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ABSTRACT
Drawing on recent progress in auditory neuroscience, we present a
novel speech feature analysis technique based on localized spectro-
temporal cepstral analysis of speech. We proceed by extracting
localized 2D patches from the spectrogram and project onto a 2D
discrete cosine (2D-DCT) basis. For each time frame, a speech
feature vector is then formed by concatenating low-order 2D-
DCT coefficients from the set of corresponding patches. We argue
that our framework has significant advantages over standard one-
dimensional MFCC features. In particular, we find that our features
are more robust to noise, and better capture temporal modulations
important for recognizing plosive sounds. We evaluate the perfor-
mance of the proposed features on a TIMIT classification task in
clean, pink, and babble noise conditions, and show that our feature
analysis outperforms traditional features based on MFCCs.

Index Terms— Speech processing, Speech recognition, Cep-
stral analysis, Nervous system

1. INTRODUCTION

Most state-of-the-art speech recognition systems today use some
form of MEL-scale frequency cepstral coefficients (MFCCs) as their
acoustic feature representation. MFCCs are computed in three ma-
jor processing steps: first, a short-time Fourier transform (STFT) is
computed from a time waveform. Then, over each spectral slice, a
bank of triangular filters spaced according to the MEL-frequency
scale is applied. Finally, a 1-D discrete cosine transform (1D-DCT)
is applied to each filtered frame, and only the first N coefficients
are kept. This process effectively retains only the smooth envelope
profile from each spectral slice, reduces the dimensionality of each
temporal frame, and decorrelates the features.

Although MFCCs have become a mainstay of ASR systems, ma-
chines still significantly under-perform humans in both noise-free
and noisy conditions [13]. In the work presented here, we turn to
recent studies of the mammalian auditory cortex [4, 16] in an at-
tempt to bring machine performance towards that of humans via
biologically-inspired feature analyses of speech. These neurophys-
iological studies reveal that cortical cells in the auditory pathway
have two important properties which are distinctly not captured by
standard MFCC features, and which we will explore in this work.

Firstly, rather than being tuned to purely spectral modulations,
the receptive fields of cortical cells are instead tuned to both spectral
and temporal modulations. In particular, auditory cells are tuned to
modulations with long temporal extent, on the order of 50-200ms [4,
16]. In contrast, MFCC features are tuned only to spectral modu-
lations: each 1D DCT basis may be viewed as a matched filter that
responds strongly when the spectral slice it is applied to contains the
spectral modulation encoded by the basis. MFCC coefficients thus
indicate the degree to which certain spectral modulations are present

in each spectral slice. The augmentation of MFCCs with ∆ and ∆∆
features clearly incorporates more temporal information, but this is
not equivalent to building a feature set with explicit tuning to par-
ticular temporal modulations (or joint spectro-temporal modulations
for that matter). Furthermore, the addition of ∆ and ∆∆ features
creates a temporal extent of only 30-50ms, which is still far shorter
than the duration of temporal sensitivities found in cortical cells.

Secondly, the above neurophysiological studies further show
that cortical cells are tuned to localized spectro-temporal patterns:
the spectral span of auditory cortical neurons is typically 1-2 oc-
taves [4, 16]. In contrast, MFCC features have a global frequency
span, in the sense that the spectral modulation “templates” being
matched to the slice span the entire frequency range. One immedi-
ate disadvantage of the global nature of MFCCs is that it reduces
noise-robustness: addition of noise in a small subband affects the
entire representation.

Motivated by these findings, we propose a new speech feature
representation which is localized in the time-frequency plane, and is
explicitly tuned to spectro-temporal modulations: we extract small
overlapping 2D spectro-temporal patches from the spectrogram,
project those patches onto a 2D discrete cosine basis, and retain
only the low-order 2D-DCT coefficients. The 2D-DCT basis forms
a biologically-plausible matched filter set with the explicit joint
spectro-temporal tuning we seek. Furthermore, by localizing the
representation of the spectral envelope, we develop a feature set that
is robust to additive noise.

2. BACKGROUND

A large number of researchers have recently explored novel speech
feature representations in an effort to improve the performance of
speech recognizers, but to the best of our knowledge none of these
features have combined localization, sensitivity to spectro-temporal
modulations, and low dimensionality.

Hermansky [7] and Bourlard [2] have used localized sub-band
features for speech recognition, but their features were purely spec-
tral and failed to capture temporal information. Subsequently,
through their TRAP-TANDEM framework, Hermansky, Morgan
and collaborators [7, 3] explored the use of long but thin tempo-
ral slices of critical-band energies for recognition, however these
features lack joint spectro-temporal sensitivity. Kajarekar et al. [8]
found that both spectral and temporal analyses performed in se-
quential order outperformed joint spectro-temporal features within
a linear discriminant framework, however we have found joint 2D-
DCT features to outperform combinations of purely spectral or
temporal features. Atlas and Shamma [1] also explored temporal
modulation sensitivity by computing a 1D-FFT of the critical band
energies from a spectrogram. These features too lack joint and lo-
calized spectro-temporal modulation sensitivity. Kitamura et al. [9],
take a global 2D-FFT of a MEL-scale spectrogram, and discard



5 10 15 20

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

5 10 15 20

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

5 10 15 20

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

5 10 15 20

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

5 10 15 20

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

5 10 15 20

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

Fig. 1. Left two columns: Original spectrogram patches, followed
by the corresponding 2D-DCT. Middle 2 columns: Patches recon-
structed from low-order DCT coefficients followed by the low-order
DCT coefficients retained for reconstruction. Last 2 columns: Re-
tained low-order 2D-DCT basis functions.

various low-frequency bands from the resulting magnitude. This
approach does not provide any joint spectro-temporal localization,
and cannot be interpreted as capturing meaningful configurations
of specific spectro-temporal modulation patterns. It is the local-
ized analysis in our method, and the fact that we seek to encode
spatial configurations of important spectro-temporal modulations,
that critically differentiates our approach from much of the previous
work.

Perhaps the closest work to ours is that of Shamma and col-
leagues [4], and the work of Kleinschmidt, Gelbart, and collabo-
rators [10, 11]. In [4] the authors apply localized complex filters
that produce both magnitude and phase information for the purpose
of speech vs. non-speech detection. The latter group applied data-
optimized Gabor filters to blocks of MEL-scale spectra with 23 fre-
quency bins, and then present ASR results when Gabor features aug-
ment other features. Our work builds on upon both of these efforts,
and demonstrates an important point which we believe has not been
made strongly enough in these previous works: that a simple set of
localized 2D-DCT features (in this case, “bar-like” detectors faith-
ful to the auditory neuroscience) is on its own powerful enough to
achieve state-of-the-art performance on a difficult phonetic discrim-
ination task.

3. 2-D CEPSTRAL ANALYSIS OF SPEECH
3.1. Spectro-Temporal Patch Extraction

The first step of our technique is to compute the log-magnitude of
the STFT of the signal. We then normalize the resulting (log) spec-
trogram to have zero mean and unit variance. Then, at every grid
point (i, j) in the spectrogram, we extract a patch Pij(f, t) of size
df and width dt. The height df and width dt of the local patch are
important analysis parameters: they must be large enough to be able
to resolve the underlying spectro-temporal components in the patch,
but small enough so that the underlying signal is stationary. Ad-
ditional analysis parameters are the 2D window hop-sizes in time
∆i and frequency ∆j, which control the degree of overlap between
neighboring patches. Finally, we pre-multiply the patch with a 2D
Hamming window WH(f, t) in order to reduce border effects during
subsequent patch processing.

3.2. 2D Discrete Cosine Transform and Coefficient Truncation

After patch extraction, a 2-D discrete cosine transform (2D-DCT)
is applied to each windowed patch P (f, t) to produce a set of DCT
coefficients B(Ω, ω). The 2D-DCT projects each patch onto a set
of orthogonal, separable cosine basis functions that respond to “hor-
izontal” speech phenomena such as harmonics and formants, “ver-
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Fig. 2. Left: Original spectrogram. Right: Resulting spectrogram
after retaining only low-order DCT coefficients per patch, and ap-
plying overlap-add reconstruction.

tical” speech phenomena such as plosive edges, and more complex
spectro-temporal noise patterns. In the rightmost two columns of
Figure 1 we show the six low-order 2D-DCT basis functions used
in our analysis. The top-left basis is everywhere uniform. Shown in
Figure 1 in the first column are representative harmonic (top), plo-
sive (middle), and noise (bottom) patches from a spectrogram, along
with their respective 2D-DCT coefficients in the second column. As
expected, horizontal harmonic edges in a patch strongly activate co-
efficients in the first column of the corresponding DCT, and vertical
plosive phenomena activate DCT coefficients in the first row. Noise
phenomena, with more high frequency components than the previ-
ous two examples, has energy that is distributed among most of the
DCT coefficients.

The last step of our analysis consists of truncating the 2D-DCT
and retaining only the low-order coefficients for each patch. The
effect of doing this is also shown in Figure 1: original patches in
the first column are reconstructed in the third column using only the
low-order 3 × 5 block of DCT coefficients (4th column). Keeping
only the low-order DCT coefficients is equivalent to representing
each patch with a smooth spectro-temporal envelope. We further
illustrate this concept in Figure 2, where the original spectrogram
displayed on the left is reconstructed on the right from low-order
patch 2D-DCT coefficients. The individually reconstructed patches
are overlap-added together to assemble the full spectrogram. In this
example, we have used analysis windows of size 780Hz by 57ms
shifted in steps of 156Hz in frequency and 10ms in time.

4. CLEAN SPEECH TIMIT EXPERIMENTS

The above 2D-DCT analysis was applied towards extracting features
for phonetic classification on the TIMIT corpus [12], and compared
to MFCC-based features used by Clarkson and Moreno [5], and the
best single set of features proposed by Halberstadt and Glass in [6].
The latter feature set is the best baseline that we are aware of. We
divided TIMIT into standard train and test sets following the con-
vention in [15, 6]. The 2D-DCT analysis is performed using both
wideband and narrowband spectrograms for comparison. After ig-
noring glottal stops (’q’ tokens), the 60 remaining phonetic classes
are later mapped to 39 categories after training but before scoring,
also following standard practices.

4.1. Spectrogram Pre-processing
TIMIT utterances are first normalized and subjected to a pre-
emphasis filter. We then compute spectrograms using 32 sample
(2ms) hops, 1024-point FFTs and 300 sample (18.75ms) Hamming
windows or 150 sample (9.375ms) windows for narrow- and wide-
band conditions respectively. We then take the log-magnitude of the



resulting spectrum and normalize to give a global utterance mean of
zero and unit variance. Utterances are broken up in time according
to the labeled phonetic boundaries and enlarged by an additional
30ms on either side of each phoneme so as to include coarticulatory
phenomena. Each resulting independent phoneme is then truncated
at 6.23kHz (400 frequency bins), while a copy of the bottom 25
low-frequency bins is reflected, for all time, about the 0Hz edge
and appended. Because we later apply local 2D-DCTs to Hamming
windowed regions of the spectrogram, reflection is done to avoid
artificially down-weighting low frequency bins near the edge of the
image.

4.2. 2D-DCT Patch Processing and Coefficient Truncation
We first compute a sliding localized two-dimensional DCT over the
phoneme’s spectrogram. While many reasonable window and step
sizes exist, we have found that, for the narrowband STFT parame-
ters above, good results are obtained with 780Hz by 56.75ms (or 50
by 20 bin) Hamming windowed 2D analysis regions with a 390Hz
(25-bin) frequency step-size and a 4ms (2-bin) time step-size. For
wideband STFT conditions, good results are obtained with 623Hz
by 107.375ms (or 40 by 50 bin) Hamming windowed 2D analysis
regions with identical step sizes in time and frequency as in the nar-
rowband case. The 2D-DCT is computed with 2x oversampling in
both time and frequency. We have found that performance does not
critically depend on the precise window and step size choices above.
To avoid implicit overfitting, evaluation of performance for different
parameter choices was done using the TIMIT development set pro-
posed by [6], while the final evaluations shown below were done on
the core test set.

For each 2D analysis region, we save only the 6 lowest-order
2D-DCT coefficients corresponding to the upper left 3 × 3 triangle
in the DCT image. These coefficients collectively encode only the
patch’s DC offset, two low spatial frequency horizonal and vertical
basis components, and one “checkerboard” basis component. Sav-
ing six coefficients per patch at the above resolution smooths out any
remaining harmonic structure, leaving only the spectro-temporal en-
velope.

4.3. Feature Vector Construction
The previous step provides a vector of 6 features for each patch
taken from the phoneme. We modify the approach of [6] in order
to compute a fixed length feature vector from the variable number
of 2D-DCT coefficients representing a given phoneme; this particu-
lar construction was found (in [6]) to work well for the MFCC-based
features computed therein. If the 6-dimensional vectors are collected
and arranged in a relative order corresponding to the time-frequency
centers of the respective analysis windows, we are left with a 3D
matrix of coefficients per phoneme example: S(i, j, k) where i in-
dexes time, j indexes frequency, and k is the DCT coefficient index.
The number of time bins will of course vary across phonemes. We
therefore divide up the time axis of the 3D matrix of coefficients
into five segments, and average over time within each segment. The
time bins corresponding to the 30ms of additional signal added be-
fore and after the phoneme give the first and last segments, while
the bins falling within the phoneme itself are divided up in 3:4:3
proportion to give the middle 3 segments. All coefficients across
the five averaged segments (contributing 17 patches × 6 coefficients
= 102 features each) are then pooled and concatenated into a single
510-dimensional vector. Lastly, the log-duration of the phoneme is
added to give the final 511-element feature vector. Prior to classifi-
cation, the training and test datasets are whitened with the principal
components derived from the training set.

Features Stops Vowels All Dims
CM 29.66 37.59 28.30 196
HA 27.91 37.80 25.60 61

2D-DCT-NB 23.53 37.33 24.93 511
2D-DCT-WB 25.53 36.69 24.37 511

2D-DCT-NB/SVM2 21.37

Table 1. Percent error rates for the three sets of features when train-
ing/testing on stops only, vowels only, or on all phonemes from clean
utterances. Our features are denoted “2D-DCT”. Dimensionality of
the feature vectors are given in the last column. “NB” and “WB”
denote narrowband and wideband conditions respectively.

4.4. MFCC-Based Baseline Comparison Features
We compare our features to two other TIMIT MFCC-based base-
line feature sets: the “S2” feature-set proposed by Halberstadt &
Glass [6] and the features described by Clarkson & Moreno [5]. We
will refer to these feature sets as “HA” and “CM” respectively. The
HA feature set is constructed by computing 12 MFCCs from each
frame of the spectrogram. Temporal averages are taken over the five
non-overlapping segments described above to obtain a fixed-length
feature vector, and a log-duration feature is added. For CM features,
13 MFCCs are computed for each spectrogram frame. However, ∆
and ∆∆ features are also included, giving classical 39-dimensional
feature vectors for each frame. The time axis is again divided up into
five segments, but the two regions including spectra before and after
the phoneme are 40ms wide and are centered at the beginning and
end of the phoneme. A log-duration feature is also added. In HA
and CM, the resulting datasets are whitened with PCA.

4.5. Classification Framework
All-vs-all (AVA) classification with linear regularized least-squares
(RLS) classifiers [14] was performed on the resulting datasets. We
include for comparison results on the full TIMIT task using second-
order polynomial SVMs with 5-fold cross-validated selection of the
regularization parameter. Our ultimate goal, however, is to illustrate
the strength of localized spectro-temporal features even in the ab-
sence of excessive tuning of the classifier stage.

4.6. Clean Speech Results
In Table 1 we show linear RLS classification error rates for the pro-
posed localized 2D-DCT features (for both narrow- “NB” and wide-
band “WB” spectrograms) as compared to the two sets of baseline
features described above. We show results on the full TIMIT task,
and additionally, when training and testing on subsets consisting of
just the vowels or just the stops. The full task consists of training
on 60 classes (140225 train, 7215 test examples) and then mapping
to 39 classes for scoring, while the stops task consists of 6 phonetic
classes (16134 train, 799 test examples) and the vowel task consists
of 20 classes (45572 train, 2341 test examples). No post-mapping is
done prior to scoring in the case of the the vowels and stops experi-
ments.

In all cases, the localized 2D-DCT features outperform the
MFCC-based baseline features. Wideband spectrograms with longer
temporal analysis extents are seen to give better performance than
narrowband spectrograms with shorter extents in all experiments
excepting the stops only evaluation. However in the case of stops
in particular, the 2D-DCT features provide substantial improvement
over traditional MFCCs. Because the DCT analysis is spectro-
temporal and includes explicit bases encoding vertical and horizon-
tal spatial gratings, the 2D-DCT features capture the strong vertical
“edges” present in stops and other plosives. The last row of Table 1



Features Clean 20dB 10dB 0dB
CM-RLS1 28.30 61.68 79.67 91.78
HA-RLS1 25.60 41.34 63.12 80.03

2D-DCT-NB/RLS1 24.93 32.53 48.16 71.93
2D-DCT-WB/RLS1 24.37 32.36 47.79 72.75

2D-DCT-NB/RLS1 (B) 24.93 38.99 59.76 77.28
2D-DCT-WB/RLS1 (B) 24.37 37.73 57.30 75.05

Table 2. Train clean, test noisy experiments: Percent error rates on
the full TIMIT test set for several signal-to-noise ratios and feature
sets.

shows performance when using nonlinear SVM classifiers, and con-
firms that 2D-DCT features still exhibit the reduction in error that
one would expect when moving to more complex classifiers.

5. NOISY SPEECH TIMIT EXPERIMENTS

The classification performance of localized 2D-DCT features was
also evaluated in the presence of both pink and babble noise. In
the case of pink-noise, we provide a comparison with HA [6] and
CM [5] features. The HA-RLS1 error rates were originally presented
in Rifkin et al. [15], and are reproduced here. The authors of [15], do
not provide performance in babble-noise. In all experiments, train-
ing is done on clean speech while testing is done on noisy speech.

5.1. Noisy Dataset Construction

Pink noise corrupted TIMIT utterances at 20dB,10dB, and 0dB SNR
were obtained from the authors of [15] so that experiments could be
performed under the exact same noise mixing conditions. In [15],
a single 235 second segment of noise from the NOISEX-92 dataset
was used to artificially corrupt the test set speech. Random contigu-
ous snippets from this master segment were added to each utterance
with an amplitude chosen to satisfy the desired global SNR. Sim-
ilarly, we constructed babble-noise corrupted TIMIT utterances by
following the same procedure while using a 235 second segment
of babble-noise, also from the NOISEX-92 dataset. In both cases,
spectra and features were then extracted from the noisy utterances in
a manner identical to that described in Section 4.

5.2. Noisy Speech Results

In Table 2 we show percent error rates for the full TIMIT phonetic
classification task, comparing the HA and CM feature sets to the pro-
posed localized 2D-DCT features when using linear RLS classifiers
with an all-vs-all multiclass scheme (denoted “RLS1”). The first
four feature set/classifier combinations involve pink-noise corrupted
utterances.

In the presence of even weak pink noise (e.g. 20dB), 2D-DCT
features with simple linear classifiers outperform HA features. As
the signal to noise ratio is decreased, the performance advantage re-
mains significant: we observe a relative reduction in error of ap-
proximately 10-25% when using localized 2D-DCT features over
the MFCC-based HA features with an identical classification stage.
Despite the fact that the CM feature set combines MFCCs with tra-
ditional ∆ and ∆∆ features, both the DCT and HA features far out-
perform Clarkson’s CM features. In the last two rows of Table 2
(marked with a “B”), we show classification error in babble noise.
Although babble noise is usually considered a more challenging con-
dition for speech recognizers, for this particular task we observe only
a modest increase in error above the error in pink-noise when using
the proposed 2D-DCT features. The longer temporal extents of the
patches and 2D-DCT templates in the “WB” case are also seen to
give improved performance in babble noise.

6. DISCUSSION

The biologically inspired feature analysis presented in this paper
consisted of two main steps: (1) Extraction of localized spectro-
temporal patches, and (2) low-dimensional spectro-temporal tuning
using the 2D-DCT. A localized encoding and extraction of structure
in the time-frequency plane faithfully preserves the general distri-
bution of energy, and retains critical discriminatory information. In
Table 1 we showed that discrimination among phonemes with strong
temporal modulation, such as plosives and stop consonants, was bet-
ter with local 2D-DCT features than with the two sets of “global”
MFCC-based baseline features. Traditional cepstral analysis, while
admittedly lower dimensional in many cases than the proposed fea-
tures, tends to over-smooth in frequency and ignore important dy-
namics of the spectro-temporal envelope.

In pink-noise corrupted speech, local 2D-DCT features provide
substantial additional noise-robustness beyond the baseline MFCC
features as measured by classification accuracy on the TIMIT cor-
pus. We also found that the localized 2D-DCT analysis outperforms
classical MFCCs augmented with delta and acceleration features.
Although this feature set is not the strongest of the two baselines,
the comparison shows that even features incorporating more tempo-
ral information per frame is not sufficient; both time and frequency
localization is necessary. On the whole, the phoneme classification
experiments presented above show that the method is viable, outper-
forming a state-of-the-art baseline in clean and noisy conditions.
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