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A new chemical pattern is discussed, which is a propagationless solitary island in an 

infinite medium. We demonstrate analytically its existence and stability for a certain simple 

model. The localization turns out to be a consequence of the rapid diffusion of an inhibiting 

substance occurring in a potentially excitable system. In order to extract thc; important 

features of the localized pattern, the method of singular perturbation is employed, with the 

following results: (1) A stable motionless solitary pattern can exist either for a monostablc 

or bistable system. (2) Under suitable conditions such a pattern undergoes the Hop£ bifur

cation, leading to a "breathing motion" of the activated droplet. 

The analysis is restricted to the one-dimensional case throughout. 

§ l. Introduction 

Symmetry-breaking standing structures in cross-inhibiting media,ll~5l and tra

velling excitations in cross-activating media 61 ~ 131 have been considered to constitute 

the most basic patterns encountered in non-oscillating reaction-diffusion systems; 

these giving rise to a variety of spatio-temporal structures, each depending on 

boundary and initial conditions, dimensionality and so on. A simple question might 

be posed however: Is the third possibility, a solitary pattern without propagation 

in an infinite medium, impossible? In the present paper we will show how such a pat

tern is realized for some classes of systems. There has been some discussion con

cerning localized patterns in systems of infinite and finite extensions, w. 151 yet any 

soluble example and clear explanation of localization mechanisms appear to be lack

mg so far. 

Qualitatively, the pattern of our concern might be contrasted with the other 

two as follovvs. Consider a system composed of an autocatalytic substance)( and 

its antagonist Y. Suppose that the local subsystem is such that the equilibrium 

state of )( is potentially unstable but a small deviation from it is prevented from 

blowing up because of the change simultaneously induced in the concentration of 

the inhibitor. Then the corresponding distributed system should be unstable with 

respect to nonuniform disturbances provided that the diffusion rate of Y is suffici

ently high. This is because the rapid spilling out of Y from the activated center 

implies that the depressing force on the autocatalytic increase of X in this region 

disappears. Moreover, the resulting excess amount of Y in the surroundings 

strongly suppresses the production of .\ there. leading to a subsequent instabilit~'· 

Such a process will repeat itself, until finally a stationary pattern spreads o\·er 

the medium. Gierer and Meinhardt'> considered that such a process is crucial to 
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Locali.c.:f'd Patterns in Reaction-Diffusion Systems 107 

morphogenesis. If, on the other hand, the onset of the autocatalytic production 

of X in itself requires some external stimulus, and if the nullcline dX/dt=O is 

represented by a sigmoidal curve, then we have a typical excitable system. In 

such a case, the triggered autocatalytic production of X will subsequently act as 

a triggering stimulus on the surroundings. As a consequence, it is believed that 

either a pulse or a domain boundary travels through the medium, according as the 

local subsystem is in a monostable or multistable regime. Implicit in the above 

statement is the assumption that the second substance Y plays no role except 

possibly that of a hysteresis-eliciting parameter. But this is only true if the diffu

sion rate of Y is not very high. If, on the contrary, Y is a rapidly diffusing 

substance, a situation partly analogous to the morphogenetic case is encountered. 

Namely, the rapid outflow of Y from the activated center results in the accumula

tion of Y at the leading edge of the propagating activated region. This means 

that the relationship between the fast foliation 161 at the wavefront and the sigmoidal 

manifold adjusts itself until a kind of Maxwell's equal area condition1n' 181 is re

alized. Eventually, further propagation is completely blocked. Since the condition 

for the Rashevsky-Turing type instabilityll' 21 is not fulfilled in this case, a possible 

consequence will be the formation of a completely localized pattern in an infinite 

medium. 

The first two types of pattern are possible for the Bonhoeffer-van der Pol 

model supplemented by diffusion under suitable conditions. The same model will 

therefore be appropriate for studying the third pattern also. For the purpose of 

supplying the above qualitative argument with an analytically rigorous basis, we 

shall adopt a piecewise linear version of the BVP model, as was done by McKean, 81 

and Rinzel and Keller 91 in discussing travelling pulses for the FitzHugh-Nagumo 

model/1' 101 a restricted form of the BVP model. 

In § 2, a motionless solitary pattern and its stability will be discussed for 

nonsingular values of the parameters. In § 3, the method of singular perturba

tion181'191 is employed, and the equation describing the motion of the wavefront is 

derived in a closed form as was done by Fife181 for different case. On studying 

the solution, we find that besides the stationary localization, discussed in § 2, a 

particularly interesting phenomenon occurs, namely, a limit cycle oscillation of the 

front around its equilibrium position. Further implications of our localized pattern 

will be discussed in § 4. Throughout the present paper, only a one-dimensional 

system is considered. 

§ 2. The stationary localized solution and its stability 

The set of equations considered is 

()X T T f)'X f)'X 
=-X -l +1-l(X -a) +Dx--, =Fx(X, Y) +Dx- 9 -

at () :r- a.x:-
(2 ·la) 
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108 S. Koga and Y. Kuramoto 

(2 ·1b) 

Here ]-[ is the Heaviside step function, and the parameters a, b, c and diffusion 

constants Dx. DY are assumed to be positive. For the sake of simplicity we further 
i!SSU!11e 

() . / 1 
<a~-

2 

The nullclines Fx=O and Fy=O are 

shown in Fig. 1. The piecewise linear 

FitzHugh-Nagumo model as treated in 

Eefs. 8) and 9) is obtained by putting 

c = Dy= 0, whereas Winfree 13) carried out 

a computer simulation for the case c = 0, 

Dx = Dy, to obtain a two-dimensional 

spiral pattern. In contrast to these, we 

are concerned in the present paper with 

the situation Dy~Dx. 

Besides the fixed point (X, Y) = (0, 

0), Eq. (2 ·1) has another spatially urn

form, stable fixed point (X0 , Y0), 

r C 
Xo= 

b--jc 
Yo= b , 

h-tc 
(2·3) 

provided c/ (b +c) >a. Otherwise, Eq. 
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Fig. 1. The nullclines Fx=O (solid line) and 

Fy=O (broken lines). The lines 1 and 2 

correspond to the bistable and monostable 

cases, respectively. 

(2 ·1) represents a monostable excitable system. We shall retain, however, the 

above-defined notation ~JC 0 and Yo in the latter case also. Further, we note that 

the condition 

(2. 4) 

may generally be assumed. This is because the system 1s symmetric in the sense 

that the transformations 

Y->Y0 -Y. (2. 5) 

map the system onto itself except that the original condition, which we assume to 

he .\0 >2a, is replaced by its counter-condition (2 · 4). Still for reasons to be seen 

Ltter, we do nut presently assume (2 · 4). 

Let us now seek a nonuniform steady solution (X, (:r), Y, (:x:)) which is loca-
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Localized Patterns m Reaction-Diffusion Systems 109 

lized and symmetric around .r = 0. Speci ficall v. we require 

X~a for l . .rl;:'rT. (2· 6) 

and also the boundary condition 

X, ( ± oo) = Y, ( ± oo) = 0. (2. 7) 

Thus the solution under consideration is such that only a small part of the system 

forms a frozen activated region, while the remaining part is essentially in a homo

geneous steady state. 

Since the method of finding the solution is analogous to McKean',;,sJ and Rinzel 

and Keller's,"! all the calculational details are omitted below. However the follow

ing remarks should be noted. The piecewise linear character of Eq. (2 ·1) enables 

us to express the solution in the respective regions, 1.e., lxl>o and lxl<rT, in 

terms of linear combinations of exponential functions e"'x. Here the a; are the 

zeros of the polynomial 

(2. 8) 

Assuming that P (a) = 0 has real roots, as is the case with the parameter values 

considered later, we have two positive roots a 1 and a 2, and two negative ones 

- a 1 and - a 2 • The coefficients of the various exponential functions are determined 

from the boundary conditions, as are also the matching conditions of X, and Y, and 

their first derivatives at !:.rl =o. Further, the additional requisite )(,(±6) =a is 

used for determining o. In this way we obtain 

Y, = (n x _ci!"_ - 1) x, + H co - 1 x 1) , 
d:.r2 

1vhere 

(2 · 9a) 

(2. 9b) 

(2· 9c) 

(2 ·10) 

The above solution makes sense only if the condition X., ( ± o) =a or, explicitly 

(2 ·11) 

has some positive root o. We shall defer the discussion of the appearance of the 

stationary pattern for a few paragraphs, and turn now to a consideration of its 

stability. 

The linear stability analysis is also analogous to that of Rinzel and Keller. 9J 

Putting into Eq. (2 ·1) the expressions 
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llO S. Koga and Y. Kuramoto 

we obtain a set of variational equations 

where 

dX I r=- _s 

dx 

(2·12a) 

(2·12b) 

(2 ·13a) 

(2·13b) 

(2 ·14) 

As was the case with X,, and Y., the eigenfunctions u and v are represented 111 

terms of exponential functions ee'x, however here the /3i are the zeros of 

(2·15) 

The following conditions have now to be imposed: The boundary conditions, 
u ( ± oo) = v ( ± oo) = 0; the continuity conditions for u, ·v and dv/ dx at lx I= IJ, and 
the jump condition 

du 

dx 

du 

dx '•-o 
= (D xr) ··lu (u), (2·16) 

together with a similar condition at x = - u. In addition, one may arbitrarily 
specify the value of u at, say, x=u. Most conveniently, one may put 

u (a)= Dxr. (2 ·17) 

In this way u and v are easily obtained, the expressions are, however, omitted 
here. The eigenfunction u thus obtained is now substituted into Eq. (2 ·17), which 
leads to an equation for the eigenvalue: 

G, (A)G_ (A) =0, (2 ·18) 

where 

(2 ·19a) 

f = (-df2 (/3'")__) -l (D 0 2 - A.- c) "= 1 2 
I" d/31" YfJ# > 0 , ' 

(2·19b) 

and real parts of /31 and /32 are assumed to be positive. Since (X, (x), Y, (x)) 1s 
a symmetric pattern, the eigenfunctions must be symmetric or antisymmetric, cor-
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Localized Patterns in Reaction-DUfusion S'I,Jstcms 111 

responding to G and G _ respectively. It can readily be checked that the zero 

value of l always satisfies Eq. (2 -18), in particular, G_ (A) = 0. This is a natural 

consequence of the fact that the spatial translation of the original pattern is also 

a solution of Eq. (2·1). 

Figure 2 shows how IJ, the root of Eq. (2 -11), is obtained graphically. It can 

be seen that as a decreases, there is at first no stationary solution, but at a= ac 

a pair of roots (} 1 and (}2 appear. Subsequently, at a =X0/2, the larger root 0 2 

disappears. By numerical analysis of Eq. (2 -18), we found that the solutions cor

responding to the (} 1 branch are always unstable. That is, if A is real, its positive 

value always corresponds to the IJ1 branch as explained in Fig. 3. Thus the situa-· 

tion here is analogous to the travelling wave case discussed by Rinzel and Keller. 91 

In particular, their fast pulse and slow pulse solutions may be compared with our 

localized solutions with large and small pulse width, respectively. This does not 

necessarily mean, hovvever, that our large width solutions are always stable. In 

fact, further numerical analysis of Eq. (2 -18) shows that such a solution admits, 

in some cases, a complex eigenvalue with positive real part as is seen from Fig. 3. 

This implies the interesting possibility that a localized pattern undergoes the Hop£ 

Re >--.. 

.2 .5 1.5 
.o .5 1.5 

a a 

-5 

Fig. 2. Fig. 3. 

Fig. 2. Pulse width rJ versus a for several values of c (the number attached to each curve), calculat

ed from Eq. (2·11). The parameter values are: Dx=l, Dy=5, b=0.5. 

Fig. 3. Eigenvalue A versus a for several values of c (the number attached to each curve). The solid 

lines and broken lines correspond to the real and complex eigenvalues, respectively. The 

positive part of the solid line corresponds to the rJ,-branch, and the negative part of the same 

line together with the broken line corresponds to the rJ,-branch. 
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112 S. Koga and Y. Kuramoto 

.Xs 

---- Ys 

• 2 

------~f--~5~----------r-----------L-~--------~X 
I) 

Fig. 4. A localized pattern of the tJ,.branch obtained from Eq. (2·9). The parameter val

ues are: Dx= 1, Dy=5, b=c=0.5, a=0.254. 

bifurcation. This point will further be discussed 111 § 3. 

Figure 4 illustrates the localized pattern of the (J2 branch. AI though the 

corresponding uniform system is in the bistable regime for the assumed parameter 

values in Fig. 4, essentially the same localized pattern is possible in the monostable 

regime as well, as we shall see in § 3. 

The above stability analysis is still incomplete, especially for complex X. Never

theless, it strongly suggests the existence of some stable, motionless solitary pattern 

under suitable parameter values. In the next section, we take a somewhat differ

ent point of view by which one might be led to a clearer understanding of the 

localization mechanism. 

§ 3. Evolution of wavefronts 

Let us introduce a small parameter f and consider the situation where some 

of the system parameters are small with some suitable dependence on r. Specifi

cally, we are interested in the case 

(:3. 1) 

Here Dx, b and c as well as the other parameters are quantities of normal magni

tudes. Assuming Dx=EDx implies that the diffusion of the activator is slow, which 

is equivalent to the fast diffusion of the inhibitor. Further, if o>O, the assumption 

(3 ·1) implies that the sigmoidal manifold may be considered a slow manifold. 

By allowing E->0, the zeros of P (a) are reduced to 

(3·2a) 

(3· 2b) 

Thus we have two characteristic length scales, namely, a very small scale ~f 112 , 

and a comparatively large scale ~f -"-'2 If an abrupt spatial variation as expressed 
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Localized Patterns in Reaction-Diffusion Systems 113 

by e±a1 x is replaced by a discontinuity, the stationary solution (2 · 9) 1s greatly 

simplified. In terms of the scaled coordinate t; defined by 

h ~ expressed as 

X,= Y 0e-a", cosh (at;) + X 0 , 

=- Y0 sinh(a'l,70)e-iilfl, 

Here a lS defined by 

and ·r;0 1s the scaled pulse width which is found from Eq. (2 ·11) to be 

(3. 3) 

(3 · 4a) 

(3. 4b) 

(3 · 4c) 

(3·5) 

(3·6) 

Clearly a prereq ms1te here is that 2a > X 0 ; otherwise the transformations (2 · 5) 

should be performed on the above solution. In this case an upside-down pattern 

would be obtained. The above results do not depend on whether the system is 

in a bistable or monostable regime, as anticipated in the preceding section. A pat

tern corresponding to the above is illustrated in Fig. 5. It is clear that discontinui

ties appear only for Xs. Furthermore the equality 

-X,(t;)- Y,(t;) +H(Xs(t;) -a) =0 (3. 7) 

holds everywhere except for it;i = 'l,70• In other words, the local state lies on the 

Xs 

Ys 

-1o ~0 

0 

Fig. 5. A localized pattern for the limiting case (3·1). The parameter values are: Dx 
=1. Dy=l, b=0.5, c=0.5, a=0.3. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

3
/1

/1
0
6
/1

8
8
0
5
1
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



114 S. Koga and Y. Kuramoto 

sigmoidal manifold everywhere except at the front where the motion on the fast 

foliation occurs. It should be noted that this is true even if (] is negative, in 

other words, for the situation where our sigmoidal manifold is not a slow manifold. 

The fast foliation is represented by 

Y=t-a, 

which fulfils the Maxwell equal-area condi

tion as explained in Fig. 6. In the problem 

of single front propagation, the equal-area 

condition 1s fulfilled only in exceptional 

cases.m. 18) In contrast, for the present case, 

the system regulates itself until the above 

condition is satisfied. In order to see how 

this is possible in an infinite medium, we 

have now to investigate the dynamical be

havior of the front. 

As a natural dynamical extension of so

l uti on (3 · 4) , let us now seek a symmetric, 

time-dependent solution of Eq. (2 ·1) having 

the following kind of scaled dependence on 

space and time 

X=X(~, r:), Y= Y(~, r:), (3·9) 

where ~ is defined as before, and 

(3. 8) 

y 

Fig. 6. The local state (X,(~), Y,(~)) traces 

the bold lines as ~ is varied. The 

fast foliation occurs at the discon

tinuity which corresponds to the hori

zontal line at Y =!-a. This line divides 

the sigmoidal nullcline into two shaded 

regions of equal area. 

(3 ·10) 

with an index (1, as yet unspecified. We further assume that the system is in the 

bistable regime, i.e., X 0>a, and that Y(~, r:) satisfies O<Y(~, r:) <Yo everywhere. 

These assumptions remove the complexities arising from the spontaneous splitting 

of the activated domain as the pattern evolves. 

The insertion of the scaled forms (3 · 9) into Eq. (2 ·1a) leads to 

(3 ·11) 

which in the limit f~o reduces to 

X(~, r:) =- Y(~, r:) +H(X(~, r:) -a). (3 ·12) 

Of particular interest is again a symmetric solution with a pair of discontinuities. 

Supposing that the discontinuities occur at 1~1 = r;, one may express Eq. (3 ·12) as 

X(~, r:) =- Y(~, r:) +H(r;-1~1). (3 ·13) 

It 1s clear that Eq. (3 ·13) is identical to Eq. (3 · 4c) if r; is replaced by its equili-
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Localized Patterns in Reaction-Diffusion Systems 115 

brium value 1j0• In Eq. (3 ·13), the front position r; may still be chosen arbitrarily. 

However, r; turns out to have a certain time-dependence, if we examine the fine 

structure of the discontinuity. For the assumed scaling form X(;, r) to be valid, 

r; should have a scaled time-dependence r; (r) or, m order words, the scaled in

stantaneous velocity of the front propagation defined by 

dr; ( r) 
V=---

dr 
(3 ·14) 

should be dimensionless in t. We shall presently see how this condition determines 

(3. 
We have now to investigate the fine structure, the so-called inner solution. 

For this purpose, it suffices to concentrate on one of the discontinuities, e.g., the 

one at ; = r; ( r). The width of the transition layer around this point is estimated 

to be 

(3 ·15) 

as 1s immediately seen from the balance condition between the diffusion and the 

other terms in Eq. (2·1a). Thus the appropriate scale of length describing the 

fine structure is 

(3 ·16) 

The coordinate of the discontinuity should also be scaled as 

(3 ·17) 

Since Y(f<Fal/ 2 ~, r) looks uniform in the ~ coordinate m the limit E~O, it may 

safely be replaced in Eq. (2 ·1a) by its value Y" at the front: 

(3 ·18) 

Introducing a movmg coordinate z as 

z=~-Y;(r), (3·19) 

\Ye now seek the inner solution in the form X= xi (z). Equation (2 ·1a) now takes 

the form 

where 

1+o r= ----+!3. 
2 

(3. 20) 

(3 · 21a) 

(3·21b) 
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116 S. Koga and Y. Kuramoto 

The mner solution should be such that it may smoothly be continued to the outer 

solution (3 ·13) , which necessitates the boundary conditions 

X,.(oo)=-Y", 

X; (- oo) = 1 - Y,, . 

The solution X; (z) is readily found to be 

where 

X;(z) =--a- --ea-"+1-Y", z<O, 
a+-a-

z>O, 

and the scaled propagation velocity becomes 

(3 · 22a) 

(3. 22b) 

(3·23a) 

(3 ·23b) 

(3. 24) 

(3. 25) 

The afore-mentioned requirement for v, namely, the fact that it is independent of 

£, means r= 0, or 

Hence 

~=-1+0 
2 

(3. 26) 

(3. 27) 

Equations (3 ·13) and (3 · 27) completely establish the interrelation between the 

outer solutions X(~,r) and Y(~,r). Eliminating X(~,r) from Eqs. (3·13) and 

(2·1b), we obtain 

(1-a)/2 iYY- (b- "') }T b-H c- (-) I e: I) D if2Y f ----- - - + c + 1J ' - '> + y ----- • ar 8~ 2 
(3. 28) 

Solving Eq. (3 · 28) means that Y~ has been found in terms of r;, while Eq. (3 · 27) 

describes the evolution of r; in terms of Y". Thus the elimination of Y" from 

these two equations yields the evolution equation of r; in a closed form. In solving 

Eq. (3·28) we have to treat the cases -1<6'<1 and 6'=1 separately. 

Case 1. -1<6'<1 

Here the left-hand side of Eq. (3 · 28) may be dropped. Thus the bounded 

solution may be expressed as 
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Localized Patterns in Reaction-Diffusion ,')'ystems 

Y(~, r) = ~ Y0e-a"Crl cosh(a~) +Yo, 

= Yo sinh (ar; ( r)) e-al<l, 

1~1 <r; (r), 

l~l>r;(r). 

117 

(3 · 29a) 

(3. 29b) 

By replacing r;(-:) by lj0, the above can be made identical to Eq. (3·4c). The value 

of Y at the front is 

(3. 30) 

w hieh together with Eq. (3 · 27) describes the approach of 'l/ ( r) to 'lj0. The eq uili

brium position 'lj0 may be found by putting dr;jdr=O in Eq. (3·27). From this 

we have Y~ = t ~a, which, when substituted into Eq. (3 · 30), correctly yields an 

expression for 'lj0 identical to that of (3 · 6). In order to show that 'lj0 represents 

a stable position of the front, it suffices to show that the inequality 

(3·31) 

holds. However this 1s evident because we have 

dY,1 >0 
dr; 

(3. 32) 

from Eq. (3 · ~)0), and 

(3. 3~)) 

from (3 · 27). The inequalities (3 · 32) and (3 · 33) clearly show how the localiza

tion is possible: The first inequality implies that if, for instance, the activated 

region expands (dr;>O), the concentration of the inhibitor observed at the moving 

front increases. This in turn acts as a deceelerating force according to the second 

inequality. If initially the extension of the activated region is sufficiently small, 

then it will at first make an expansion (dr;/ dr>O) according to the cross-excitory 

nature of the system. At the same time, however, the cross-inhibitory nature 

starts to manifest itself (dY"/ dr;>O). Eventually, the propagation is completely 

blocked when Y" attains the value 0- a. 

Ca.>e 2. () ,~ 1 

The term 

other terms. 

taking spatial 

on the left-hand side of Eq. (3 · 28) is equally as important as the 

Still the general sol uti on of that equation is readily found. By 

Fourier transforms, 

,. () r y·c,.. ") 1q'd·p. 
1 (1 -r ::::::::: ~ __ "'' _ <;, r e "' <; , (3 · :14a) 

(3·34b) 
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118 S. Koga and Y. Kuramoto 

Eq. (3 · 28) IS transformed into the set of ordinary differential equations 

(3. 35) 

where 

(3. 36) 

Integrating Eq. (3 · 35) and taking the inverse Fourier transform of Yq lead to 

(3. 37) 

where 

(3 · 38a) 

(3. 38b) 

In particular, 

(3. 39) 

As in Case 1, Eqs. (3 · 27) and (3 · 39) describe the motion of r; (r) in a closed 

form. Its equilibrium value r;0 should be identical to (3 · 6). This may be confirmed 

as follows. We replace r; (r) and r; (r- r') by r;0 in Eq. (3 · 39), and let r---c>oo. 

Then, by partial integration, we obtain 

(3· 40) 

Noting that the above has a form identical to (3 · 30), we obtain the same Yj0 as 

in Case 1 and hence as in (3 · 6) . 

The stability analysis of the above equilibrium position is quite complicated. 

By putting 

r; (r) = YJo+ ( (r), (3·41) 

it is possible to derive a linearized integra-differential equation for ( from Eqs. 

(3 · 27) and (3 · 39), and in principle to determine the eigenvalue ). assuming the 

asymptotic behavior of ((r) as r---c>oo to be e-u. However, the eigenvalue equation 

thus obtained turns out to be a couple of quite complicated transcendental equations 

which makes the further analysis impracticable. Thus we carried out the numerical 
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Localized Patterns in Reaction-DUTusion Systems 119 

time-integration of Eq. (3 · 27) with the use of (3 · 39) to study the behavior of 

r; (r). The results may conveniently be described in terms of a parameter s de

fined by 

With Dy0 , b0 , c0 and the other parameters fixed, we found that there exists a 

region s2<s<s1 for which a limit cycle oscillation of r; (r) is possible given ap

propriate initial conditions. The results are summarized in Fig. 7. At s = S~o the 

Hop£ bifurcation occurs. As we decrease s, the oscillation amplitude becomes lar

ger, and we reach the second critical value s2 at which the minimum width of the 

activated domain in the course of the oscillation touches the zero value, so that 

no persistent oscillation is possible for s<s,. This kind of "breathing" of an ac

tivated droplet in an infinite medium has not been reported before. Presumably, 

a qualitative condition for its appearance is a potentially excitable system with slow 

diffusion rate and production rate of inhibitor. Here the slow production rate of 

Y is the only thing which differs from Case 1. Suppose that the activated region 

has been expanded slightly clue to some external effect. Since the production rate 

--------1~----

---------~~--~--------~ s 
s, s, 

(a I 

.1 I 
I 

I 
I 

I 
I 

I 

o, o, 

a~--------L---------~ 2 ----~1 

(h) 

Fig. 7. Limit cycle oscillation of wavefront. 

(a) A schematic bifurcation diagram as a function of s defined in Eq. (3 · 4~), where 

the bifurcating branches show the maximum and minimum width of the pulse 

during oscillation. 

(b) Numerically calculated trajectories on r;-Y, plane started with different initial con

ditions. If the initial state is Q, or Q,, the pulse collapses and no oscillation is 

possible: while for Q, or Q •. a limit cycle oscillation is possible. f' indicates the 

equilibrium state of the front. The parameter values are: Dx=Dy=l, a=O.~, Y" 

=0.75. 
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120 S. Koga and Y. Kuramoto 

of Y is slow, the wavefront will at first experience the decrease in Y as is obvious 
from Fig. 5. The decrease in Y accelerates the expansion rate, but the inhibitor 
Y will blow up after some time delay. This may be strong enough to push the 
wavefront backward well beyond its equilibrium position. If such a process repeats 
itself, we have a limit cycle oscillation. 

§ 4. Discussion 

We have shown that the competition between the cross-inhibitory and cross
excitory tendencies of the system leads to a new class of phenomena. It should 
be noted that if a system is able to produce one solitary island, it means that the 
same system is able to exhibit a great variety of patterns, each composed of a 
number of islands located arbitrarily provided that they are well separated from 
each other. This is so because the interaction between the islands decreases ex
ponentially with distance, so that the islands will remain practically stationary 
during the period of most observations. The system has thus acquired a greater 
flexibility of response to external stimuli. Such a property might find application 
in the study of organization in living systems. For instance it might add some
thing worth while to the theory of morphogenesis based on reaction and diffusion; 
the theories so far appear to presuppose that the Rashevsky-Turing symmetry
breaking instability is essentially the sole underlying mechanism of patterning. 

On the other hand, excitable media are well at hand in the field of chemistry, 
e.g., the Belousov-Zhabotinsky reaction system. 201 A localized pattern as discussed 
in this paper might be realized in the above system; the only remaining problem 
seems to be a technical one, namely, the selective control of the diffusivity param
eters. 
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