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The oceans slow the rate of climate change by absorbing about 25% of

the annual anthropogenic CO2 emissions. The Southern Ocean makes a

substantial contribution to this oceanic sink: more than 40% of the global

oceanic inventory of anthropogenic CO2 has entered the ocean south of

40◦S. The rate-limiting step in ocean sequestration of anthropogenic CO2

is the transfer of carbon across the base of the surface mixed layer into

the ocean interior, a process known as subduction. However, the physi-

cal mechanisms responsible for the subduction of anthropogenic CO2 are

poorly quantified. Here we use observations to estimate a net subduc-

tion of 0.42 ± 0.2 Pg C y−1 between 35◦S and the marginal sea-ice zone,

and show that subduction occurs in specific locations when wind-driven

Ekman transport, eddy fluxes and variations in mixed layer depth along

mean streamlines subduct anthropogenic CO2. Both the magnitude and

location of the estimated subduction have zonal asymmetries that are

consistent with estimates of the interior distribution of anthropogenic

CO2. Our results highlight the dependence of ocean carbon sequestra-

tion on physical properties sensitive to climate variability and change,

including mixed layer depth, ocean currents, wind and eddies.
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Atmospheric CO2 continues to rise at unprecedented rates in response to human

activities1. At present, the oceans take up more than 25% of anthropogenic CO2

(Cant) emissions, thereby slowing the growth of atmospheric CO2 and the rate of

climate change2. The rate-limiting step for ocean sequestration of Cant is the transfer

from the surface ocean to the ocean interior3,4,5. Knowledge of the mechanisms

responsible for the transfer of Cant between the well-ventilated surface mixed layer

and the ocean interior, and their sensitivity to change, is key to understanding past,

present and future carbon uptake by the ocean. However, both the pathways and

rate by which Cant is sequestered in the ocean interior remain uncertain. No direct

observations of the pathways and rates of anthropogenic carbon sequestration have

been made, and consequently our present understanding is based on the interior

distribution of Cant
6 or inferred from model simulations7.

The Southern Ocean is a particularly important region for the uptake and storage

of Cant
8,9. The latitude band between 30◦S and 50◦S stores more Cant than any other

latitude band in the ocean6. The efficient uptake and storage of Cant by the Southern

Ocean is a result of the vigorous overturning circulation at high southern latitudes,

in which water masses are formed and subducted into the ocean interior10. As water

masses sink from the sea surface, they carry Cant into the ocean interior. Subantarc-

tic Mode Water (SAMW) and Antarctic Intermediate water (AAIW) formed on the

northern flank of the Antarctic Circumpolar Current make the largest contribution

to the uptake and storage of Cant by the Southern Ocean11,6,12.

Previous studies of the Southern Ocean Cant budget have focussed on air-sea

fluxes and vertical transfer by Ekman pumping, with other physical processes trans-

porting Cant into (and out of) the ocean interior either simplified or neglected13,14,15,16.

Three physical processes contribute to the transfer of fluid between the surface mixed

layer and the interior ocean: wind-driven Ekman pumping, eddy fluxes and lateral

induction by the mean flow. Until recently, the contribution of eddies and the mean

flow to subduction could not be estimated from the available observations. The

broad-scale, year-round sampling of the Southern Ocean by Argo floats means that

this is now possible17 (see Methods). Here we show that Cant leaves the ventilated

surface layer of the Southern Ocean through localised maxima of subduction, and
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identify the physical mechanisms responsible.

Mechanism and distribution of anthropogenic carbon subduction

Our study considers the region between 35◦S and the northern limit of the

Antarctic winter sea ice (≈ 65◦S), for which there is good Argo coverage. We use

recent observationally-based estimates of subduction17 and Cant
18 in and at the base

of the winter mixed layer (Figure 1a) to calculate the total subduction of Cant from

the mixed layer into the ocean interior in the 1990s. We quantify the individual

contributions of Ekman divergence, eddy fluxes and the mean flow to subduction

(see Methods).

Ekman transport leads to more or less zonally-uniform subduction of Cant north

of the ACC and re-ventilation (transport of Cant from below the mixed layer into

the mixed layer) south of the ACC (Figure 1b). The eddy contribution mostly

compensates the Ekman transport, with subduction in and south of the ACC and

re-ventilation to the north (Figure 1d). The mean flow subducts fluid into the interior

where the mixed layer shoals along the direction of the surface flow (streamlines)

and re-ventilates fluid where the mixed layer deepens in the direction of the flow,

a process known as lateral induction (see Supplementary Material). The mean flow

largely determines the regional pattern of subduction and re-ventilation which varies

strongly from region to region (Figure 1c). The total transport shows regions of both

subduction and re-ventilation in all three basins (Figure 1e).

Our calculation gives a total of 0.42 ± 0.2 PgC/y of Cant subducted into the

Southern Ocean interior. Zonally-averaged, most subduction of Cant occurs to the

north of the ACC (0.24 ± 0.12 Pg C/y , Table 1), reflecting the strong subduction

by Ekman transport, partially offset by the eddy fluxes and mean flow. South of

the ACC, the re-ventilation of Cant by the Ekman transport is counter-balanced by

subduction induced by eddy transport.

Importantly, the zonal averages hide the fact that Cant is both subducted and

re-ventilated in the Southern Ocean. The largest re-ventilation occurs in the Indian

Ocean sector, in a band extending eastward from South Africa to the middle of the

basin. Maxima in re-ventilation also occur in the Pacific, east of New Zealand, and in
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the Atlantic, east of South America. Each of these maxima correspond to locations

where the outflow from subtropical western boundary currents merges with the ACC

and the mixed layer deepens along the direction of the mean flow (streamlines in

Figure 1; see Supplementary Material).

In the re-ventilation regions, previously subducted Cant is returned to the sur-

face mixed layer. The return of the Cant to the surface mixed layer reduces the

efficiency of Cant uptake by the Southern Ocean. Importantly, re-ventilation alters

the pathways by which Cant is transported from the surface mixed layer into the

ocean. The connection between subduction and re-ventilation regions can be either

local or remote. If the re-ventilation region is located directly downstream of the

subduction region, and in the same density range, there is little net Cant transport

into the ocean. For example, in the western Indian sector a strong re-ventilation

region (40◦E - 90◦E) lies downstream of a strong subduction region (0 ◦E - 60 ◦E),

resulting in weak net subduction (Figure 1e). The Indian section has regions of

strong subduction and re-ventilation and overall has net subduction of Cant (0.10

Pg C/y, Table 1). The net subduction of Cant is slightly stronger in the Pacific (0.18

Pg C/y) and Atlantic (0.13 Pg C/y) sectors of the Southern Ocean (Table 1).

The error estimates of the Cant transports are mainly due to the uncertainty

in the Cant concentrations. The Cant concentrations used in this study are empiri-

cally derived estimates from measured in situ water properties19 and then mapped

to a uniform grid18. The Cant concentration estimate has substantial uncertain-

ties20 because it requires extracting the small anthropogenic carbon signal from the

much larger measured total dissolved inorganic carbon concentration. This substan-

tial uncertainty is particularly large for the Southern Ocean9, where estimates of

Cant diverge even when applied to the same data21,22,23. The Cant concentrations

used here are likely uncertain by up to ± 40% reflecting uncertainties in estimating

Cant
20 and uncertainties due to mapping the concentrations to a uniform grid18 (see

Supplementary Material).

While the uncertainty in Cant concentration influences the magnitude of the net

transport of Cant into the ocean interior, it has no impact on the spatial distribution

of the subduction and re-ventilation areas as these are set by the physical transport.
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Further, the regional distribution of subduction and re-ventilation sets the pathways

by which Cant is transferred from the mixed layer into the ocean interior. We next

show that the inferred pathways are consistent with the regional pattern of Cant in

the ocean interior.

Surface to interior pathways

For effective sequestration, Cant subducted across the base of the mixed layer

must be transported into the ocean interior, away from re-ventilation regions where

Cant can be returned to the mixed layer. The transport into the interior is accom-

plished by advection and mixing, primarily along isopycnal surfaces. While isopycnal

mixing has a significant impact on transport in the ocean interior24, its contribution

to subduction is negligible because it only acts at the base of the ventilated surface

layer (see Methods). The inventory of Cant in the thermocline should therefore re-

flect the regional distribution of subduction and the isopyncal transport of Cant in

the ocean interior.

The distribution of Cant in the ocean interior is consistent with this hypothesis

(Figure 2). Maxima in the observed inventory of Cant occur in regions of strong

net subduction and spread equatorward along streamlines into the ocean interior.

For example, significant amounts of Cant are found on the σθ = 26.8 surface in

the Indian Ocean, spreading equatorward along mean streamlines from the strong

subduction region in the southeastern part of the basin, which is consistent with

the distribution of potential vorticity17. Similarly, significant inventories of Cant

are found in the Pacific on the σθ = 27.0 surface and in the Atlantic on the σθ =

27.2 surface. Cant is injected on the σθ = 27.1 surface near the Drake Passage and

spreads into both the Pacific and Atlantic basins. The strong regional variations in

the oceanic inventory of Cant reflect the distribution of subduction ”hot spots” and

the circulation patterns linking these subduction regions with the ocean interior.

The inventory of Cant in density layers at 30◦S reveals the dominant pathways

by which Cant is exported from the Southern Ocean to the subtropical gyres (Figure

3). In the lightest density classes (σθ = 26.7–26.9), most of the Cant inventory is

located in the Indian Ocean, particularly east of 60◦E, consistent with our estimated
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transport through the base of the surface layer (Figure 2a,b). Between σθ = 26.9

and 27.1, the Pacific makes the dominant contribution to the inventory of Cant,

with the largest values in the central basin (Figure 2). The Atlantic sequesters the

greatest amount of Cant in the density range of the Antarctic Intermediate Water

(σθ = 27.0–27.4), although Cant is present at lighter densities as well. The highest

values are found on the western side of the basin, consistent with subduction in

Drake Passage.

Uptake of of anthropogenic carbon

Our estimate of the net subduction of Cant into the ocean interior (0.42 Pg C/yr

in 1995 between 35–65◦S) is smaller than estimates of the Southern Ocean uptake of

Cant across the air-sea interface (≈0.8 pg C/y)9,8, underscoring the fact that transfer

across the base of the mixed layer is the rate-limiting step in the sequestration of Cant

in the ocean interior. We compute the total sequestration of Cant by net subduction

since 1800, by assuming the physical volume transport has not changed over the

last two centuries, while accounting for the temporal evolution of Cant in the surface

mixed layer (see Supplementary Material). We estimate that 23 ± 10 Pg C of

Cant was sequestered between 1800 and 1995. From the GLODAP product18, we

calculate a total inventory of 25 ± 5 Pg C for the Southern Hemisphere between

density layers 26.0 and 27.8 kg m−3. Our estimate of the net subduction of Cant in

the Southern Ocean is therefore consistent with the estimated inventory of Cant in

the ocean interior.

The subduction estimate can be combined with other information to compute an

overall budget for Cant for comparison with previous studies of the oceanic uptake of

Cant south of 40◦S. Our net subduction of Cant between 65–40◦S was 0.23 ±0.15 Pg

C/yr in 1995. We estimate the accumulation rate of Cant in the mixed layer to be

0.16 ± 0.16 Pg C/yr in 1995, based on measurements of the depth of the mixed layer

and the observed rate of increase of dissolved inorganic carbon in the surface layer

(see Supplementary Material). Ito and colleagues7 used an ocean carbon model to

estimate a northward transport across 40◦S within the mixed layer of 0.16 Pg C/yr.

The sum of these contributions implies a net air-sea uptake of Cant of 0.55 ± 0.31
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Pg C/yr between 40◦S and the the sea ice zone (65◦S). This value is consistent with

recent independent estimates of the air-sea exchange of Cant south of 40◦S based on

a Green’s function approach (0.8 ± 0.2 Pg C/yr)9,8, of which 0.1 to 0.2 Pg C/yr

likely occurs in the sea ice zone, which is not included in our calculation.

Cant enters the ocean in specific locations and spreads equatorward along well

defined transport pathways, rather than uniformly around the circumpolar belt.

Physical transport processes in the Southern Ocean also re-ventilate Cant contained

in the ocean interior, hence estimates of net sequestration must therefore account

for both the subduction and re-ventilation of Cant . Two often neglected physical

mechanisms – eddy transport and lateral induction by the mean flow – make a

significant contribution to the magnitude and distribution of the subduction of Cant

and must be considered when investigating the upper ocean carbon budget. This

is shown in a recent modelling study, where lateral induction was an important

contributor to the subduction of total carbon25. Our analysis demonstrates that

the subduction of Cant in the Southern Ocean depends on physical variables that

are sensitive to climate variability and change, including wind stress, eddy fluxes,

surface currents and mixed layer depth. Present climate models vary widely in

their ability to represent these properties26,27 and therefore the present and future

subduction of Cant . Our results provide an observationally-based estimate of the

spatial distribution and magnitude of Cant transport from the surface to the ocean

interior which can be used to assess models.
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Figure 1: Anthropogenic CO2 subduction into the ocean interior. (a) Annual mean anthro-
pogenic carbon at the base of the winter mixed layer from GLODAP18. The Cant transport out of
(+) and into (-) the ventilated surface layer for (b) Ekman, (c) mean-flow, (d) eddy-induced, and
(e) total transports. The thin black lines show the mean position of the three main ACC fronts28

where the most northern and southern lines denotes the boundary of the ACC region referred to
in Table 1.
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Figure 2: Anthropogenic CO2 inventory versus subduction pattern. The Cant inventory
on selected isopycnal surfaces (±0.05σθ): a) 26.8, b) 26.9, c) 27, d) 27.1 e) 27.2. The black lines are
the Montgomery stream lines indicating the approximate geostrophic circulation on each isopycnal.
White patches highlight with a thick blue line are regions of subduction maxima. White patches
with a thick green line are regions of re-ventilation maxima.
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Figure 3: Vertical structure of anthropogenic CO2 inventory at 30◦S. Circumpolar section
of Cant inventory at 30◦S along potential density surfaces (inventory within ± 0.05 σθ).
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Methods

We define the physical transport of anthropogenic CO2 (Cant ) out of the upper

ocean into the ocean interior as the rate by which Cant is injected from the seasonal

thermocline (i.e. the water above the base of the winter mixed layer, which has been

in recent contact with the atmosphere) into the ocean interior17. This transport is

associated with the Cant budget above the base of the winter mixed-layer:

∂Cant

∂t
+ ∇ · [Tres(t) · Cant(t)] = Cuptake, (1a)

which becomes after time-averaging:

Cant · S + Mbase SL
︸ ︷︷ ︸

Csubduction

= Cuptake − Cacc − (Tres ·∇hCant + MSL)
︸ ︷︷ ︸

horizontal transport

, (1b)

where (.) refers to the annual mean; Tres is the transport above the base of the winter

mixed-layer resulting from the Ekman, mean, and eddy-induced flow; S = ∇hTres is

the annual mean subduction17; Cuptake is the annual mean air–sea flux of Cant; Cacc

is the annual mean Cant accumulation in the surface layer; Mbase SL is the mixing

term operating at the base of the surface layer; and MSL is the horizontal mixing

operating within the mixed layer.

We define subduction as the transport of Cant out of the ventilated surface layer

into the ocean interior and re-ventilation as the transport of Cant from the ocean

interior back into the ventilated surface layer. This two-way transfer of Cant across

the base of the winter mixed layer, Csubduction(t), can occur all year round and is

the result of the divergence of Cant transport within the ventilated layer and mixing

processes at the base of the surface layer (lhs of Equation 1b).

Our calculation is applied in the Southern Ocean, north of the marginal sea-

ice zone where the Argo coverage provides sufficient observations. The estimates

of annual-mean water mass injection into the ocean interior (S) agree with the

climatological potential vorticity structure of the ocean interior17.

The mixing term in the lhs of Equation 1b includes a vertical mixing term at the

base of the surface layer, and an along-isopycnal eddy flux29,30:

Mbase SL =

∫

surface−layer

(
∂

∂z
κz

∂C

∂z
+ ∇γ · κγ∇γC) · dz, (2)
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where κz and κγ are the vertical and along-isopycnal mixing coefficients, and ∇γ

and (∇γ ·) are the along-isopycnal gradient and divergence operator. Because Cant

is well mixed in the surface layer (i.e. ∂C/∂z = ∇γ C = 0), the mixing terms act

only at the base of the surface-layer. An upper bound estimate of the magnitude

of the mixing terms can be made using large mixing coefficients31,32 (κz α 10−4 m2

s−1 and κγ α 104 m2 s−1) and conservative values of the gradient of Cant (10 µmol

kg−1 over 50 m depth, and 10 µmol kg−1 over 1◦ on isopycnals). Therefore, vertical

mixing term is estimated to be 10−17 Pg C m−2 yr−1, and the isopycnal mixing term

to be 10−15 Pg C m−2 yr−1, which are two orders of magnitude smaller than the

other terms (Figure 1) and are neglected in the remainder of the study.

The annual mean carbon subduction is therefore composed of three main com-

ponents: a wind-induced Ekman transport; a mean geostrophic transport; and an

eddy-induced transport. We compute these fluxes as follow17:

Csubduction = (Sek · C + Sgeo · C + Seddy · C), (3a)

where:

Sek = curl(
τ

ρf
), (3b)

Sgeo = ∇ · (ugeo · Hmax), (3c)

Seddy = ∇ · [κ · s]z=Hmax
. (3d)

Hmax is the depth of the ventilated layer (i.e. winter mixed layer depth)17; τ is the

wind stress estimated from satellite winds; ρ is the density of seawater; ugeo is the

geostrophic velocity estimated from climatology strengthened with Argo data ; κ is

the mesoscale eddy diffusion intensity estimated from surface drifter trajectories31;

and s is the slope of isopycnal (i.e. s = ∇ρ/ρz) . We compute Eqn. 3 with an upwind-

weighted scheme, which accounts for the dependence of the carbon transport on the

sign of subduction: transport into the mixed layer from the interior uses the Cant

concentration 10 m below Hmax and transport from the mixed layer to the interior

uses the Cant concentration in the mixed layer.
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