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Multikernel clustering achieves clustering of linearly inseparable data by applying a kernel method to samples in multiple views. A
localized SimpleMKKM (LI-SimpleMKKM) algorithm has recently been proposed to perform min-max optimization in mul-
tikernel clustering where each instance is only required to be aligned with a certain proportion of the relatively close samples. Te
method has improved the reliability of clustering by focusing on the more closely paired samples and dropping the more distant
ones. Although LI-SimpleMKKM achieves remarkable success in a wide range of applications, the method keeps the sum of the
kernel weights unchanged. Tus, it restricts kernel weights and does not consider the correlation between the kernel matrices,
especially between paired instances. To overcome such limitations, we propose adding a matrix-induced regularization to lo-
calized SimpleMKKM (LI-SimpleMKKM-MR). Our approach addresses the kernel weight restrictions with the regularization
term and enhances the complementarity between base kernels. Tus, it does not limit kernel weights and fully considers the
correlation between paired instances. Extensive experiments on several publicly available multikernel datasets show that our
method performs better than its counterparts.

1. Introduction

Clustering is a widely used machine learning algorithm
[1–4]. Multikernel clustering is one of the clustering
methods which is based on multiview clustering and per-
forms clustering by implicitly mapping sample points of
diferent views to high dimensions. Many studies have been
carried out in recent years [5–9]. For example, early work
[10] shows that kernel matrices could encode diferent views
or sources of the data, and MKKM [11] extends the kernel
combination by adapting the weights of kernel matrices.
Gönen and Margolin [12] improve the performance of
MKKM by focusing on sample-specifc weights on the
correlations between neighbors to obtain a better clustering,
called localized MKKM. Du et al. [13] engaged the l2,1 norm
to reduce the uncertainty of algorithm results due to un-
expected factors such as outliers. To enhance the comple-
mentary nature of base kernels and reduce redundancy, Liu
et al. [14] employed a regularization term containing

a matrix that measures the correlation between base kernels
to facilitate alignment. Other works [15–19]are diferent
from the original MKKM method [11] that prefused mul-
tiple view kernels. Tese methods frst obtain the clustering
results of each kernel matrix, then fuse each clustering result
in a later stage to obtain a unifed result.

More recently, a newly proposed optimization strategy,
simple multiple kernel k-means (SimpleMKKM) [20] has
emerged as a representative of multikernel clustering
(MKC). Diferent from the normal MKKM algorithm,
SimpleMKKM assumes minimization of kernel weights and
maximization of cluster partition, which leads to min-max
optimization that is somewhat difcult to unravel. It con-
verts the optimization to a minimization problem and
cleverly solves it with a specially designed gradient descent
method rather than a coordinate descent method. However,
it is established that the strict alignment of the combined
kernel matrix can force the combination globally. Terefore,
Liu et al. proposed [21] localized SimpleMKKM, which
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reduces the negative impact of distant samples on clustering
by restricting the kernel alignment to the k-nearest neigh-
bors of the sample rather than the global alignment. In this
way, LI-SimpleMKKM can sufciently account for the
variation between samples, improving clustering
performance.

Although localized SimpleMKKM shows excellent per-
formance on MKC problems, we fnd that the correlation
between the given kernels is not sufciently considered
providing an opportunity for improvement based on the
listed problem statement.

(i) Te original method [21] makes the data stable by
setting a larger weight ηu in the gradient descent step
and maintaining the summation and nonnegativity
of the weights through the association with other
weights. However, this idea only enhances the
correlation between diferent view weights and ηu

and does not consider the relationship between view
kernel matrices, especially between pairs.

(ii) Te original method is possible to select multikernel
kernels with high correlation for clustering simul-
taneously. Repeated selection of similar information
sources makes the algorithm redundant and has low
diversity, leading to the low ratio of diferent kernel
matrices’ efectiveness, ultimately afecting the ac-
curacy of the clustering results.

Motivated by these, we propose a localized Sim-
pleMKKM with matrix-induced regularization (LI-Sim-
pleMKKM-MR) to improve upon the LI-SMKKM algorithm
by adding an entry containing a matrix to measure the
correlation between each two basis kernel matrices. LI-
SimpleMKKM-MR algorithm can reduce the probability
and simultaneously select high-correlation kernels, thereby
enhancing the diversity of synthetic kernels and enhancing
the complementarity of low-correlation kernels. Moreover,
it adopts the advantage of localized SimpleMKKM, which
has a better optimization efect that can be achieved by
clustering the neighbor index matrix formed by the sample
and the nearest k neighbors, and uses the optimization
strategy minη − maxH instead of minη − minH.

Compared with the original multiple kernel clustering, the
proposed method optimizes kernel matrix weights by using
gradient descent rather than coordinate descent, combined
with localized sample alignment and kernel matrix induced
regularization. Tis reduces the negative efects of forced
alignment of long-distance samples and high redundancy and
low complementarity of multiple kernel matrices.

We experimented with the algorithm on 6 benchmark
datasets and compared it with the other nine baseline al-
gorithms that solve similar problems through four in-
dicators: clustering accuracy (ACC), normalized mutual
information (NMI), purity, and rand index. We fnd that LI-
SimpleMKKM-MR outperforms other methods. Tis is the
frst work to fully consider and solve the correlation problem
between the base kernels to the best of our knowledge.

Te contributions of this method are summarized as
follows:

(1) Proposed algorithm LI-SimpleMKKM-MR can pro-
ductively deal with the alignment problem between
kernel matrices using a regularization term, in order
to reduce the redundancy, enhance the comple-
mentarity, and correlation between kernel matrices.

(2) Te novelty is that our proposed method can be
transformed into SimpleMKKM or LI-
SimpleMKKM by adjusting the hyperparameters,
making LI-SimpleMKKM-MR an extension of the
previous two methods.

(3) We conducted extensive experiments on 6 public
multiple kernel datasets using 4 metrics. Te results
show that our method achieves state-of-the-art
performance compared to 9 existing baseline algo-
rithms. Te experiments essentially validate our
understanding of the previous problems and the
efectiveness of the proposed solution.

2. Related Works

2.1. Multiple Kernel K-Means. Let xi􏼈 􏼉
n
i�1 ∈ χ be a set of n

samples, and ϕp(·): x ∈ χ⇒Hp means mapping the features
of the sample x of the pth view into a high-dimensional
Hilbert spaceHp(1≤p≤m). According to this theory, each
sample can be represented by ϕη(x) � [η1ϕ

⊤
1 (x), . . . ,

ηmϕ
⊤
m(x)], where η � [η1, · · · ηm]⊤ means the weights of m

prespecifed base kernels Kp(·, ·)􏽮 􏽯
m

p�1. Te kernel weights
will be changed according to the algorithm optimizing in the
kernel learning step. According to the defnition of ϕη(x)

and the defnition of kernel function, the kernel function can
be defned as follows:

Kη xi, xj􏼐 􏼑 � ϕη
⊤ xi( 􏼁ϕη xj􏼐 􏼑 � 􏽘

m

p�1
η2pKp xi, xj􏼐 􏼑. (1)

We can use training samples xi􏼈 􏼉
n

i�1 by (1) to calculate
a kernel matrix Kη. Based on the calculation of Kη, the
objective function of MKKM with Kη can be expressed as
follows:

min
H,η

Tr Kη In − HH⊤( 􏼁􏼐 􏼑s.t. H⊤H � Ik,

η⊤1m � 1, ηp ≥ 0,∀p.

(2)

Here, H ∈ Rn×k means one soft label matrix, which is
used to solve NP-hard problems caused by the direct use of
hard allocation, which is also called the partition matrix.
Moreover, Ik means an identity matrix which is k × k in size.

Optimization of (2) can be divided into 2 steps: opti-
mizing H or η and fxing the other one.

(i) Optimizing H with η is fxed, the problem of opti-
mizing H in (2) can be represented as follows:

max
H

Tr H⊤KηH􏼐 􏼑s.t.H ∈ Rn×k
,

H⊤H � Ik.
(3)

Te optimization of H of (3) can be easily solved by
taking the frst k eigenvalues of the matrix Kη.
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(ii) Optimizing η with H is fxed, with the soft label
matrixH is fxed, the problem of optimizing η in (2)
can be represented as follows:

min
η

􏽘

m

p�1
η2pTr Kp In − HH⊤( 􏼁􏼐 􏼑s.t.H⊤H � Ik,

η⊤1m � 1, ηp ≥ 0,∀p .

(4)

According to the constraints, it can be easily solved
by the Lagrange multiplier method [10].

2.2. MKKM with Matrix-Induced Regularization. As (2)
shows that ηp only depends on Kp and H. However, the
interactions between diferent kernel matrices are not
considered. Liu et al. [14] defned a criterion M(Kp,Kq) to
measure the correlation between Kp and Kq. A larger
M(Kp,Kq) means high correlation between Kp and Kq, and
a smaller one implies that their correlation is low. By in-
troducing the criterion term in (2), we can obtain the fol-
lowing objective function:

Min
H,η

Tr Kη In − HH⊤( 􏼁􏼐 􏼑 +
λ
2
η⊤Mη s.t.H ∈ Rn×k

,

H⊤H � Ik,

η⊤1m � 1, ηp ≥ 0,∀p,

(5)

where λ is a hyperparameter to balance clustering loss and
regularization term.

2.3. Localized SimpleMKKM. Unlike the existing
minη − minH paradigm, SimpleMKKM adopts
minη − maxH optimization [20]. However, it is extended to
make full use of the information between local sample
neighbors and minη − maxH optimization to enhance the
clustering efect with a fusion algorithm called localized
SimpleMKKM. Te objective value of LI-SimpleMKKM can
be represented as follows:

min
η

max
H

Tr H⊤􏽘

n

i�1
B(i)KηB

(i)
􏼐 􏼑H⎛⎝ ⎞⎠s.t. H ∈ Rn×k

,

H⊤H � Ik,

􏽘

m

p�1
ηp � 1, ηp ≥ 0,∀p,

(6)

where 􏽐
m
p�1η

2
pKp and B(i) � N(i)N(i)⊤ with

N(i) ∈ 0, 1n×round(τ×n) are the ith sample’s neighborhood
mask matrices; that is, only the samples closest to the target
sample will be aligned.Tis newmethod is hard to solve with
a simple two-step alternating optimization convergence
method. To solve this problem, LI-SimpleMKKM frst op-
timizes H by a method similar to MKKM and then converts
the problem into a problem of fnding the minimum with

respect to η. With proving the diferentiability of the
minimized formula, the gradient descent method can be
used to optimize η [21].

3. Localized Simple Multiple Kernel K-
Means with Matrix-Induced Regularization

According to Liu et al. [21], the relative value of ηp is only
dependent on Kp, H, and Ku, where u is the largest com-
ponent of η. Only the weights of diferent kernels are linked,
indicating that the LI-SimpleMKKM algorithm is not fully
considered the interaction of the kernels when optimizing
the kernel weights. Tis motivates us to derive a regulari-
zation term which can measure the correlation between the
base kernels to improve this shortcoming.

3.1. Formulation. Although the performance of clustering
can be improved to some extent by aligning samples with
closer samples, there is still room for further improvement of
that algorithm.

To address this issue, we defne a criterionM(Kp,Kq) to
measure the correlation between Kp and Kq. A larger
M(Kp,Kq) means high correlation between Kp and Kq, and
a smaller one implies that their correlation is low. We
propose to add a matrix-induced regularization ηTMη based
on LI-SimpleMKKM to improve the shortcomings, en-
hancing the kernel alignment between multiple kernels and
reducing the redundancy of kernels with higher correlation.
By fusing the regular term with (6), we can get the objective
function as follows:

min
η∈∆

max
H∈Rn×k

Tr H⊤􏽘

n

i�1
B(i)KηB

(i)
􏼐 􏼑H⎛⎝ ⎞⎠ +

λ
2
η⊤Mη,

s.t.H ∈ Rn×k
,

H⊤H � Ik,

􏽘

m

p�1
ηp � 1, ηp ≥ 0,∀p,

(7)

where λ is a trade-of parameter to balance the loss of
clustering problem and the regularization term on kernel
weights. Te regularization term has many types, such as KL
divergence and Hilbert–Schmidt independent criterion.

In our proposed algorithm, we set Mpq � Tr(KpKq) for
each element in M to measure the correlation between Kp

and Kq. Choosing this method makes the calculation not too
complicated and adopts the Hilbert–Schmidt independent
criterion in disguise, which can refect the correlation be-
tween diferent base kernels to a certain extent.

Te incorporation of ηTMη use of the basic kernel better,
thus improving clustering performance. Moreover, we can
clearly see that if we set λ � 0, equation (7) is a special case of
LI-SimpleMKKM.

Li et al. [22] use η⊤M(i)η instead of η⊤Mη as a regular
term, where M(i) means a matrix with M(i)

pq � Tr(K(i)
p K(i)

q ),
K(i)

η � N(i)⊤KηN(i). Although this method shows excellent
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performance, we fnd that the induced regularization of
matrices should be global rather than local because the
kernel alignment should be for the global kernel matrix. It
can also be found from the experimental results in Table 1
that the global kernel-induced regularization has a better
efect.

3.2. Alternate Optimization. We design a two-step alter-
nating optimization to solve the formula in (7).

(i) Optimizing H by η is fxed: fxed η, the optimization
value with respect to H in (7) is represented as
follows:

max
H∈Rn×k

Tr H⊤􏽘

n

i�1
B(i)KηB

(i)
􏼐 􏼑H⎛⎝ ⎞⎠s.t. H⊤H � Ik.

(8)

Treating the summation (B(i)KηB(i)) as a whole, (8)
can be solved by solving for the eigenvalues of the
matrix.

(ii) Optimizing η byH is fxed: fxedH, the optimization
value with respect to η in (7) can be represented as
follows:

J(η) � max
η

Tr H⊤􏽘

n

i�1
B(i)KηB

(i)
􏼐 􏼑H⎛⎝ ⎞⎠.

+
λ
2
ηTMη s.t. H⊤H � .

(9)

We frst prove the diferentiability of (9), then calculate
the gradient, and optimize η by the gradient descent method.
Te frst part of the objective function in (9) is as follows:

Tr H⊤􏽘

n

i�1
B(i)KηB

(i)
􏼐 􏼑H⎛⎝ ⎞⎠ . (10)

With the hyperparameter τ defned, we can regard
B(i)KηB(i) as a whole, which is global kernel alignment and
PSD [21]. For convenience, we let B(i)KηB(i) � T(i)

η .
Tus, the function in (9) can be represented as follows:

min
η∈∆

J(η), (11)

with

J(η) � max
H

Tr H⊤T(i)
η H􏼐 􏼑 +

λ
2
η⊤Mη s.t. H ∈ Rn×k

,

H⊤H � Ik.

(12)

Theorem 1. J(η) in (12) is diferentiable. (zJ(η)/zηp) �

2ηpTr(H∗⊤T(i)
p H∗) + λ􏽐

m
q�1ηqMpq,

where H∗ � argmax
H

Tr(H⊤T(i)
η H)s.t.H⊤H � Ik􏼨 􏼩.

Proof. For any given η ∈∆, the maximum of optimization
problem Tr(H⊤KηH)s.t.H⊤H � Ik is unique [21], with
􏽦H∗∈ 􏽦H∗ | 􏽦H∗ � H∗U,UU⊤ � U⊤U � Ik􏽮 􏽯 the corresponding
maximizer. According to theorem in [23], the former part of
J(η) is diferentiable. By defning other elements in η except
for p as s and the latter part of the J(η) as J2(η), the
diferential of J2(η) � (λ/2)η⊤Mη can be expressed as
follows:

J2(η) �
λ
2

ηp ηs􏽨 􏽩

Mpp Mps

Mps Mss

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

ηp

ηs

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�
λ
2

η2pMpp + 2ηpηsMps + η2s Mss􏼐 􏼑,

zJ2(η)

zηp

� ληpMpp + ληsMps,

(13)

where pmeans one of the components of η and smeans all of
the other components so that (zJ2(η)/zηp) � λ􏽐

m
q�1ηqMpq,

and the whole J(η) in (12) is diferentiable.
We can solve this problem by designing a gradient

descent method. After obtaining the gradient ofJ(η) under
the premise of satisfying the equality constraints 􏽐

m
p�1ηp � 1

and nonnegativity constraints ηp ≥ 0 of η, we update η by
gradient descent [23]. To implement this method, we let ηu

become a nonzero unit in η and∇J(η) indicates the reduced
gradient of J(η). Te pth (1≤p≤m) element of ∇J(η) is
presented as follows:

[∇J(η)]p �
zJ(η)

zηp

−
zJ(η)

zηu

∀p≠ u, (14)

and

[∇J(η)]u � − 􏽘
m

p�1,p≠ u

[∇J(η)]p. (15)

To improve numerical stability, we choose u as the
largest unit in the vector η. Te nonnegativity constraint of η
also needs to be considered during gradient descent.

To minimize J(η), we defne − ∇J(η) as a descent
direction. However, if there is an index p corresponding to
ηp � 0, with [∇J(η)]p ≥ 0, the situation of ηp < 0 may occur
when the gradient is updated, violating the nonnegativity
constraint. Under these circumstances, the descent direction

Table 1: Comparation of localized M and global M in ACC.

Datasets Localized M Global M
Flower17 51.8± 1.0 61.3± 1.5
Flower102 37.4± 0.8 44.0± 1.0
ProteinFold 36.4± 1.5 39.0± 1.4
Digital 83.4± 1.2 94.9± 3.0
Cal-25views 36.6± 0.7 37.3± 1.1
Cal-7classes 47.8± 1.0 49.8± 0.8
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for that unit p is set as zero. Tis makes η when the gradient
is updated as follows:

dp �

0, if ηp � 0 and [∇J(η)]p ≥ 0,

− [∇J(η)]p, if ηp ≥ 0 andp≠ u,

− [∇J(η)]u, forp � u.

⎧⎪⎪⎨

⎪⎪⎩
(16)

Te gradient update adopts the formula η←η + cd,
where c is the step size. We determine the step size c by
a one-dimensional linear search method, rather than setting
it directly, and in order to ensure global convergence, this
method has appropriate stopping criteria, for example,
Armijo’s rule [21]. □

Te specifc calculation steps of the algorithm in
equation (13) are detailed in Algorithm 1.

Theorem 2. Te proposed algorithm is converged.

Proof. Note that for the kth iteration, Tr(H⊤T(i)
η H) will be

bigger than k+ 1th iteration. In each iteration, the gradient
of ηp is smaller than 0 by equation (14) because u is the
component of η, and in order to get the maximum of
Tr(H⊤T(i)

η H), Tr(ηuH⊤T
(i)
u H) should be larger than other

parts, so the diferential of it is bigger than others. Te
component u has the gradient which is the opposite number
of other component gradients’ sum by the equation (15).
According to the equation (16), the component of p will be
bigger, while the coefcient of u will be smaller, and we can
let ∆ as the diference of the kth iteration and k+ 1th’s, with
∆ � Trc(d1H⊤ T(i)

1 H) + Trc(d2H⊤T
(i)
2 H) + . . . + Trc(dm

H⊤T(i)
m H), 􏽐

m
p�1,p≠udp with H⊤T(i)

u H as the largest part of
each H⊤T(i)H, c is bigger than 0, it can be easy to get the
conclusion ∆ is smaller than 0, because the non-negativity of
η and kernel matrix, the former term has the lower bound
0 and convex, so the former term’s convergence is been
proofed. □

As for the latter term (λ/2)η⊤Mη with the similar
thought, it is also decreasing monotonically because M is
a PSD matrix, η is not negative, and λ is bigger than 0; the
second derivative of J2(η) can be easy to be calculated
bigger than 0 (since each element of M is bigger than 0), so
the latter term has the lower bound 0 and convex. At the
same time, the whole equation (13) is monotonically de-
creasing and lower-bounded.

3.3. Computational Complexity Analysis. We theoretically
analyze the time complexity of the algorithm LI-Sim-
pleMKKM-MR.We assume that n andm denote the number
of samples and the number of base kernels. LI-Sim-
pleMKKM-MR based on Algorithm 1 frst computes
a neighborhood mask matrix with computational com-
plexity O(n2 log2 n) and then computes the regularization
term with computational complexity O(m3). Terefore, the
time complexity of LI-SimpleMKKM-MR is (n3 + n2 log2 n+

m3) per iteration.

Let us compare the complexity of LI-SimpleMKKM-MR
and LI-SimpleMKKM. Since in most cases, the number of
base kernels is much fewer than the number of samples
(m≪ n), compared with LI-SimpleMKKM (n3), the time
complexity of the proposed method does not increase
signifcantly.

4. Experiments

4.1. Datasets. In this section, we evaluate the clustering
performance of our algorithm on a set of standard MKKM
benchmark datasets, including Oxford Flower17(FLO17),
Flower102(FLO102) (https://www.robots.ox.ac.uk/~+vgg/
data/fowers/), Protein Fold Prediction(proteinFold)
(https://mkl.ucsd.edu/dataset/protein-fold-prediction/), Dig-
ital (https://ss.sysu.edu.cn/~+py/), Caltech101-25views(Cal-
25views), and Caltech101-7classes(Cal-7classes) (https://fles.
is.tue.mpg.de/pgehler/projects/iccv09/). Caltech101-25views
refers to the number of kernels randomly selected by 25,
and Caltech101-7classes refers to the number of classes
randomly selected by 7. Te details of these can be found in
Table 2. We can compare the performance of the diferent
MKKM algorithms using these datasets.

4.2. Compared Algorithms. In addition to the localized
SimpleMKKM with matrix-induced regularization, we
tested nine other comparative algorithms from the other
MKKM algorithms, including, average kernel k-means
(Avg-KKM), multiple kernel k-means (MKKM) [10], lo-
calized multiple kernel k-mean (LMKKM) [12], optimal
neighborhood kernel clustering (ONKC) [24], multiple
kernel k-mean withmatrix-induced regularization (MKKM-
MR) [14], multiple kernel clustering with local alignment
maximization (LKAM) [22], multiview clustering via late
fusion alignment maximization (LF-MVC) [25], simple
multiple kernel k-means (SimpleMKKM) [20], and local-
ized SimpleMKKM (LI-SimpleMKKM) [21].

Te implementations of the comparison algorithms are
publicly available in the corresponding papers, and we di-
rectly apply them to our experiments without tuning.
Among the previous algorithms, ONKC, MKKM-MR,
LKAM, LF-MVC, and LI-SimpleMKKM need to adjust
hyperparameters. Based on the published papers and actual
experimental results, we show the best clustering results of
the previous methods by tuning the hyperparameters on
each dataset.

4.3. Experimental Settings. In all experiments, to reduce the
diference between diferent views, all the base kernels are
frst centered and then scaled so that for all i and p, we have
Kp(xi, xi) � 1. For our proposed algorithm, its trade-of
parameters λ and τ are chosen from [2− 15, 2− 13, . . . , 210]
and [0.05, 0.1, . . . , 0.95] × n by grid search, where n is the
number of samples.

For all the datasets, we set the number of clusters k
according to the actual number of categories in the dataset.
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We engage 4 indicators: clustering accuracy (ACC), nor-
malized mutual information (NMI), purity, and rand index
to measure the efect of clustering. To reduce the harmful
efects of randomness, we initialized and executed all al-
gorithms ffty times (50×) to obtain themean and variance of
the experimental indicators.

4.4. Experimental Results. Table 3 reports the ACC, NMI,
purity, and rand index of the previously mentioned algo-
rithms on all 6 datasets. Te following observations were
made based on the results:

Te proposed localized SimpleMKKM with matrix-
induced regularization signifcantly outperforms localized
SimpleMKKM. For example, it outperforms the LI-
SimpleMKKM algorithm by 1.8%, 0.1%, 3.1%, 0.3%, 0.6%,
and 3.4% in terms of ACC on Flower17, Flower102, Pro-
teinFold, DIGIT, Caltech-25 views, and Caltech-7 classes
datasets.Tese results validate the efectiveness of enhancing
the correlation between matrices.

Also, our proposed LI-SimpleMKKM-MR signifcantly
outperforms the MKKM-MR algorithms by 3.6%, 3.8%,
4.7%, 7.5%, 3.3%, and 6.3% in terms of ACC on Flower17,
Flower102, ProteinFold, DIGIT, Caltech-25 views, and
Caltech-7 classes datasets. Tis result proves that utilizing
the data’s local structure and minη − maxH optimization
improves the clustering efect very well.

Te proposed algorithm adopts the advanced formula-
tion and uses matrix-induced regularization to improve the
correlation between kernel matrices, reducing redundancy
and increasing the diversity of selected kernel matrices,
making it superior to its counterpart.

Together, these factors make LI-SimpleMKKM-MR
signifcantly improved over other algorithms on the same
dataset. In addition, due to time complexity and memory

constraints, the efect of LMKKM on some datasets has not
been shown.

4.5. Parameter Sensitivity of LI-SimpleMKKM-MR. We
designed comparative experiments to study the infuence of
the setting of two hyperparameters, localized alignment, and
matrix-induced regularization, on the clustering efect.
According to equation (7), LI-SimpleMKKM-MR tunes the
clustering performance by setting two hyperparameters λ
and τ, referring to the regularization balance factor and the
nearest neighbor ratio.

We experimentally show the diference in clustering
performance in λ and τ in all benchmark datasets.

Figure 1 shows the ACC and NMI of our algorithm by
varying one of τ or λwith the other one fxed. Based on these
fgures, we can conclude that (1) as the value of τ increases,
the ACC and NMI of each dataset increase to their highest
value and, correspondingly, decrease when τ decreases and
(2) by keeping the τ unchanged, the ACC and NMI will
exceed SimpleMKKM and be steady when λ is small.

Hence, we conclude that our proposed algorithm presents
a new state-of-the-art performance for clustering compared to
other algorithms that only preserve the global kernel, such as
LI-MKKM. Tus, it focuses on preserving the local structure
of the data as specifc results are displayed in Table 1.

On top of minη − maxH optimization, the clustering
performance improves when the parameters are appropri-
ately set by combining matrix-induced regularization and
local alignment.

4.6. Convergence of LI-SimpleMKKM-MR. In addition to
theoretical verifcation, we experimentally verify the con-
vergence of the algorithm. We present simulations of our

Input: Kp􏽮 􏽯
m

p�1, k, λ, τ, ϵ, and t
(1) Initialization η(0) � 1/m and t� 1.
(2) Calculate B(i)􏽮 􏽯

n

i�1 by B(i) � N(i)N(i)⊤ for pth samples (1≤p≤m) according to the average kernel.
(3) T(i)

p � (􏽐
n
i�1B

(i))

(4) repeat
(5) Update H by solving the frst k eigenvalues with T(i)

η .
(6) Compute zJ(η)/zηp(1≤p≤m) and the direction of descent of the gradient d(t) in (16).
(7) Update ηt+1←ηt + cdt.
(8) t←t + 1.
(9) Until max|ηt+1 − ηt|≤ ϵ

ALGORITHM 1: LI-SimpleMKKM-MR.

Table 2: Specifcation of our 6 benchmark datasets.

Datasets #Samples #Kernels #Classes
Flower17 1360 7 17
Flower102 8189 4 102
ProteinFold 694 12 27
Digital 2000 3 10
Cal-25views 1530 25 102
Cal-7classes 1474 6 7
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Figure 1: Sensitivity of the proposed method LI-SimpleMKKM-MR with a variation of λ and τ compared with SimpleMKKM.
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Figure 2: Proposed algorithm convergence illustration on fower17, fower102, ProteinFold, digit, Caltech-25, and Caltech-7 datasets.
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Figure 3: Clustering performance ofH iteratively in LI-SimpleMKKM-MR learning on fower17, fower102, ProteinFold, digit, Caltech-25,
and Caltech-7 datasets.
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proposed algorithm using diferent datasets in Figure 2.
According to the results, the object value of the proposed
algorithm oscillates frst, then decreases monotonically, and
fnally converges in several iterations. Moreover, we know
from experiments that most datasets can converge in fewer
than 10 iterations. Tis result is comparable to the state-of-
the-art methods.

4.7. Performance of LI-SIMPLEMKKM-MR by Learned H.
We calculate the 4 clustering metrics at each iteration to
show the variety of clustering performance variations of the
learnedH in diferent datasets and plot them in Figure 3. As
observed, the clustering performance increased frstly with
iterations and remained stable after oscillation.

4.8. Running Time of LI-SimpleMKKM-MR. We report the
running time comparison of all the baseline algorithms and
LI-SimpleMKKM-MR on diferent datasets in Figure 4.
With the analysis of the time complexity in Section 3.3 and
the experiment result from Figure 4, even though there are
additional computational steps, we found that LI-Sim-
pleMKKM-MR does not signifcantly increase in
computation time.

5. Conclusion

Although LI-SimpleMKKM can address the task of multiple
kernel k-means in a minη − maxH optimization and realize
the local alignment, it does not sufciently account for the
correlation between the basis kernels. Tis work proposes an
LI-SimpleMKKM-MR algorithm that combines the sample
localized alignment and matrix-induced regularization to
solve this problem. Teoretically and experimentally, our
method has demonstrated the best performance in clus-
tering optimization and outperforms existing algorithms. In
further research, we will apply this algorithm to incomplete
MKKM problems.
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