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The Swift-Hohenberg equation with quadratic and cubic nonlinearities exhibits a remarkable wealth of stable

spatially localized states. The presence of these states is related to a phenomenon called homoclinic snaking.

Numerical computations are used to illustrate the changes in the localized solution as it grows in spatial extent

and to determine the stability properties of the resulting states. The evolution of the localized states once they

lose stability is illustrated using direct simulations in time.
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I. INTRODUCTION

Ever since the observation that the subcritical complex

Ginzburg-Landau equation exhibits stable spatially localized

states �1� there has been considerable interest in the proper-

ties of these states. The presence of these states has impor-

tant consequences for other systems described by partial dif-

ferential equations on the line since the Ginzburg-Landau

equation describes the behavior of such systems near bifur-

cation from the trivial state of the system. Specifically, the

complex Ginzburg-Landau equation describes the evolution

of a long wavelength oscillatory instability, as well as oscil-

latory instabilities at finite wavelength in systems with bro-

ken reflection symmetry. In contrast, near a steady state bi-

furcation with finite wavelength the evolution of the

instability is described by the real Ginzburg-Landau equa-

tion, and this equation possesses only unstable spatially lo-

calized states. It is of interest therefore to examine what hap-

pens to these unstable states at larger amplitude, where the

real Ginzburg-Landau equation no longer provides an ad-

equate description of the system. In this paper we show that

the localized states can become stable at such amplitudes,

and indeed that there is a large multiplicity of coexisting

stable localized states under very general conditions. We are

able to relate the existence of these states to a phenomenon

sometimes called homoclinic snaking that is well known

from the theory of reversible systems with 1:1 resonance,

and use this theory to construct a large number of such states.

The stability properties of these states are also determined,

and the evolution of nonstationary localized states is studied

by numerical integration in time.

It is an interesting fact that closely related phenomena

have already been described in several areas involving pat-

tern formation. The theory was originally developed in the

context of water waves, where localized states have been

studied by moving into a reference frame of the waves and

converting the problem into an ordinary differential equation

�ODE�. The resulting localized states are called solitary

waves, and in some cases turn out to be solitons. Kirchgäss-

ner �2� has pioneered a successful approach to this type of

problem that led to a number of advances in this area. Spe-

cifically, the ODE is viewed as a dynamical system in space,

and localized states are sought as homoclinic orbits connect-
ing the trivial state to itself. Whether such orbits are possible
depends in part on the stability properties of the trivial state:
eigenvalues with positive real part indicate that a nontrivial
state can grow from x=−�, while eigenvalues with negative
real part indicate that such a state may return, under appro-
priate conditions, back to the trivial state as x→�. The spec-
trum of the linearization about the trivial state is influenced
by spatial symmetries of the system. In many cases, and in
particular in the case considered here, the ODE is reversible.
As a result the bifurcations that are encountered as a param-
eter is increased are nongeneric. In the present case the spa-
tial dynamics of the system near the trivial state turn out to
be described by the reversible 1:1 resonance. The unfolding
of this resonance has been worked out in detail by Iooss and
Perouème �3�, and can be used to understand the appearance
of a variety of homoclinic orbits in this system, and hence of
localized states with different spatial structure.

Parallel to these developments Pomeau �4� presented an
intuitive picture of why a multiplicity of localized states
might be expected. In a typical �variational� system with bi-
stability between two spatially homogeneous states all fronts
connecting such states will move in such a way that the state

of lower energy density invades the state of higher energy

density; stationary fronts are present at isolated parameter

values only, corresponding to equal energy densities �the

Maxwell point�. However, this is no longer so when a front

connects a homogeneous state to a spatially periodic one,

since the front can “lock” to the latter. The result is the

presence of a pinning region in parameter space, straddling

the Maxwell point, with localized states bounded by station-

ary fronts at either end. Some states of this type have been

computed in subsequent work �5� on the Swift-Hohenberg

equation with quadratic and cubic nonlinearities, and it is

this work that provides the motivation for the present paper.

We show here that multiple localized states are present in

three distinct regions of parameter space, and relate their

origin to the presence of reversible 1:1 resonances in the

spatial dynamics of the system, thereby relating Pomeau’s

picture to subsequent mathematical developments, summa-

rized in the physics literature by Coullet et al. �6�, but antici-

pated by Champneys and colleagues in the context of local-

ized buckling �7,8�. In fact Nishiura and Ueyama �9�
identified the same type of behavior in a system of reaction-

diffusion equations on the line in their study of self-

replication. The latter paper has much in common with the*Electronic address: burkej8@socrates.berkeley.edu
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work of Hilali et al. �5� in the sense that it focuses on the

dynamics that result from the depinning of the Pomeau

fronts, without seeking a detailed explanation of the origin of

the multiplicity of localized states.

With this brief �and incomplete!� overview we introduce

in the next section the model system we study and summa-

rize its basic properties. In Sec. III we discuss the so-called

single pulse localized states in this system and describe their

origin and stability properties; multipulse states are not con-

sidered. The range of existence of the single pulse states is

explored in Sec. IV, followed by a concluding section that

examines the relation of our results to earlier work by Hilali

et al. and others, as well as to the mathematical theory al-

luded to above.

II. SWIFT-HOHENBERG EQUATION

We write the generalized Swift-Hohenberg equation in the

form

�u

�t
= ru − ��x

2 + qc
2�2u + vu2 − gu3 �1�

used by Hilali et al. �5�. Here r is the control parameter while

qc, v and g are coefficients which we take to be qc=0.5, v

=0.41, g=1 as in Ref. �5�. In the presence of periodic bound-

ary conditions with period L this equation possesses a

Lyapunov functional F �which we refer to as an energy�
given by

F = �
0

L

dx�−
1

2
ru2 +

1

2
���x

2 + qc
2�u�2 −

1

3
vu3 +

1

4
gu4� �2�

such that
�u

�t
=−

�F

�u
. It follows that along any trajectory the

energy decreases to a �local� minimum. In particular no Hopf

bifurcations are possible and �at fixed x� all time dependence

ultimately dies out.

The linear stability of a stationary solution us�x� of period

L is determined by writing

u�x,t� = us�x� + �ũ�x�e�t, �3�

where � is the growth rate of the infinitesimal perturbation

�ũ�x�. Thus ũ�x� satisfies the eigenvalue problem

�ũ�x� = L�us�x��ũ�x�, ũ�x + L� = ũ�x� , �4�

where

L�us�x�� � �r − ��x
2 + qc

2�2 + 2vus�x� − 3gus
2�x�� �5�

is the linear differential operator obtained by linearizing the

right side of Eq. �1� about us�x�, and the growth rate � is the

associated eigenvalue.

A. Spatially homogeneous solutions

Flat, stationary solutions of Eq. �1� satisfy

0 = �r − qc
4�u + vu2 − gu3. �6�

The three flat solution branches �shown in Fig. 1� are

u0 = 0, u± =
1

2g
�v ± 	

v
2 + 4g�r − qc

4�� . �7�

The u± branches are created in a saddle-node bifurcation at

r1�qc
4−v

2 /4g. The u− branches bifurcate from the trivial

solution u0 in a transcritical bifurcation at r2�qc
4.

For these states the eigenfunctions that solve Eq. �4� are

ũ�x�=sin�kx�, cos�kx�. The corresponding growth rates on

the u0 and u± branches are

�0 = r − �qc
2 − k2�2, �8a�

�± = 3qc
4 − �qc

2 − k2�2 − 2r −
v

2g
�v ± 	

v
2 + 4g�r − qc

4�� ,

�8b�

respectively. For uniform states the domain size L used in

Eq. �4� is arbitrary so these expressions are valid for all k

=2� /L. The u0 branch is unstable to uniform perturbations

�k=0� for r�r2, while the u−�0 branch is unstable between

the saddle-node bifurcation at r1 and the transcritical bifur-

cation at r2.

Increasing k up to qc results in a monotonic increase in �,

so at any fixed value of r the most unstable perturbations are

those with wave number k=qc. Increasing k also widens the

domain of r over which the flat solutions are unstable. For

each wave number k, the zeros of Eqs. �8a� and �8b� give the

r values at which the branch first loses stability with respect

to perturbations of wavelength 	=2� /k:

r	,0 = �qc
2 − k2�2, �9a�

r	,± =
1

2

3qc

4 − �qc
2 − k2�2

−
v

4g
�v ± 	

v
2 + 8g�qc

4 − �qc
2 − k2�2��
 . �9b�

As a result the initial instability for all flat branches has

wavelength Lc=2� /qc and occurs at

FIG. 1. The flat stationary solutions u0 and u± as a function of r.

Stability with respect to uniform perturbations and perturbations

with wave number qc, respectively, is indicated by the signs of the

corresponding eigenvalues. The labeled bifurcation points are r0

=0, r1=0.020 475, r2=0.0625, r+�0.030 84, r−�0.1146.
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r0 � rLc,0 = 0, �10a�

r± � rLc,± =
1

2
�3qc

4 −
v

4g
�v ± 	

v
2 + 8gqc

4�� . �10b�

Further increase of k above qc uniformly decreases the

growth rate; for values of k above kmax, defined by

kmax = �qc
2 +	qc

4 +
v

2

8g
�1/2

, �11�

the growth rates �± are strictly negative and so the u±

branches are stable to all short wavelength perturbations. The

u0 branch is only unstable to short wavelength instabilities at

large values of r.

In the following we therefore focus on solutions to Eq. �1�
with L=Lc, although at times it will be useful to take L

=nLc, with n�1 an integer.

B. Primary solutions with wavelength Lc and their stability

At the bifurcation points r0 and r± branches of solutions

with wavelength Lc are created. We compute the resulting

branches of spatially periodic solutions using numerical con-

tinuation �10�. The results for the branch connecting the

points r0 and r+, hereafter referred to as the “patterned”

branch and denoted by uP, are summarized in Fig. 2. Sample

solution profiles are shown in Figs. 3�a� and 3�b�. There are

two Maxwell points of interest: at rM1 the patterned state has

the same energy as the trivial flat state u0, while at rM2 the

patterned state has the same energy as u+. Another branch of

Lc-periodic states, created at r− on u−, extends all the way to

r=� but is omitted from the figure. In view of the symmetry

�v ,u�→ �−v ,−u� bifurcations from u− with v�0 correspond

to bifurcations from u+ with v
0; such bifurcations from u+

are also analyzed in what follows.

In addition we solve the eigenvalue problem �4� for the

growth rate of perturbations with spatial period Lc. There is

always �at least� one zero eigenvalue corresponding to the

eigenfunction ũ=dus /dx generating infinitesimal transla-

tions. The remaining eigenvalues are determined numeri-

cally. The results for the patterned branch are summarized in

Fig. 4. This branch is unstable near both ends but gains sta-

bility through saddle-node bifurcations at r3 and r4. All other

eigenvalues �corresponding to eigenfunctions with wave-

length Lc /m for integers m�2� are negative, indicating that

the patterned branch is stable with respect to short wave-

length disturbances.

On larger domains the patterned states in Fig. 2�a� are

subject to additional modes of instability. Figure 4�a� sum-

marizes the resulting changes in stability while Fig. 4�b�
shows the eigenvalues corresponding to eigenfunctions with

wavelength 2Lc. At the primary bifurcation points all the

extra eigenvalues are negative. However, the eigenvalues of

the two wavelength 2Lc eigenfunctions, which start at �=

−9qc
4 /16 when r=0, change sign a total of four times, corre-

sponding to four changes in stability of the patterned solu-

tions with respect to wavelength 2Lc perturbations, and

hence four secondary bifurcations to wavelength 2Lc solu-

tions. Three of these crossings �labeled r6, r7, r8� occur be-

tween r+ and r4 where the patterned branch is already un-

stable. The remaining bifurcation at r5 reduces the stable

domain of the patterned branch from r3
r
r4 to r3
r

FIG. 2. �a� Bifurcation diagram showing the norm N

��L−1�0
Lu2dx�1/2 of the flat states with u�0 and patterned states uP

with wavelength Lc as functions of r. The locations of the saddle

nodes on the patterned branch are: r3�−0.016 70, r4�0.2992. �b�
Energy F of the flat and patterned branches as a function of r; the

inset shows an enlargement near r=0. The Maxwell points rM1

�−0.013 81 and rM2�0.073 28 are indicated in �a� by dashed ver-

tical lines.

FIG. 3. Solution profiles uP�x� on the patterned branch. �a� r

�r3, �b� r�r4.
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r5. Similar results hold for branches with spatial period

nLc, n�2, although the number of distinct secondary

branches grows quite rapidly, much as in other problems of

this type �11�. The eigenvalues � corresponding to wave-

length nLc for integers n=1, 2, 3, 4, and 5 are shown in Fig.

5. Observe that for each n�2 there is at least one eigenvalue

that passes through zero near r5 �Fig. 5�; this is so for larger

values of n as well. A careful analysis of this region shows

that although these bifurcations all occur at distinct values of

r �invisible in Fig. 5� their location in r decreases as n in-

creases. Based on detailed computations we surmise that as

n→� these bifurcations accumulate at some r=r5
*�r5, with

the result that the solutions along the patterned branch be-

tween r3 and r5
* are stable to all long wavelength perturba-

tions. Thus the “bifurcation” at which the patterned states

lose stability with increasing r is in fact a much more com-

plicated object than implied in Ref. �5�. Similar clustering of

eigenvalues has been observed in other problems of this type

�9�, but to the authors’ knowledge the reason for this behav-

ior remains unclear.

III. LOCALIZED STATES

With the above background we turn to the study of spa-

tially localized states. The first class of localized solutions of

interest are small amplitude stationary states biasymptotic to

u0, which exist near r=0. The time-independent version of

Eq. �1� forms a fourth order reversible dynamical system in

space: the equation is invariant under the spatial reflection

�x→−x, u→u�. Any localized state connecting to the trivial

state u0=0 as x→ ±� requires that u0 has both stable and

unstable spatial eigenvalues. It is easy to check that for r


0 these eigenvalues are ±iqc± �	−r /2qc�+O�r�, while for

r�0 they are ±iqc± i�	r /2qc�+O�r�. Thus for r
0 the ei-

genvalues form a quartet, and u0 is hyperbolic with two

stable eigenvalues and two unstable eigenvalues. In contrast

for r�0 all the eigenvalues lie on the imaginary axis and u0

is not hyperbolic. In particular it is not possible to approach

u0 as soon as r�0; thus no localized states can be present

when r�0 �12�. At r=0 there is a pair of imaginary eigen-

values ±iqc of double multiplicity. The bifurcation at r=0 is

thus a Hopf bifurcation in a reversible system with 1:1 reso-

nance �3�. Theory shows that under certain conditions the

hyperbolic regime �r
0, �r � ≪1� contains a large variety of

spatially localized states.

Two of these states can be constructed using perturbation

theory. We define the small parameter � by r=−�2
2, 
2

�0, and look for stationary solutions of Eq. �1� of the form

us�x� = �u1�x,X� + �2u2�x,X� + ¯ , �12�

where X��x is a large scale over which the amplitude of the

pattern changes. It follows that

u1�x,X� = Z1�X�eiqcx + c . c . , �13a�

u2�x,X� =
2v

qc
4

�Z1�2 +
v

9qc
4
Z1

2e2iqcx + Z2�X�eiqcx + c . c.

�13b�

FIG. 4. �a� The stability of the patterned branch with respect to

wavelength Lc and two different wavelength 2Lc modes, with −

indicating stability and + instability. Thick lines indicate stable

branches. The locations of the period-doubling bifurcations are r5

�0.2198, r6�0.2986, r7�0.1582, r8�0.03407. �b� Growth rates

on the patterned branch for perturbations of wavelength Lc and 2Lc.

FIG. 5. The growth rate � on the patterned branch of perturba-

tions of wavelength nLc for n=1, 2, 3, 4, and 5. As n→� the

individual bifurcations accumulate at r5
* and r7

* �see text�.
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The amplitude Z�X ,���Z1�X�+�Z2�X�+¯ satisfies the

equation

4qc
2
ZXX = 
2Z − �3Z�Z�2 +

i�

qc

�−
32v

2

27qc
4
ZX�Z�2 + 4qc

2
ZXXX�

+
�2

qc
2�8v

2

qc
4

Z��Z�2�XX +
28v

2

27qc
4
Z*�Z2�XX + �5Z�Z�4

+ qc
2
ZXXXX� + O�
2�2,�3� . �14�

Here

�3 =
38v

2

9qc
4

− 3g, �5 = −
3g2

64qc
2

+
5795gv

2

144qc
6

−
3521v

4

432qc
10

.

Since �3�8.35�0 the bifurcation at the origin is subcriti-

cal. This asymptotic result is formally valid only in the limit

�→0 although some of the higher order terms have been

kept for later reference.

The simplest nontrivial solution of Eq. �14� is the uniform

solution

Z�X� = �
2/�3�1/2ei� + O��� , �15�

corresponding to spatially periodic states with period Lc near

r=0, viz.

uP�x� = 2�− r

�3

�1/2

cos�qcx + �� + O�r� . �16�

Here � is an arbitrary phase and 
2�0 �so r
0�. Other

solutions to Eq. �14� can be found in terms of elliptic func-

tions, and localized states correspond to infinite period solu-

tions of this type with Z→0 as X→ ±�:

Z�X� = �2
2

�3

�1/2

sech�X	
2

2qc

�ei� + O��� . �17�

This solution corresponds to

u��x� = 2�− 2r

�3

�1/2

sech� x	− r

2qc

�cos�qcx + �� + O�r� .

�18�

Like the spatially periodic states this family of solutions is

parametrized by ��S1, which controls the phase of the pat-

tern within the sech envelope. Within the asymptotics this

phase remains arbitrary; there is no locking between the en-

velope and the underlying wave train at any finite order in �.

However, it is known �13–15� that this is no longer the case

once terms beyond all orders are included. These terms break

the rotational invariance of the envelope solution and result

in a weak flow on the circle S1. This flow in turn selects

specific values of the phase: �=0 and �=� �16�; since S1 is

a circle one of these must be weakly attracting and the other

weakly repelling, cf. Fig. 10 below. At the same time these

terms lead to transversal crossing of stable and unstable

manifolds of u0 �6� thereby producing the snaking that be-

comes so prominent farther away from r=0. Note that the

phases �=0,� are the only two phases that preserve the

symmetry �x→−x, u→u�. It follows that two branches of

localized states bifurcate subcritically from r=0, one of

which is stable with respect to translations of the envelope

relative to the wave train, the other being unstable. Both

states are amplitude-unstable �17�. Near r=0 these two

branches are essentially indistinguishable, but one might ex-

pect that with increasing −r the differences will grow and

therefore that two distinct branches will emerge from r=0.

To prove that the localized states calculated above exist in

a finite neighborhood of the origin we analyze the stationary

solutions of Eq. �1� near the bifurcation at the origin using

normal form theory. The appropriate normal form for the

reversible Hopf bifurcation with 1:1 resonance is �3�

A� = iqcA + B + iAP�
; �A�2,
i

2
�AB* − A*B�� , �19a�

B� = iqcB + iBP�
; �A�2,
i

2
�AB* − A*B��

+ AQ�
; �A�2,
i

2
�AB* − A*B�� , �19b�

where in the context of spatial dynamics the prime denotes

differentiation with respect to x, the functions A and B trans-

form under spatial reflection as �A ,B�→ �A* ,−B*�, and P and

Q are polynomials with real coefficients which to lowest

order take the form

P�
;y,w� = p1
 + p2y + p3w , �20a�

Q�
;y,w� = − q1
 + q2y + q3w + q4y2. �20b�

The bifurcation from the trivial state occurs at 
=0, and this

state is hyperbolic in the region 

0 provided q1�0. The

fact that the normal form is completely integrable �3� is of

great assistance in its analysis. One finds that there are two

possible types of behavior depending on the sign of q4 at

q2=0. When q4
0 homoclinic solutions are present in the

whole half space 

0 �Fig. 6�a��. In contrast, when q4�0

homoclinic solutions are present only for q2
0 and then

only between 
D


0, where 
D=−3q2
2 /16q1q4 �Fig.

6�b��. At 
D homoclinic solutions terminate in a heteroclinic

connection between the flat state �A=0� and a nontrivial state

�A�0� with the same energy.

FIG. 6. For �a� q4
0 and �b� q4�0 the normal form contains

homoclinic orbits to the trivial state when the parameters 
 and q2

fall within the shaded region. The solid line 
=
D in �b� marks the

location of heteroclinic orbits between the trivial state and a non-

trivial state.
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It should be noted that for 
=−�2
2
0, where 
2

=O�1�, we can introduce a large spatial scale X��x. The

transformation �A ,B�= (�Ã�X� ,�2B̃�X�)eiqcx permits us to

eliminate B̃ from the normal form, resulting in

A� = q1
2A + q2A�A�2 +
i�

2
�− 4p1
2A� + �6p2 − q3�A��A�2

+ �2p2 + q3�A2�A*��� + �2�p3�A*A� − A�A*���A�

+ �q4 − q3p2 + p2
2�A�A�4� + O�
2�2,�3� , �21�

where the prime now denotes derivatives with respect to X

and we have dropped the tildes.

A comparison of this equation with Eq. �14� permits us to

identify the coefficients in the normal form in terms of the

parameters of the Swift-Hohenberg equation. To transform

Eq. �14� into the same form as Eq. �21� we note that it is

possible to remove all second and higher order derivatives up

to any order in � by iteratively replacing ZXX with its power

series expansion. Introducing the nonlinear transformation

Z=A+�2�A �A�2 allows matching at 
2=0 through order �2,

and subsequent unfolding allows matching of the 
2 terms

up to order �. The results are �18�

p1 = −
1

8qc
3
, q1 =

1

4qc
2
, � = −

9g

16qc
4

+
355v

2

216qc
8

, �22a�

p2 =
9g

16qc
3

−
187v

2

216qc
7
, q2 =

3g

4qc
2

−
19v

2

18qc
6

= −
�3

4qc
2

,

�22b�

p3 = −
8v

2

9qc
8
, q3 =

3g

8qc
3

−
41v

2

108qc
7

, �22c�

and

q4 = −
177g2

128qc
6

+
5089gv

2

288qc
10

−
78131v

4

7776qc
14

. �22d�

Matching at higher orders in � involves higher order terms

omitted from the expansion �20� of the polynomials P ,Q.

The above results can also be obtained through a lengthier

calculation of the explicit reversibility-preserving normal

form transformations at r=0, followed by appropriate un-

folding.

For the parameter values used here q2
0, corresponding

to the subcritical case �3�. As q2 is not small, q4 does not

play an important role in classifying the dynamics, and both

Figs. 6�a� and 6�b� predict that homoclinic connections to the

A=0 state are present for 

0. These are precisely the

states calculated explicitly in Eq. �18�. However, the scaling

assumed in Eq. �12� fails for small q2 and the localized struc-

tures then take a different form �19�.
In the following we use the continuation package Hom-

Cont to extend the solutions �18� with �=0,� to solutions of

Eq. �1� valid farther away from r=0. Technically the numeri-

cal routine finds reflection symmetric solutions to Eq. �1� on

a large but finite domain L, but provided the width of the

resulting localized state is smaller than the domain �typically

40Lc� the true homoclinic connection is well approximated

by a large period orbit. Figure 7 illustrates some of the re-

sults obtained in this manner for small −r while Fig. 8 ex-

tends these results to larger values of −r. Sample profiles

along each branch are shown in Fig. 9. Along the �=0

branch the midpoint �x=0� of the localized state is always a

local maximum, while along the �=� branch the midpoint is

always a local minimum. Near the origin the amplitude is

small and the width of the sech envelope is large enough to

contain many wavelengths of the underlying pattern. Away

from the origin the amplitude grows and becomes compa-

rable to the amplitude of the patterned states �specifically, the

stable branch beyond the bifurcation at r3� and the width

FIG. 7. �Color online� �a� Bifurcation diagram showing the �

=0 and �=� branches of homoclinic states near r=0. The branch

of uniform patterned solutions �dot-dash� is also shown. The verti-

cal axis is the norm N taken over a large but finite domain in x. The

lower panels show the homoclinic solutions u��x� on the �b� �=0

and �c� �=� branches at r=−0.002. The dashed lines in these pan-

els show the leading order envelope computed in Eq. �18�.

FIG. 8. �Color online� Bifurcation diagram showing the two

homoclinic branches together with the flat and patterned branches

of Fig. 4. Away from the origin the homoclinic branches are con-

tained within the pinning region �shaded� between rP1�−0.014 64

and rP2�−0.012 45, and are then linked by secondary branches of

localized but asymmetric states. Thick lines indicate stable solu-

tions. The dashed vertical line marks the location of the Maxwell

point rM1 between the flat and patterned branches. The letters �a�–
�f� mark the locations of the profiles shown in Fig. 9.
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decreases until it is comparable to Lc, the wavelength of the

underlying pattern. Beyond this point both the �=0 and �
=� branches undergo a series of saddle-node bifurcations

responsible for the terminology homoclinic snaking. Each

saddle-node bifurcation adds a pair of oscillations to the pro-

file u��x�, and the saddle-node bifurcations asymptote expo-

nentially rapidly to rP1 and rP2. At each value of r within this

range there exists an infinite number of solutions, each of a

different width. Higher up along each “snake” the solutions

u��x� begin to look like a pattern of wavelength Lc and uni-

form amplitude, truncated at either end by a stationary

“front” of width of order Lc connecting this state to u0. The

amplitude of this state is nearly identical to the upper branch

of the patterned solutions. These results suggest that within

the region rP1
r
rP2 there exist heteroclinic connections

between the flat and patterned states as well. Far up each

branch shown in Fig. 8, after many saddle-node bifurcations,

the homoclinic solutions u��x� connecting the flat state u0 to

itself resemble two of these heteroclinic connections, from u0

up to the patterned state and then from the patterned state

back down to u0. We identify these states with the Pomeau

fronts; as in his scenario these fronts are stationary because

of pinning by the underlying wave train. Indeed we may

think of the region rP1
r
rP2 as a Maxwell point that has

been broadened by pinning to the underlying patterned state,

a picture supported by the presence within this region of the

Maxwell point rM1 at which the u0 and patterned branches

have the same energy.

Figure 8 also indicates the stability of the localized solu-

tions in time, a consideration that is absent from the general

theory of reversible systems. The eigenvalue problem �4�
yields the growth rate of infinitesimal perturbations of the

homoclinic solutions at each point along the branches, as

well as the associated eigenfunctions ũ�x�. The latter are lo-

calized around the base state u��x� and are therefore insensi-

tive to the exact choice for L. The results for the �=0 and

�=� branches are shown in Fig. 10. This analysis confirms

that both branches are unstable near the origin. The �=�
branch �Fig. 10�b�� has two positive eigenvalues. Of the cor-

responding unstable modes one is even in x and corresponds

to an amplitude perturbation of the small sechlike solution.

The other is odd and corresponds to a phase perturbation that
pushes the envelope away from �=�. The �=0 branch �Fig.
10�a�� has only one positive eigenvalue corresponding to an
even amplitude perturbation. On both branches the phase ei-

genvalues remain almost zero until the snakes develop. Once

this happens the stability is controlled by a single even mode

and a single odd mode—several other modes approach zero

growth rate but never cross. Each crossing of the even mode

corresponds to a saddle-node bifurcation in Fig. 8. The cross-

ings of the odd mode correspond to bifurcations to branches

of asymmetric solutions that form “rungs” linking the �=0

and �=� branches, a few of which are shown in Fig. 8, cf.

Ref. �20�. After the first few folds the two eigenvalues ap-

proach one another rapidly, indicating that the symmetry-

breaking bifurcations approach the saddle-node bifurcations.

When this happens the eigenfunctions become localized

around the two fronts while preserving their parity �Fig. 11�.
It follows that there are stable homoclinic solutions of arbi-

trary width along both the �=0 and �=� branches. The

heteroclinic connections are therefore also stable, as hypoth-

esized by Pomeau.

Although the snaking of the true homoclinic orbit repre-

sented in Fig. 8 goes on forever, the solutions shown in the

figure were found on a finite domain in x. In these circum-

stances the sequence of saddle-node bifurcations must termi-

nate: as the domain fills with the pattern the snakes terminate

FIG. 9. �Color online� Sample profiles u��x� at the saddle-nodes

indicated in Fig. 8. �a�–�d� lie on the �=0 branch while �e� and �f�
lie on the �=� branch.

FIG. 10. Spectrum of growth rates � on the �a� �=0 and �b�
�=� branches homoclinic to the u0=0 flat state as a function of the

arc length s along the branch measured from the bifurcation at the

origin �upper panels�. The lower panels show the corresponding

branches as a function of s.
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on the patterned branch. The termination point corresponds

to a bifurcation at which a pair of homoclinic branches bias-

ymptotic to the patterned state is created, similar to the bi-

furcation at the other end of the snake at r=0. This duality is

a generic feature in problems of this type �21�. Numerical

analysis beyond that presented here indicates that the loca-

tion of this bifurcation coincides with the saddle-node bifur-

cation at r3.

A. Wavelength selection

Close examination of the wide homoclinic solutions �far

up the snakes� shows that despite appearances the shape in-

side the envelope does not match the patterned branch per-

fectly. The largest deviation is in the wavelength, which is

typically slightly larger than Lc. Near the bifurcations at r0

and r+ there exists a continuum of bifurcations to branches of

solutions with wavelengths near Lc. These branches look

qualitatively similar to the wavelength Lc branch shown in

Fig. 2. Perturbations with wavelength Lc are always the most

dangerous instability for the flat states, and near such bifur-

cations the wavelength Lc branches are energetically favored

over branches with other wavelengths. At large amplitude

this is no longer the case, however, and on large domains we

may expect the preferred solution to shift from this wave-

length. Figure 12 shows the wavelength of the preferred so-

lution in the neighborhood of the pinning region. This curve

was found by minimizing the energy density of the solutions

with respect to the spatial period L, at fixed r. Figure 12 also

shows the wavelength of the pattern within the localized

states. Far up the snaking branch, where the localized state

contains many wavelengths of the pattern, this wavelength is

spatially uniform and independent of the width of the local-

ized state. It is not independent of r, however. Pomeau’s

pinning mechanism allows for the existence of localized

states away from the Maxwell point, but evidently the wave-

length of the patterned domain within such states is affected

by the presence of the fronts at either side: near rP1, where

the flat state is energetically favored, the packet is squeezed

tighter, while near rP2, where the patterned state is favored,

the packet expands. This is a frustration effect: the fronts at

rP1
r
rM1 want to move in such a way as to eliminate the

localized state, leading to a compression of the state relative

to its wavelength at the Maxwell point r=rM1 �Fig. 12�.
Likewise at rM1
r
rP2 the fronts want to move outwards,

thereby stretching the localized state. It is noteworthy that

the resulting compression or expansion is distributed uni-

formly across the localized state, a fact that appears to be a

consequence of local energy minimization. As a consequence

the localized states approach a different spatially periodic

state at each r, although in Fig. 8 �as well as later bifurcation

diagrams� we use the wavelength Lc patterned branch as a

stand-in for the actual periodic state approached by the snak-

ing. Some aspects of wave-number selection at moderate am-

plitude can be captured using improved perturbation theory

�19�.

B. Depinning transition

The discussion summarized above indicates that below

rP1 the �heteroclinic� fronts connecting the flat and patterned

states are no longer stationary, and will instead drift in such

a way that the patterned state is gradually eliminated until

the lower energy flat state fills the entire domain. Above rP2

the fronts also cease to be stationary but now drift in such a

way as to expand the patterned state until it fills the whole

domain. Likewise the stationary homoclinic states that are

present everywhere within the pinning region also cease to

be stationary, and evolve to either the flat or patterned state.

A homoclinic localized state like those shown in Fig. 8 but at

a small distance outside the pinning region �for example, at

r=rP2+�, with �≪1,� will evolve slowly at first because of

its proximity to the saddle-node bifurcation. As it evolves

farther away from the saddle node its shape will change more

rapidly, its width increasing abruptly by one wavelength on

either side �or decreasing, if r=rP1−��, until it approaches

the neighborhood of the next saddle-node bifurcation. Since

the saddle nodes almost line up �Fig. 13� the profile will

FIG. 11. �Color online� �a� Solution profile u��x� at rP2 high up

the �=0 snaking branch. �b� The three eigenfunctions of interest.

The corresponding eigenvalues �growth rates� are all zero at rP2.

Away from the saddle node the eigenvalues of the first two are

nonzero but the general shape and symmetry remains.

FIG. 12. �Color online� Plot of the wavelength of the pattern

within the localized states �dashed line� found in the pinning region

between rP1 and rP2, and the preferred wavelength of the stable

uniform patterned solution based on energy minimization �solid

line�.
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grow in a sequence of quick “bursts” as it passes between the

saddle nodes �or shrink, as it passes the ones at rP1�. These

bursts can be viewed as nucleation events. An example of

this evolution is shown in Fig. 14 in the form of a space-time

plot.

The transition time T to pass between two consecutive

saddle nodes follows from a semianalytic analysis of the dy-

namics near the bifurcation �22�. We let U0�x� be the station-

ary localized state at the depinning transition �=0. For

�� � ≪1 we then have u�x , t�=U0�x�+ ���1/2u1�x , t�+¯, at

least while the solution remains near U0�x�. It follows that

u1�x , t� satisfies the equation

Lu1 = �tu1 − ���1/2�sgn���U0 + vu1
2 − 3gU0u1

2� + O����� ,

�23�

where L=L�U0� is the linearized Swift-Hohenberg operator

�5� at rP2. This equation must be solved subject to the re-

quirement that �u1 � →0 as �x � →�. Since for �� � ≪1 the per-

turbation u1 evolves on the timescale ���−1/2 the right hand

side of this equation is uniformly small. Thus at leading or-

der we solve Lu1=0, i.e., the eigenvalue problem �4� re-

stricted to the �=0 subspace. At a saddle node high up each

snake U0�x� has a three-dimensional neutral eigenspace

spanned by Ũ10�x� �the even mode whose eigenvalue van-

ishes at the saddle node�, Ũ11�x� �the odd mode that tracks

the even mode ever more closely as one moves up the

snakes�, and Ũ12�x� �the neutrally stable odd mode U0��x��.
Sample profiles of these eigenfunctions can be seen in Fig.

11 taken at one of the saddle nodes at rP2 located far up the

snake, corresponding to a wide localized state. It follows that

u1�x,t� = a�t�Ũ10�x� + b�t�Ũ11�x� + c�t�Ũ12�x� + O����1/2� ,

where a�t�, b�t�, and c�t� are slowly evolving real ampli-

tudes. The evolution equations for these amplitudes are ob-

tained by imposing solvability conditions on Eq. �23�; since

L is self-adjoint this condition requires that the right hand

side be orthogonal to all null eigenvectors. The resulting cal-

culation can be simplified by noting that in the space of

reflection-symmetric perturbations the “center of mass” of

the pattern remains fixed. Consequently we may set b�c

�0, leaving �cf. Ref. �22��

�1ȧ = ���1/2��2sgn��� + �3a2� + O����� , �24�

where

�1 � �
−�

�

Ũ10
2 dx � 0.2564, �25a�

�2 � �
−�

�

U0Ũ10dx � 0.2036, �25b�

�3 � �
−�

�

�v − 3gU0�Ũ10
3 dx � 4.558 � 10−3. �25c�

The integrals have been evaluated using numerically gener-

ated values for U0�x� and Ũ10�x� at the saddle node at rP2. As

�2 and �3 are of the same sign there are two solution

branches present in �
0 while for ��0 the solution runs

away, consistent with the location of rP2 on the right side of

the line of saddle nodes. The transition time T to pass be-

tween successive saddle nodes is estimated as the time it

takes the solution of Eq. �24� to pass from −� to +�, viz.

T =
��1

�����2�3�1/2
�

26.44

���1/2
. �26�

Figure 15 shows the transition times, determined through

explicit time integration of the type shown in Fig. 14, for

several values of r near rP2. The predicted value �26� com-

pares well with the best fit to the data: T�24.90 ���−1/2. It

should be noted that an identical calculation applies near rP1,

except that here �2 and �3 are of opposite signs.

C. Other types of localized states

The localized states of the previous section were found in

a region of bistability, bounded on one side by the bifurca-

FIG. 13. Schematic representation of the evolution of a time-

dependent state just outside the pinning region.

FIG. 14. �Color online� �a� Time evolution of a localized state

outside the pinning region, at r�rP2+7�10−5. The width increases

symmetrically in a series of abrupt steps separated by nearly sta-

tionary episodes that last for T�3500. �b� The steps are seen more

easily in a plot of the energy F�t�. The dashed vertical lines mark

the energy density corresponding to a domain filled with the flat

�F�u0�=0� or patterned �F�uP��−1.88�10−5� state.
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tion at r=0 of the patterned branch from the flat state u0, and

on the other side by the saddle node of the patterned branch

at r3, a regime examined in the context of buckling by

Champneys and co-workers �7,8�. Figure 4 shows that an-

other region of bistability is present, lying between r+ and r5

where both the flat u+ branch and the patterned branch are

stable. To study this region we shift the origin of r to r+, and

define the quantities ũ and r̃ as

u�x,t� = u+ − ũ�x,t�, r = r+ − r̃ .

Thus ũ satisfies the equation

� ũ

�t
= r̃�2uLc,+�3guLc,+ − v�

qc
4

− 1�ũ − ��x
2 + qc

2�2ũ

+ �3guLc,+ − v�ũ2 − gũ3 + O�r̃2� , �27�

where uLc,+= �v+	v
2+8gqc

4� /4g�0.3068 is the value of u+

evaluated at r+. As the ũ2 coefficient is positive, Eq. �27� is

of the same form as the original Eq. �1�, and the behavior

near r+ in the new bistable region is mathematically analo-

gous to that described in the preceding section, although this

possibility is absent from Refs. �7,8� owing to a different

parametrization. In particular, the asymptotic analysis and

the computation of the normal form coefficients carried out

in Eqs. �12�–�18� and �22� carries over to this case using the

transformation

u → u+ − u , �28a�

r → �r+ − r��2uLc,+�3guLc,+ − v�

qc
4

− 1� , �28b�

v → 3guLc,+ − v . �28c�

For example, at r=r+

�3 =
38�3guLc,+ − v�2

9qc
4

− 3g � 14.6.

It follows that this region also contains two branches of ho-

moclinic solutions which, like the patterned branch, bifurcate

from the u+ branch at r+. As shown in Fig. 16 these ho-

moclinic branches undergo a series of saddle-node bifurca-

tions between rP3 and rP4. As in the previous case, there is a

Maxwell point rM2 within the pinning region where the en-

ergy of the flat u+ branch matches that of the patterned

branch. Below this point the patterned state has the lower

energy density while above the u+ state is preferred. How-

ever, once again the patterned branch uP shown in Fig. 16

has a wavelength that does not exactly match the pattern

inside the localized states that make up the snakes: near r5

and rP4 the wavelength within the localized states deviates

by as much as 15% from Lc. The wavelength discrepancy is

most noticeable at large r where the flat state has lower en-

ergy density, squeezing the packets so that the observed

wavelength within the localized states is less that Lc. It is

significant that the patterned branch with this wavelength

does not undergo a period-doubling bifurcation at r5. As a

result the localized states on the snakes do not inherit the

change of stability of uP at r5 or indeed any of the bifurca-

tions to nLc-periodic states that are present near r5
*, and re-

main stable all the way up to the saddle node bifurcations at

rP4.

As mentioned earlier bifurcations from the u− branch can

be mapped to the u+ branch. As a result the bistable region

that exists between u− and the patterned branch can be stud-

ied within the same framework. The remaining possibility,

branches of solutions connecting the u+ and u− states, can be

excluded on energy grounds: if v�0 �v
0� the energy of

FIG. 15. Transition time to pass by a single saddle node as a

function of r for several values near the edge of the pinning region

at rP2. At each r, data points from different saddle nodes are closely

clustered because the saddle nodes line up at rP2. The solid line is a

fit to the data, while the dashed line is the prediction �26�.

FIG. 16. �Color online� Bifurcation diagram showing the two

homoclinic branches biasymptotic to u+, together with the flat and

patterned branches of Fig. 4. Away from the bifurcation at r+ the

homoclinic branches are contained within the pinning region

�shaded� between rP3�0.038 74 and rP4�0.2643. Thick lines indi-

cate stable solutions. For clarity the stability of the localized states

is only indicated in the insets, which show the behavior near the

saddle nodes. Asymmetric solutions are omitted. The dashed verti-

cal line marks the location of the Maxwell point rM2 between the

flat and patterned branches. The letters �a�–�f� mark the locations of

the profiles shown in Fig. 17.
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the u+ state is always less than �greater than� the u− state.
Moreover, no pinning is possible. Thus no stationary fronts
between these two flat states are possible when v�0. Kink
solutions, present when v=0, are discussed in Ref. �8�.

IV. LOCALIZED STATES AS A FUNCTION OF v

Thus far we have studied the behavior of Eq. �1� as r
varies at fixed values of qc, v, and g. To explore the v de-
pendence of our results we rescale x and u so that qc=0.5
and g=1.0, and vary v. Consider first the bifurcation from
the u=0 flat state, shown in Fig. 8 at v=0.41. Within the
normal form �21� changing v corresponds to changing q2.
The condition q2=0 defines a codimension-2 point in the

�r ,v� plane with coordinates r=0, v= ±	27gqc
4 /38; without

loss of generality we take v�0. At this point q4

=2202g2 /361qc
6�0 and the reversible Hopf bifurcation at r

=0 in Eq. �1� is of the type shown in Fig. 6�b�. In this case
normal form theory predicts that homoclinic solutions only
exist in the subcritical regime q2
0 �i.e., v

2�27gqc
4 /38�

and only in the range 
D


0. The heteroclinic solution
at 
D in the normal form corresponds to the Maxwell point
rM1 in the partial differential equation. Away from the
codimension-2 point we can use the normal form to confirm
the existence of homoclinic solutions when r�0 and it is
these small amplitude solutions that provide a starting point
for the numerical continuation to large amplitude used to
determine the extent of the pinning region. We can also fol-
low the Maxwell point.

Figure 18 summarizes the regions of existence of hetero-

clinic connections to the trivial flat state u0. In view of the

parameter symmetry �u ,v�→ �−u ,−v� of Eq. �1� a mirror

image of this picture exists in the v
0 region of parameter

space. The bifurcation diagram in Fig. 8 corresponds to a

horizontal slice through this figure at v=0.41 and is typical

of the behavior below v�0.688. Above this value of v a new

Maxwell point, corresponding to equal energies of the u0 and

u+ states,

rM3 = qc
4 −

2v
2

9g
, �29�

becomes dynamically important. For v�	9gqc
4 /2 this Max-

well point lies to the right of the bifurcation at r+, within the

region where u+ is stable, and at v�0.688 rM3=rP2. Thus for
v�0.688 �i.e., above the horizontal boundary of the shaded
region in Fig. 18� the new Maxwell point enters the pinning
region around rM1 and the structure of the flat and patterned
states changes, as do the homoclinic branches. In particular,
above v�0.735 the �=0,� homoclinic branches created at
the origin undergo homoclinic snaking towards the u+ state
instead of uP. Since u+ is a spatially homogeneous state no

pinning occurs, and the snakes collapse asymptotically to a

single point at r=rM3. Thus at rM3 an infinite number of

homoclinic states of different lengths biasymptotic to u0 is

still present, but away from rM3 only a finite number of such

states remains �23�. Bifurcation diagrams describing these

homoclinic states for �=0,� are shown in Fig. 19. The so-

lutions on the �=� branch, shown in Fig. 19�b�, include a

small region of width of order Lc where the solution profile

dips back down to u�0 in order that x=0 remains a mini-

mum.

Between v�0.688 and v�0.735 there is a transition re-

gion as the homoclinic snaking in the pinning region around

rM1 �Fig. 8� shifts to straddle the new heteroclinic connection

at rM3 �Fig. 19�. This intermediate region �Fig. 20� is com-

plicated by the existence of yet another new Maxwell point,

labeled rM4, between u0 and the unstable section of the pat-

terned branch near r+. This Maxwell point is close to rM3

because near r+ the energies of the flat and patterned states

are very similar. The profiles along both the �=0 and

�=� branches contain domains within which u�x� resembles

three different states: u0, the �unstable� solution from the

upper segment of the patterned branch, and the �stable� so-

lution from the middle segment. As one proceeds up each

branch the fronts between the flat and unstable pattern move

apart filling most of the domain with the unstable pattern.

However, the fronts between the two structured states remain

fixed leaving a small patch of the stable pattern near the

origin. It is this “double” structure that is responsible for the

complex structure of the corresponding snakes, cf. Ref. �24�.

FIG. 17. �Color online� Sample profiles u��x� at the saddle

nodes indicated in Fig. 16. �a�–�c� lie on the �=0 branch while

�d�–�f� lie on the �=� branch.

FIG. 18. The pinning region �shaded� of solutions heteroclinic

to the trivial u0 state. This region, located between rP1 and rP2, is

created in a codimension-2 bifurcation at �r ,v���0,0.2107�.
Dashed lines correspond to the Maxwell points rM1 , rM3, and rM4.

The thick solid line corresponds to homoclinic snaking of the type

shown in Fig. 19. The dash-dotted line marks the location of the

heteroclinic orbits �Maxwell points� as predicted by the normal

form.
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Note in particular the unusual looping on the lower part of

the �=0 branch �absent from the �=� branch� whose origin

remains unclear. An analysis of the eigenvalues shows that

all such states far up the snaking branches are unstable.

The snaking shown in Fig. 20 is a consequence of the

Maxwell point rM4 but two other Maxwell points are present

as well. Snaking about the latter is illustrated in Figs. 16 and

19. It is natural to ask what selects the Maxwell point about

which a snake develops, and if snakes abandon one Maxwell

point in favor of another as parameters are varied how such

transitions take place. For example, Fig. 18 suggests an

abrupt end to the pinning region surrounding rM1 at v

�0.688 that may mark a genuine limit point above which the

snaking branch transitions to one of the other Maxwell

points. One may think that only a single Maxwell point can

be graced by snakes since only a single pair of localized

states ever bifurcates from the flat state. Whether snakes can

split at finite amplitude into multiple pairs remains unclear.

Moreover, as discussed further below, snaking does not even

require the presence of Maxwell points.

We next consider homoclinic states biasymptotic to u+. It

is easy to show using Eq. �28� that at r+ the coefficient q2


0 for all values of v. Hence this bifurcation is always

subcritical and no codimension-2 point occurs from which

heteroclinic states can be traced. Small amplitude homoclinic

solutions near r+ remain, however, and are given by Eqs.

�18� and �28�. These can be followed numerically to larger

amplitude. Figure 21 shows the location in �r ,v� phase space

of the pinning region that contains solutions heteroclinic to

u+. At each point within this region there exists an infinite

number of homoclinic solutions that differ only in width. We

identify three possible structures that describe the organiza-

tion of these states along one-parameter slices through this

figure. The first is regular homoclinic snaking, shown previ-

ously in Fig. 16, with all states joined into a finite number of

branches according to the phase � �here �=0,��. The sec-

ond possibility may be termed semi-infinite snaking and

arises when one of the lines of saddle nodes moves off to

infinity. The third case, which we call homoclinic loops, con-

sists of an infinite stack of disconnected isolas, each made up

of solutions with a fixed number of oscillations; this number

increases from isola to isola as one moves up the stack.

Constant v slices of Fig. 21 indicate that both Figs. 4 and

16 are incomplete. In each case the complete picture re-

sembles that shown in Fig. 22 but includes an extra stack of

disconnected patterned states that extend to arbitrarily large r

and form what we have called a semi-infinite snake. It is

interesting that the latter is not associated with a Maxwell

point: the only Maxwell point between the flat and patterned

states occurs at rM2 in the regular homoclinic snaking region.

Both the regular and semi-infinite snaking regions apparently

persist to arbitrarily large v.

Close inspection of Fig. 22 shows that the pinning region

FIG. 19. �Color online� Bifurcation diagram corresponding to a

horizontal slice through Fig. 18 at v=0.75 illustrating �a� �=0 and

�b� �=� homoclinic snaking around a heteroclinic connection be-

tween the two flat states u0 and u+. Thick lines indicate stable so-

lutions; asymmetric states are omitted. The insets show typical so-

lution profiles as the envelope widens and fills with the u+ state.

FIG. 20. �Color online� Bifurcation diagram corresponding to a

horizontal slice through Fig. 18 at v=0.70. In �a� the localized states

correspond to �=0 while �b� shows the �=� branch. Thick lines

indicate stable solutions; asymmetric states are omitted. The insets

show typical solution profiles far up the snaking branches. The

larger �smaller� amplitude states correspond to the stable middle

�unstable upper� segments of the uP branch.
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extends beyond the patterned branches. This is a conse-

quence of the wavelength selection mentioned above. The

patterned branch shown in the figure has wavelength Lc; at

large r this wavelength differs from that within the localized

state. Inspection of the wave number of the pattern within

these states shows that the preferred value is about 30%

higher. The patterned branch corresponding to this wave

number extends all the way back to the pinning transition,
providing support for all the localized states in the semi-
infinite snaking region.

As v decreases below v�0.3733 the states in Fig. 22
merge in a “zipping” transition �25�, leaving a single semi-

infinite snake that extends from rP3 to r=�. It is remarkable

that this region includes the case v=0 corresponding to the

standard Swift-Hohenberg equation with no quadratic non-

linearity. The corresponding bifurcation diagram is shown in

Fig. 23 and is typical of this region. The case v=0 has been

studied in the past �e.g., Refs. �22,26�� but the disconnected

branches of �stable� localized states have not been noted be-

fore. Indeed, in view of the general scaling r�qc
4 we find

that rP3=0.109 73=1.756qc
4 at v=0, a prediction that agrees

with the location of the depinning transition found in Ref.

�22� �r�1.74, qc=1�. Likewise the Maxwell point occurs at

rM2=0.355=5.68qc
4, as found in Ref. �27�.

Below v�−0.03 the semi-infinite snake “unzips” into two

segments in r, one finite and one extending to r=�. In the

finite segment the bifurcation diagrams �Fig. 24� are now

topologically distinct from those in Fig. 22, consisting of

stacks of homoclinic isolas instead of snakes. Each isola con-

tains a segment with stable localized states. At these values

of v the two branches of patterned solutions created at r0 and

r+ extend to infinite r, and the semi-infinite snaking region

does contain a Maxwell point where the flat and patterned

states have equal energies. However, the isola region pos-

sesses no such point. Further decrease below v�−0.109

causes the homoclinic isolas to shrink and vanish, but the

semi-infinite snaking region remains at arbitrarily large nega-

tive v.

At first glance the two different regions of homoclinic

snaking identified in the previous section �one created at r0

and shown in Fig. 8 and the other at r+ and shown in Fig. 16�
appear similar but despite the mathematical similarity be-

tween the bifurcations at r0 and r+ this is not the case. The

saddle node at r4 is created when stable and unstable

branches of patterned solutions pinch off and disconnect, in

contrast to what happens at r3. Thus the semi-infinite snakes

are likely inherited from snakes that are ultimately associated

with Maxwell points at smaller values of r. There is no ana-

FIG. 21. �a� The pinning region �shaded� of solutions hetero-

clinic to the u+ state. �b� The same but on a larger scale.

FIG. 22. �Color online� Bifurcation diagram corresponding to a

horizontal slice through Fig. 21 at v=0.375. Asymmetric states are

omitted. The depinning transitions for the finite snaking region oc-

cur at rP3�0.046 96 and rP4�0.4891, and for the semi-infinite

snaking region at r�0.7077. The only Maxwell point between the

u+ and patterned branches �rM2� occurs within the finite snaking

region.

FIG. 23. �Color online� Bifurcation diagram corresponding to a

horizontal slice through Fig. 21 at v=0. Asymmetric states are

omitted. The depinning transition occurs at rP3�0.109 73 and the

Maxwell point is at rM2�0.355. The apparent branch crossings

near r�0.2 are an artifact of the norm plotted on the vertical axis.
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log of this behavior for the first snake, consisting of localized

states biasymptotic to u0=0 �cf. Fig. 18�. This difference is a

consequence of terms such as ru2 and r2u that are present in

Eq. �27� for ũ but not in Eq. �1�.

V. DISCUSSION AND CONCLUSIONS

In this paper we have revisited the generalized Swift-

Hohenberg equation, and reexamined the formation of spa-

tially localized states within this system. We have focused on

the relation between finite amplitude localized states and the

small amplitude localized states that can be computed via

perturbation theory. In addition we have examined the linear

stability of these states. We have shown that a pair of

branches of localized states generically bifurcates from the

trivial state as the bifurcation parameter r increases. Both

bifurcations are subcritical. The solutions on these two

branches are reflection symmetric and differ only in their

phase �=0,�. Initially both branches are unstable, but with

increasing �r� begin to “snake” in a characteristic fashion as

the localized state broadens, and begins to approach a spa-

tially periodic state. The snaking generates a sequence of

saddle-node bifurcations at each of which the pattern adds a

pair of “rolls.” These bifurcations accumulate rapidly, with

the interval between the limit points defining the so-called

“pinning” region. We have seen that the pinning region is a

consequence of locking of the fronts at either end of the

localized structure to the underlying periodic state, and as

such can be thought of as a broadened Maxwell point. Each

pinning region contains an infinite number of stable localized

states of both phases.

To obtain these results we formulated the problem of find-

ing localized states as a problem of finding homoclinic orbits

in a fourth order dynamical system in space. The reversible

structure of this system is responsible for the presence of 1:1

reversible Hopf bifurcations at particular values of r, and the

theory of this bifurcation provides a key to understanding the
origin of the localized states. This theory requires the use of
beyond-all-orders asymptotics �13,14,28�; for this reason the
phase selection between the �=0 and �=� branches is ini-
tially extremely weak, as is the amplitude of the snake. Both
processes only become significant in the pinning region.
High up each snake the localized states become broad and
begin to resemble heteroclinic orbits, i.e., slugs of a periodic
wavetrain embedded in a flat background.

We have seen that the generalized Swift-Hohenberg equa-
tion admits multiple Maxwell points, and hence multiple pin-
ning regions exhibiting snaking. We have focused on three
such regions. The first, present for r
0, occurs when the
trivial and patterned states have equal energies. The second
and third arise when the patterned state has the same energy
as the nontrivial flat states u±. The corresponding pinning
regions describe the location of localized states that are bi-
asymptotic to a nonzero flat state. In other regimes we have

located infinite stacks of isolas of localized states. However,

perhaps the most unexpected observation is that there is a

broad range of values of v for which stacks of localized

states come in from infinity �in r�, turn around in a saddle-

node bifurcation, and return to infinity. These states are

highly nonlinear, acquire stability at the saddle-node bifurca-

tions, and are present even when v=0, i.e., in the usual

Swift-Hohenberg equation with only a single stabilizing cu-

bic nonlinearity. Throughout the paper we have only consid-

ered the so-called single pulse solutions. Multipulse solu-

tions, consisting of several more or less isolated localized

states interacting via their tails, possess rich behavior in their

own right �14,21,28�, but are beyond the scope of the present

work.

Localized states are of course of great interest to pattern

formation. They occur not only in vibrating granular media

�29� and polymeric fluids �30�, but also in reaction-diffusion

systems �9�, nonlinear optics �31–33�, ferrofluids in a mag-

netic field �34�, neuronal networks �35�, and in several con-

vection systems �36–42�. They are also present in the Swift-

Hohenberg equation with cubic and quintic nonlinearities

�20,43�. Two-dimensional localized patterns also exhibit

snaking �6,33,44�. In particular, the theory of localized buck-

ling of long struts bears a substantial similarity to the work

reported above �7,8�. This in turn is closely related to the

study of solitary waves in the fifth order Korteweg–de Vries

�KdV� equation arising in the theory of long wavelength wa-

ter waves �45,46� and related systems �47�. In particular the

solitary waves studied in the context of the fifth order KdV

equation correspond precisely to the localized states of the

Swift-Hohenberg equation �1� in the special case g=0, with

the parameter r related to the speed of the waves. Indeed, it

is in this context that the bifurcation of the �=0,� branches

of localized states from the trivial state was first established

�48�, the dominant nonlinearity near r=0 being quadratic.

Moreover, no other branches of localized states bifurcate

from r=0 �14�. It is worth mentioning that the water wave

problem, like the buckling problem, is fundamentally time

independent. Thus the question of linearized stability does

not arise in a natural way, unless additional physical notions

such as wave radiation to infinity are included. It is for this

reason that stability questions have not been central to the

FIG. 24. �Color online� Bifurcation diagram corresponding to a

horizontal slice through Fig. 21 at v=−0.057. Asymmetric states are

omitted. The inset shows isolas of localized states that fill the pin-

ning region and account for the term “homoclinic isolas.” Each

isola corresponds to solutions with the same number of oscillations

of the pattern. Thick lines indicate stability. There is also a semi-

infinite snaking region at this v value but it is omitted from the

figure because it only exists at very large r.
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study of localized states in great many cases, although in
other contexts the stability of the solutions along the snakes
has been studied �33,49� albeit with respect to symmetric
perturbations only.

It is worth mentioning that in the large body of work on
localized buckling the load parameter enters as the coeffi-
cient of the second derivative. Thus in this class of problems
the parameter that is varied is the wave number qc, while
keeping a particular combination of r and qc

4 constant. This
procedure represents a distinct cut through the parameter
plane that encounters only one of the possible Maxwell
points, corresponding to our first snaking region �near r=0�.
We surmize that this is the reason why the interesting behav-

ior in and near the other snaking regions described here has

not already been noted.
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