r1r2| = 1. To get bounded
solutions for bn, we then must have |r1| = |r2| = 1, since
otherwise we must necessarily have that one of the rj
terms has magnitude larger than one while the other has
magnitude smaller than one. In this case then, bn would
become unbounded as n → ∞. We point out that for
|r1| = |r2| = 1, bn does not decay as n → ∞, and thus
for non-zero-energy modes, we do not get localization.
The restriction that |rj | = 1 then gives the equations

2|γ| =
∣

∣

∣

∣

λ̃±
√

λ̃2 − 4|γ|2
∣

∣

∣

∣

Since λ̃ must be real, we have two cases to study: |λ̃| ≤
2|γ| and |λ̃| > 2|γ|. In the first case we see that

∣

∣

∣

∣

λ̃±
√

λ̃2 − 4|γ|2
∣

∣

∣

∣

=

∣

∣

∣

∣

λ̃± i

√

4|γ|2 − λ̃2
∣

∣

∣

∣

= 2|γ|.

In the second case we must necessarily have that one of
the roots rj has magnitude larger than one, and thus the
second case is not possible given the restriction on the
size of the roots.
Therefore we only have |rj | = 1 when |λ̃| ≤ 2|γ| and,

the dispersion curve is found via the inequalities

|1− ρ |γ(ω)| | ≤ |λ(ω)| ≤ 1 + ρ|γ(ω)|. (17)

For example, choosing θ1 = θ2 gives ϕ− = 0 so that
|γ(ω)| = 2| cos(ω)|. We then get the dispersion bands as
shown in Figure 5, where the shaded gray regions come
from the inequality in (17).

For ω ∼ θ̃, we see that

|1− ρ|γ(ω)|| ∼ 2ρ| sin(θ̃)||ω − θ̃|,

so that at θ̃, the dispersion curves touch in a conical
fashion, or meet at what we call, via analogy with Bloch
bands, Dirac points. Similar calculations show that we
have Dirac points, for ρ > 1/2, at the remaining edges

of Iθ̃, i.e. −θ̃, −π + θ̃, and π − θ̃. See Figure 5(a) for
reference. Likewise, as shown in Figure 5(b), we see for
ρ < 1/2 that the Dirac points have collided and van-
ished, thus prohibiting the existence of edge modes for
the bearded case.
The edges of Iθ̃ are determined by the value θ̃ =

cos−1(1/2ρ), which as seen in [25], is the value used to
distinguish the location of Dirac points in the Brillouin
zone in the continuous model (1). Thus, we see that the
Dirac points of the continuous problem determine the
Dirac points of the discrete system. These results agree
with those found in [17]. However, we point out that nei-
ther numerical simulations or other approximations were
used to generate these results.

B. Zig-Zag Edge

By a zig-zag edge, we mean an edge ending in only B

lattice sites; see Figure 2(b). For zero-energy localized

FIG. 5. The shaded areas represent (17); the horizontal lines
represent zero energy modes. In (a), for ρ = 1 > 1/2, the
zero energy bearded edge modes exist at frequencies in Iθ̃;

they touch the Dirac points at ±θ̃, −π + θ̃, and π − θ̃. In
(b), we see that for ρ = .4 < 1/2, the zero energy bearded
edge states no longer exist and the bands have completely
separated. In both figures we have chosen ϕ

−
= 0.

modes to exist, as explained in the Appendix, we neces-
sarily have that A = 0, so that we must solve L−B = 0.
In this case, we can repeat the analysis we used in the
bearded case to get that a B site zero energy solution
exists when ρ|γ(ω)| < 1, or

|cos(ω − ϕ−)| <
1

2ρ
,

which holds for some ω for ρ ≥ 0.
This zero energy solution, say B

(Nu), is given by

B
(Nu)
mn =

∫

ϕ
−
+Ic

θ̃

dωβ(ω)b(Nu)
n (ω)em(ω),

where,

Ic
θ̃
= (−π + θ̃,−θ̃) ∪ (θ̃, π − θ̃), (18)

and where, denoting the conjugate of γ, see (12), by γ∗,

b
(Nu)
n (ω) =

(

1− ρ2|γ(ω)|2
)1/2

(−ργ∗(ω))n .
As indicated earlier, the frequency condition for the exis-
tence of the bearded zero energy solutions, i.e. ρ|γ| > 1,
and the zig-zag zero energy solutions, i.e. ρ|γ| < 1, exist
on complimentary sets; compare (13) to (18). Further,
we can repeat the analysis from above and show that the
dispersion curves are again given by (17); see Figure 6.
We note that the zig-zag edge zero energy states exist at
frequencies complementary to those at which one finds
bearded edge states; this is indicated by the horizontal
line in Figure 6(a).



7

FIG. 6. The shaded areas represent (17); the horizontal lines
represent zero energy modes. In (a), for ρ = 1 > 1/2, the
zero energy zig-zag edge modes exist at frequencies in Ic

θ̃
. In

(b), we see that for ρ = .4 < 1/2, the zig-zag edge zero energy
modes exist for all possible frequencies. In both figures we
have chosen ϕ

−
= 0.

III. NUMERICAL SIMULATIONS OF THE

IMPACT OF NONLINEARITY

Throughout this section, we look only at the case of the
impact of nonlinearity on modes supported on bearded
edges. In the simulations of (6) we apply the following
initial condition at z = 0

(

A(0)
B(0)

)

=

(

A
(env)

0

)

.

where A
(env) is defined in (7). See Figure 3 for a plot

of typical initial conditions. We now study via numerical
simulation how the evolution of zero-energy linear edge
modes are affected by nonlinearity and variation in the
width of the mode. When computing A

(env), we take

ᾱ(ω) = e−ω2

.

A. Edge States with Weak Nonlinearities and

Confirmation of Self-Phase Modulation

Approximation

For weak nonlinearity (ǫ = .2), and a wide beam (ν =
.2), we plot in Figure 7 the result of propagating the
fields on the A and B sites for a distance z = 1/ǫ = 5.
As shown in Figure 7(b), setting the magnitude of the
nonlinearity to be O(ǫ) causes weak delocalization along
the edge. This agrees with the asymptotic approximation
(8) (valid for length scales up to z = O(1/ǫ)) that the

FIG. 7. (Color online) Edge modes at z = 5 for ρ = 1, θ1 =
θ2 = π/4 on the A-sites in (a) and the B-sites in (b). We
take weak nonlinearity (ǫ = .2) and a wide beam (ν = .2).
Localization along the edge is maintained up to z = 5 = 1/ǫ.
The size of the induced B component is small.

first order correction due to nonlinearity is weak self-
phase modulation, which does not affect the localization
of the leading order solution.
In Figure 8, we plot the error which is the maximum

difference between the numerically computed solution
and the asymptotic solution (8), i.e. we compute

max
m,n

{|Anum
mn (z)−A

asym
mn (z)| , |Bnum

mn (z)−B
asym
mn (z)|} .

We see that the difference between our asymptotic ap-
proximation and the numerical simulation is small, and
by halving ǫ and ν, we reduce the error more than half af-
ter propagating twice as far. In Figure 9, we compare the
phase of the maximum amplitude part of the numerical
solution to the phase computed from (9). The self-phase
modulation approximation predicts a linear evolution of
the phase in response to weak nonlinearity and this agrees
with the numerical solution. Further, our approximation
correctly shows the order of the phase in the presence of
weak nonlinearity is O(ν), see (22). This can be deduced
by comparing Figure 9(a) to 9(b), in which reducing ν
from 0.2 to 0.1 reduces the phase at any z by half.
Therefore, we have numerical agreement with our the-

oretical prediction (8) that weak nonlinearity has only a
small delocalizing effect on a sufficiently wide linear edge
state. We also point out that by looking at wave-packets,
we see spatial effects, in particular in Figure 7(b). We
note, as seen in Figure 10 that localization also holds
even if we take z ∼ O(1/ǫν) = 25, in which case the slow
self-phase modulation and weak nonlinearity both have
an asymptotically long time to act.
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FIG. 8. (ρ = 1, θ1 = θ2 = π/4) Comparing (a), the error
between the asymptotics and numerics for ǫ = ν = .2, and
(b), which gives the error for ǫ = ν = .1, by halving ǫ and ν,
the error is reduced by half even though we propagate twice
as far in (b).

FIG. 9. (ρ = 1, θ1 = θ2 = π/4) In (a), we have plotted the
analytically and numerically computed phases for ǫ = ν = .2;
in (b), we plot the case ǫ = ν = .1. By comparing (a) and
(b), by halving ǫ and ν, the numerically computed phase is
reduced by half even though we propagate twice as far in (b).

It is also interesting to look at the case of ρ = .55 which
is close to the critical value at which edge modes in the
bearded edge cease to exist. As shown in Figure 11, the
modes, as expected, are less localized since the rate of
decay of the linear edge mode is significantly slower in
the case of ρ = .55 than the case of ρ = 1; see (11) and
associated discussion. However, we see from Figure 12,
that the slow self-phase modulation approximation (8) is

FIG. 10. (Color online) Edge modes at z = 25 for ρ = 1, θ1 =
θ2 = π/4, and weak nonlinearity (ǫ = .2) and wide beam (ν =
.2) on the A-sites in (a) and the B-sites in (b). Localization
along the edge is maintained up to z = 25 = 1/(νǫ). The size
of the induced B component is small.

still an excellent approximation to the dynamics. Thus,
while the edge mode for ρ = .55 is less localized, the non-
linearity does not introduce any further delocalization.
Likewise, we see that (8) is still valid in the bearded edge
case even as ρ gets close to the critical value of 1/2.

B. Edge States with Strong Nonlinearities

Going beyond our asymptotic theory, we present nu-
merical results for the case of strong nonlinearity, ǫ = 1,
and a relatively narrower beam, ν = 0.5 (cf. Figure 4).
The narrower beam can also be described as a rapid mod-
ulation. The combined impact of these effects leads to
greater delocalization, as can be seen in Figure 13(b).
However, as indicated in 14(b), which is a plot of the
quantity (

∑

m,n |Bmn(z)|2)1/2, given that we begin with
total energy equal to one between both A and B sites,
then Figure 14(b) shows for z ∼ 10 = 5/(ǫν) that about
13 % of the total energy has been transferred into the B

mode. We further see from Figures 13(a) and 14(a), that
most of the energy, more than 82 %, as measured by the
quantity (

∑

m |Am0(z)|2)1/2 remains localized along the
A edge sites. This leaves approximately 5 % of the en-
ergy in the bulk A sites. Therefore we see that localized
linear edge modes essentially persist in the presence of
large nonlinearities.

It is also interesting to consider the case ρ ∼ 1/2; we
choose ρ = 0.55. As before, we take ǫ = 1 and ν =
0.5, so that we are still looking at the case of strong
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FIG. 11. (Color online) Edge modes at z = 5 for ρ = .55, θ1 =
θ2 = π/4, and weak nonlinearity (ǫ = .2) and wide beam
(ν = .2) on the A-sites in (a) and the B-sites in (b). The
nonlinearity does not introduce any significant further delo-
calization of the edge mode.

0 2.5 5
0

0.5

1.2

x 10
−3

E
rr

o
r

FIG. 12. (θ1 = θ2 = π/4) Maximum error between asymp-
totics and numerics for ǫ = ν = .2 and ρ = .55.

nonlinearity and a relatively narrow beam. As can be
seen from Figure 15(a), the degree of localization for ρ ∼
1/2 is less than for ρ = 1. However, as was the case for
weak nonlinearity and slow modulation, i.e. ǫ = ν =
.2 with ρ = 0.55, the strong nonlinearity and relatively
narrow beam width do not cause any significant amount
of further scattering into the bulk. This can be seen from
Figure 16(a), in which the amount of energy on the n = 0
edge changes very little as the beam propagates through
the lattice. Likewise, we see from Figure 16(b) that only
a small amount of energy, ∼ 5%, is scattered into the B

sites.

FIG. 13. (Color online) Edge modes at z = 10 for ρ = 1, θ1 =
θ2 = π/4, and strong nonlinearity (ǫ = 1) and narrow beam
(ν = .5) on the A-sites in (a) and the B-sites in (b). Local-
ization along the edge is maintained up to z = 10.

FIG. 14. (ρ = 1, θ1 = θ2 = π/4). For large nonlinear-
ity (ǫ = 1) and narrow beam (ν = .5), in (a) we plot

(
∑

m |Am0(z)|
2)1/2, or the energy on the A edge. In (b) we

plot the total energy, (
∑

m,n |Bmn(z)|
2)1/2, in allB-sites. The

majority (∼ 82%) of the energy is localized along A-edge sites
as shown in (a). Some energy is leaked into the bulk along
the B-sites as seen in (b).

IV. DERIVATION OF THE SELF-PHASE

MODULATION APPROXIMATION

In this section we show how to derive equation (8).
Hereafter, we will only explicitly mention the bearded
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FIG. 15. (Color online) Edge modes at z = 10 for ρ =
.55, θ1 = θ2 = π/4, and strong nonlinearity (ǫ = 1) and nar-
row beam (ν = .5) on the A-sites in (a) and the B-sites in
(b). For ρ ∼ 1/2, more energy is scattered into the bulk along
both A and B sites.

FIG. 16. (ρ = .55, θ1 = θ2 = π/4) For large nonlinear-
ity (ǫ = 1) and narrow beam (ν = .5), in (a) we plot

(
∑

m |Am0(z)|
2)1/2, or the energy on the A edge. In (b)

we plot the total energy, (
∑

m,n |Bmn(z)|
2)1/2, in all B-sites.

From (a), we see less than 1% of the energy on the edge is
scattered into the bulk. As seen in (b), energy scatters into
B sites in a steadier way, but the amount of energy scattered
into the B sites is still small.

case, and assume ρ > 1/2. The choice of a bearded edge
does not play a critical role, and a self-phase modula-
tion approximation could be found for the zig-zag case
following similar arguments.

We assume the following ansatz for the solution to (6)

(

A(z)
B(z)

)

= c(ǫz)

(

A
(Nu)

0

)

+ ǫ~R(z),

where

~R(z) =

(

R1(z)
R2(z)

)

,

and we define the slow spatial scale Z̃ = ǫz. Substitut-
ing this ansatz into equation (6), we get the following

equation for the remainder ~R

−i∂z ~R ∼ L~R+

(

N (A(Nu))
0

)

,

where

L =

(

0 L−

L+ 0

)

.

Using variation of parameters we can write the leading
order solution to this forced problem in the form

~R(z) ∼ i

∫ z

0

eiL(z−s)

(

N (A(Nu))
0

)

ds

where

N (A(Nu)) = iA(Nu)∂Z̃c+ |A(Nu)|2A(Nu)|c|2c,

with ~R(0) = 0. We note that if L~F = 0 then e−iLs~F = ~F
since

e−iLs~F =

(

I − isL− s2

2!
L2 + · · ·

)

F = F,

so that
∫ z

0

eiL(z−s)~Fds = z~F,

or zero energy solutions of L give rise to secularities.
Thus, in order to remove all terms which have growth

in z, noting for the bearded edge that any zero energy
solution is of the form

(

A

0

)

, L+A = 0,

we then want

PNu,+N (A(Nu)) = 0.

where PNu,+ denotes the projection onto the null space
of L+. We thus need to find the null space of L+, say
ker(L+).
To find ker(L+), we write the envelope α(ω) in (15) as

a Fourier series

α(ω) =

∞
∑

l=−∞

α̂lel(ω),
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so that we have

A
(Nu)
mn =

∞
∑

l=−∞

α̂l (Kl)mn ,

where

(Kl)mn =

∫ π+ϕ
−

−π+ϕ
−

dω a
(Nu)
n (ω)el(ω)em(ω)

=

∫

ϕ
−
+I

θ̃

dω a
(Nu)
n (ω)el(ω)em(ω).

Note, the last equality comes from (14) which required

for a bearded edge that a
(Nu)
n (ω) = 0 if ω /∈ ϕ− + Iθ̃.

One can show that the set {Kl}∞l=−∞ is an orthonormal
basis of ker(L+).
Therefore, the condition PNu,+A

(nl) = 0 is equivalent
to the condition

∣

∣

∣

∣

∣

∣
PNu,+N (A(Nu))

∣

∣

∣

∣

∣

∣

2

2
=

∞
∑

l=−∞

∣

∣

∣

〈

N (A(Nu)),Kl

〉∣

∣

∣

2

= 0.

Letting c(Z̃) = eiΩZ̃ , we see that

∣

∣

∣

〈

N (A(Nu)),Kl

〉∣

∣

∣

2

=
∣

∣

∣

〈

−ΩA(Nu) + |A(Nu)|2A(Nu),Kl

〉∣

∣

∣

2

=Ω2
∣

∣

∣

〈

A
(Nu),Kl

〉∣

∣

∣

2

− 2Ω
〈

|A(Nu)|2A(Nu),Kl

〉〈

Kl,A
(Nu)

〉

+
∣

∣

∣

〈

|A(Nu)|2A(Nu),Kl

〉∣

∣

∣

2

.

Summing over the index l then gives
∣

∣

∣

∣

∣

∣PNu,+N (A(Nu))
∣

∣

∣

∣

∣

∣

2

2
=Ω2

∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

2

2
− 2Ω

∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

4

4

+
∣

∣

∣

∣

∣

∣PNu,+|A(Nu)|2A(Nu)
∣

∣

∣

∣

∣

∣

2

2
,

where we have used the fact that
∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

4

4
=
〈

|A(Nu)|2A(Nu),A(Nu)
〉

=

∞
∑

l=−∞

〈

|A(Nu)|2A(Nu),Kl

〉〈

Kl,A
(Nu)

〉

,

since A
(Nu) ∈ ker(L+).

Since
∣

∣

∣

∣PNu,+A
(nl)
∣

∣

∣

∣

2

2
≥ 0, the best we can hope to do

is minimize this quantity which leads to choosing Ω to be

Ω = Ω(A(Nu)) =

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

4

4
∣

∣

∣

∣A(Nu)
∣

∣

∣

∣

2

2

. (19)

Likewise, we see that by choosing Ω as we have, we
get the minimal value of

∣

∣

∣

∣PNu,+A
(nl)
∣

∣

∣

∣

2
, which we call

S(A(Nu)), to be

S2(A(Nu)) =
∣

∣

∣

∣

∣

∣PNu,+|A(Nu)|2A(Nu)
∣

∣

∣

∣

∣

∣

2

2
−
∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

8

4
∣

∣

∣

∣A(Nu)
∣

∣

∣

∣

2

2

.

This gives us the leading order solution
(

A(z)
B(z)

)

= eiǫΩ(A(Nu))z

(

A
(Nu)

0

)

+O(ǫS(A(Nu))z).

(20)
In order to get a valid asymptotic approximation, we need
to make S(A(Nu)) as small as possible.
A means to controlling S(A(Nu)) is to choose a positive

function ᾱ(ν) such that ᾱ(ν)
∫ ∞

−∞

dωᾱ(ω) = 1.

We then choose the envelope that defines A(Nu) to be

α(ω) =
1

ν
ᾱ

(

ω − ω0

ν

)

,

where ω0 − ϕ− ∈ Iθ̃. While an arbitrary parameter, we
choose ω0 = 0 for the sake of presentation. Thus in the
case that 0 < ν ≪ 1, we get that

A
(Nu)
mn =

1

ν

∫ π+ϕ
−

−π+ϕ
−

dωᾱ
(ω

ν

)

a
(Nu)
n (ω)em(ω)

=

∫ (π+ϕ
−
)/ν

(−π+ϕ
−
)/ν

dωᾱ (ω)a(Nu)
n (νω)em(νω)

=α̃(νm)a(Nu)
n (0)em(0) +O(ν), (21)

where

α̃(νm) =

∫ ∞

−∞

dωᾱ (ω) em(νω).

Thus, for small ν, we modulate the one-dimensional lin-
ear solution with a slowly varying envelope. We see that

∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

2

2
=

∫ π+ϕ
−

−π+ϕ
−

dωα2(ω + ϕ−),

=
1

ν

∫ (π+ϕ
−
)/ν

(−π+ϕ
−
)/ν

dωᾱ2(ω + ϕ−),

∼ 1

ν

∫ ∞

−∞

dωᾱ2(ω + ϕ−),

and therefore
∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

2
= O(1/

√
ν). In the Appendix

we show
∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

4

4
= O(1/ν),

so that
∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

8

4
∣

∣

∣

∣A(Nu)
∣

∣

∣

∣

2

2

= O(1/ν), ν → 0+.

Given that |A(Nu)
mn | ≤ 1, then we also have that

∣

∣

∣

∣

∣

∣PNu,+|A(Nu)|2A(Nu)
∣

∣

∣

∣

∣

∣

2

2
≤
∣

∣

∣

∣

∣

∣|A(Nu)|2A(Nu)
∣

∣

∣

∣

∣

∣

2

2

≤
∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

2

2
= O(1/ν).
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As just shown, slow modulation of the wave packet is
not enough to control S(A(Nu)). Therefore, we rescale
A

(Nu) in the following way

A
(env) =

1
∣

∣

∣

∣A(Nu)
∣

∣

∣

∣

2

A
(Nu),

so that

A
(env)
mn =

1√
ν ||ᾱ||2

∫ π+ϕ
−

−π+ϕ
−

dωᾱ
(ω

ν

)

a
(Nu)
n (ω)em(ω).

We then see that

∣

∣

∣

∣A
(env)

∣

∣

∣

∣

8

4
∣

∣

∣

∣A(env)
∣

∣

∣

∣

2

2

=
∣

∣

∣

∣

∣

∣A
(env)

∣

∣

∣

∣

∣

∣

8

4
= O(ν2),

and

∣

∣

∣

∣

∣

∣PNu,+|A(env)|2A(env)
∣

∣

∣

∣

∣

∣

2

2
= O(ν2),

which then shows that S(A(env)) = O(ν). Therefore, we
have that
(

A(z)
B(z)

)

∼ eiǫΩ(A(env))z

(

A
(env)

0

)

+O(ǫS(A(env))z),

where, using (19), we get the self-phase modulation term
(9), i.e.

Ω(A(env)) =

∣

∣

∣

∣A
(env)

∣

∣

∣

∣

4

4
∣

∣

∣

∣A(env)
∣

∣

∣

∣

2

2

=
∣

∣

∣

∣

∣

∣
A

(env)
∣

∣

∣

∣

∣

∣

4

4
,

since
∣

∣

∣

∣A
(env)

∣

∣

∣

∣

2
= 1 by construction. Since S(A(env)) =

O(ν), then for z ≤ 1/max(ǫ, ν), the error in using the self-
phase modulation approximation is O(min(ǫ, ν)). We
likewise see that

Ω(A(env)) =

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

4

4
∣

∣

∣

∣A(Nu)
∣

∣

∣

∣

4

2

= O(ν), (22)

since
∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

4

4
= O(1/ν), and

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

2
= O(1/

√
ν).

V. CONCLUSION

In this paper we find and analyze fully two dimensional
localized edge modes. We study the impact of nonlinear-
ity and spatial modulation on the associated zero-energy
edge states in honeycomb optical lattices. It is shown
both analytically and numerically, neither effect causes
significant delocalization via the scattering of the modes
into the bulk of the lattice. We further deduce that the
response of an edge mode to weak nonlinearity and slow
modulation is self-phase modulation. Even with strong
nonlinearity two dimensional localized modes are found
to persist in wide parameter regimes.
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APPENDIX

A. Details about the Lattice

The numbering scheme of lattice sites is of course ar-
bitrary, but we adopt the following conventions. Given
the numbering of A and B sites, if we have the sites
Bm−1,n−1 and Bm+1,n−1, we do not have the site Bm,n−1,
or we set Bm,n−1 = 0. Likewise, if we have the sites
Am+1,n+1 and Am−1,n+1 then we do not have the site
Am,n+1. See Figure 1 for clarification. This induces a
staggered numbering system where we define the infinite
dimensional vectors

A =























...
A2

A1

A0

A−1

A−2

...























, B =























...
B2

B1

B0

B−1

B−2

...























,

where A2l and B2l are staggered in an even fashion, i.e.

A2j =























...
A2,2j

0
A0,2j

0
A−2,2j

...























, B2j =























...
B2,2j

0
B0,2j

0
B−2,2j

...























.

The odd terms, A2l+1 and B2l+1, are staggered in an
odd fashion.

1. Bearded Edge

In this case, we assume the edge of the lattice is given
by A0 with even staggering, and the only nearest neigh-
bors the A0 sites see are the lattice sites in B0. Thus we
have Ak = Bk = 0 for k < 0. See Figure 2(a) for details.
Since A0 only interacts with B0 we have

L− =











. . .
. . .

. . .
. . .

. . .
...

· · · 0 0 I Lo 0
· · · 0 0 0 I Le

· · · 0 0 0 0 I











,



13

and

L+ =











. . .
. . .

. . .
. . .

. . .
...

· · · 0 L†
e I 0 0

· · · 0 0 L†
o I 0

· · · 0 0 0 L†
e I











,

where the † denotes the Hermitian conjugate of an oper-
ator. We then have

L−B =











...
B2 + LoB1

B1 + LeB0

B0











, L+A =











...
A2 + L†

eA3

A1 + L†
oA2

A0 + L†
eA1











,

where for j odd we have

(LoBj)m =

{

0, m odd,
ρe−iθ2Bm+1,j + ρe−iθ1Bm−1,j , m even,

(

L†
eAj

)

m
=

{

0, m odd,
ρeiθ2Am−1,j + ρeiθ1Am+1,j , m even,

and for j even we have

(LeBj)m =

{

0, m even,
ρe−iθ2Bm+1,j + ρe−iθ1Bm−1,j , m odd,

(

L†
oAj

)

m
=

{

0, m even,
ρeiθ2Am−1,j + ρeiθ1Am+1,j , m odd.

From this, we now see why for the zero-energy states
that B must be zero since from L−B = 0 we have that
B0 = 0, which would then give that B1 = 0, and so forth.

2. Zig-Zag Edge

Here, we are describing an edge ending in onlyB lattice
sites which see only the two forward interactions of the
three nearest neighbor interactions. In this case, we treat
B0 as the edge sites with an even staggering, so that
Bk = 0 for k < 0. This forces us to set Ak = 0 for k ≤ 0.
See Figure 2(b) for clarification. Thus, for the zig-zag
edge, we have

A =











...
A2

A1

0











, B =











...
B2

B1

B0











.

This choice requires slight modifications to L− and L+.
In particular, the identity matrices do not appear along
the diagonal. Instead, we have that

L− =







. . .
. . .

. . .
. . .

. . .
...

· · · 0 0 I Lo 0
· · · 0 0 0 I Le






,

and

L+ =





· · · 0 L†
e I 0

· · · 0 0 L†
o I

· · · 0 0 0 L†
e



 .

Note, the infinite matrices are growing out from the bot-
tom right corner, and L− acts on the vector











...
B2

B1

B0











,

while L+ acts on






...
A2

A1






.

We note from L+A = 0, we get the equation,

L†
eA1 = 0.

This gives us term by term the expression

ρeiθ1A1,m+1 + ρeiθ2A1,m−1 = 0,

or

A1,m+1 = e2iϕ12A1,m−1.

This gives |A1,m+1| = |A1,m−1|, and thus to get a decay
solution as m → ∞, we must take A1 = 0. This in turn
gives L†

oA2 = 0, and so using the same argument we have
a2 = 0. Continuing in this way then shows that A = 0.

B. Estimating

∣

∣

∣

∣

∣

∣
A(Nu)

∣

∣

∣

∣

∣

∣

4

4

Using the envelope expansion (21), we get

∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

4

4
∼
∣

∣

∣

∣

∣

∣a
(Nu)

∣

∣

∣

∣

∣

∣

4

4

∞
∑

m=−∞

|ᾱ(νm)|4

∼
∣

∣

∣

∣

∣

∣a
(Nu)

∣

∣

∣

∣

∣

∣

4

4

∫

R4

d4~ω A(~ω)V(ν~ω)

where ~ω = (ω1, ω2, ω3, ω4),

A(~ω) = ᾱ(ω1)ᾱ(ω2)ᾱ(ω3)ᾱ(ω4),

and

V(ω1, ω2, ω3, ω4) =

∞
∑

m=−∞

em(ω1)em(ω2)e
∗
m(ω3)e

∗
m(ω4).

Changing variables via ω̃j = νωj , we then get

∣

∣

∣

∣

∣

∣
A

(Nu)
∣

∣

∣

∣

∣

∣

4

4
∼
∣

∣

∣

∣a
(Nu)

∣

∣

∣

∣

4

4

2πν4

∫

R3

d3~̃ωAs(~̃ω)ᾱ

(

ω̃1 + ω̃2 − ω̃3

ν

)

,
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where

As(~̃ω) = ᾱ

(

ω̃1

ν

)

ᾱ

(

ω̃2

ν

)

ᾱ

(

ω̃3

ν

)

,

and where we have used

∞
∑

m=−∞

em(ω̃1)em(ω̃2)e
∗
m(ω̃3)e

∗
m(ω̃4) =

1

2π
δdr(ω̃1+ω̃2−ω̃3−ω̃4),

with δdr(x) being the Dirac delta function. Returning
then to the variables ωj we have

∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

4

4
∼
∣

∣

∣

∣a
(Nu)

∣

∣

∣

∣

4

4

2πν

∫

R3

d3~ω ᾱ(ω1)ᾱ(ω2)ᾱ(ω3)ᾱ(ω1+ω2−ω3).

or

∣

∣

∣

∣

∣

∣A
(Nu)

∣

∣

∣

∣

∣

∣

4

4
= O(1/ν), ν → 0+.
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