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LOCALIZED TIME-DEPENDENT PERTURBATIONS IN METALS :

FORMALISM AND SIMPLE EXAMPLES

A. BLANDIN, A. NOURTIER

Laboratoire de Physique des Solides, Université Paris-Sud, Centre d’Orsay, 91405 Orsay, France

and D. W. HONE

Physics Department, University of California, Santa Barbara, California 93106, U.S.A.

(Reçu le 10 octobre 1975, accepté le 17 décembre 1975)

Résumé. 2014 La méthode introduite par Keldysh pour traiter les problèmes hors d’équilibre est
appliquée au cas de fortes perturbationes, localisées, dépendant du temps, dans les métaux. Après
avoir introduit le formalisme, nous traitons quelques exemples simples qui sont liés à la dynamique
des atomes près des surfaces : probabilités d’ionisation d’atomes quittant une surface métallique,
coefficients de frottement d’atomes au voisinage d’une surface métallique.

Abstract. 2014 Methods introduced by Keldysh to treat non-equilibrium problems are applied to
strong, localized time-dependent perturbations in metals. After having introduced the formalism,
we treat simple examples which are linked to the dynamics of atoms near surfaces : ionization proba-
bilities of atoms leaving a metallic surface and friction coefficients of atoms near a metallic surface.
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1. Introduction. - Numerous interesting problems
can be viewed as involving strong time-dependent
perturbations in an essential way. A first example is
given by moving particles (such as protons or ions)
inside a metal or near the surface of a metal. The total
Hamiltonian of the system can be written :

where JC1 is the perturbation created by the moving
particle, the position of which is R(t) at time t. If one
knows R(t), the perturbation Jel becomes a function
of time t. Typical experiments of this kind are :

1) Charge exchange of particles reflected by metal-
lic surfaces or crossing thin foils.

2) Ionization probabilities of atoms extracted from
metals by ionic bombardment.

In these cases, the interaction JC, is a strong time-

dependent perturbation which cannot be treated by
linear response theory. A very approximate treatment
of problems of this kind was given many years ago [1].
Here we present a rigorous method which is based
on a theory of non-equilibrium processes, namely the
Keldysh formalism [2]. This formalism is the starting
point of all the theoretical development of this paper.
Another example of a time-dependent perturbation

is the problem of friction of atoms near metallic

surfaces; this includes the case of desorption, adsorp-
tion or reflection of atoms as well as the case of diffu-
sion or catalysis on metals. This problem can be dis-
cussed directly using the fluctuation-dissipation theory
which relates the friction force to the correlation
function of the generalized force, - O.X/OR, of the
problem. Here we present an alternative calculation
of the friction force based on the Keldysh method.

In all these problems one could follow, in principle,
a two-step approach : first one treats the effect of the
time-dependent perturbation .1C1 on the conduction
electrons and deduces the energy E(t) of the system,
the derivative of which is just the force F on the
particle multiplied by (- u), where u is the velocity
of the particle. Second, one can feed the force F
back into the equation of motion of the particle,
which, in principle, determines R(t) by a self-consistent
method. In the study of friction forces, this amounts
to the introduction of the friction force into a Fokker-
Planck equation and to the solution of this equation.
In this paper, we shall concentrate on the first part
of this program - that is, the study of the response of
the electrons to the time-dependent perturbation.
A last example of strong time-dependent pertur-

bations is given by the X-ray absorption (or emission)
in metals. In that case, the perturbing center is fixed;
the problem can be described by the sudded creation
(or annihilation) of a hole in one of the deep levels of
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one atom in the metal. The presence of this deep hole
gives rise to screening by the conduction electrons.
These electrons thus experience localized scattering
when the hole is present and no scattering when there
is no hole. We are faced with the problem of a localized
time-dependent perturbation which is suddenly switch-
ed on (because the absorption - or emission - pro-
cess, is very fast). The X-ray problem has been widely
discussed [3] : the main result of these studies is the
existence of threshold singularities in the absorption
(or emission) spectra. In spite of the obvious similari-
ties here to the physical situations with which we are
concerned in this work, the study of these singularities
is not usefully made by the methods we will discuss.
However, later we will return to the problem briefly
to clarify the relationship of our work to it.

In section 2 we give a brief review of the Keldysh
method. Although nothing new is introduced in this
section, we include it because the method is not

widely known. We apply the results in section 3 to the
case of a time-dependent scattering potential and we
discuss the relation between the results obtained and
the X-ray problem. In section 4, we apply the method
to a simple Hamiltonian which describes the ionization
probability of an atom leaving a metallic surface.
The last section is devoted to a discussion of friction
coefficients.

Preliminary results have been published in a recent
letter [4]. In this paper, we shall emphasize the methods
rather than the detailed results and the comparison
with experiments. We shall also restrict ourselves
to the case of non-interacting electrons. Detailed

papers applying the results to particular physical
situations will be published in the near future : one
will deal with ionization probabilities of atoms

leaving a surface; the second will be devoted to the
calculation of friction coefficients for adsorption or
for simple reactions on surfaces.

2. The Keldysh method for non-equilibrium pro-
cesses. - Consider a system described by the Hamil-
tonian :

The linear response of the system to JCI(T) may be
found by ordinary perturbation theory, in terms of
correlation functions for the system in thermodyna-
mic equilibrium under .JCo. But, if the perturbation is
sufficiently strong or its time dependence such that the
system is far from equilibrium, then new techniques
must be used. Such is the case for the transient (irre-
versible) response to a time-dependent potential,
the problem which we treat in this paper.

2.1 GENERAL FORMULATION. - The method con-
sists of an extension of the usual diagrammatic
techniques for calculating Green’s functions. For

two-time Green’s functions (we consider here only
zero temperature) :

where the Fermion operators A(t) and B + (t) are in
the Heisenberg representation and T is the usual

chronological ordering operator. It is clear that one
cannot simply modify ordinary diagrammatic per-
turbation theory by attaching the time dependence
of ,1C1( T) to each vertex at time i. The ordinary dia-
grams include vertices at all times later than t and t’
whereas the manifestly causal function (3) must

clearly be independent of the behaviour of ,JCt(T)
for T &#x3E; t, t’.

This difficulty is clearly seen if we analyze the usual
perturbation theory. In the interaction representation,
the state ] §(t) ) evolves according to :

where the evolution operator U(t, t’) is defined by :

The time dependence of the operator A in this

representation is governed only by.1Co :

Then, G(t, t’) is given as :

where the S-matrix S - U(+ oo, - oo) and

In the absence of irreversible effects (in particular
.K t (t) switches on at t --&#x3E; - oo and off at t - + oo :

.JCt(t) = ,Jet e-"Itl, ’1 -+ 0+), the adiabatic theorem

implies :

where a is a real number. Then :

which, with Wick’s theorem, leads to the ordinary
diagrammatic perturbation expansion and the linked
cluster theorem.

It is the final step (7) which cannot be taken in the
presence of irreversible effects, because the system
is then not returned to the ground state at t -. + oo.
However, G(t, t’) is still given correctly by eq. (6) as
a ground state average.

The generalization amounts to writing (6) as the
average of a suitably defined ordered product of
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operators, so that diagrammatic techniques can be
used.

Let us define a contour (Fig. 1) from - oo to 13 and
thence from 1) to - oo. The time l3 is greater than t
and t’ and can be taken as + oo. Let s be the curvilinear

FIG. 1. - The four functions GafJ(t, t’), as defined with t and t’
on the increasing or decreasing branches of the contour C.

abscissa along the contour C. We have s = t on the
increasing branch of the contour and s = 2 13 - t
on the decreasing branch. One can define :

Tc orders the abscissas on the contour and one has for
Sc : :

In the ordering of Sc one must keep all the terms
coming from U( - 00, b) on the decreasing branch
of the contour ; these terms appear to the left of the
terms coming from U(’b, - oo) which are on the

increasing branch.
Specifying the branches involved for sand s’ in

eq. (9) gives rise to four functions GIO(T, t’) where a
and pare + or - depending on the positions of s
and s’ on the increasing (+) or decreasing ( - ) part
of the contour ( 1) (see Fig. 1). The relation between s
(or s’) and t (or t’) has been given above. One has :

G + + (t, t’) is identical to G(t, t’) as defined by eq. (3)
or (6). It is also clear that there are only two indepen-
dent functions. One has :

(1) In this paper we will not use Keldysh’s unconventional nota-
tion, which may be misleading. Also, we omit, in the present section,
indices k, k’, ..., which label the operators A and B in the Green’s
function.

Thus only G - + and G + - are independent. One has
also :

Wick’s theorem and diagrammatic techniques can
now be applied to the Green’s function (9). There
exists a linked cluster theorem and one can introduce
a self-energy and a Dyson equation.
The self-energy E(s, s’) is defined on the contour C.

Like G itself L is constructed from four functions

E Ifl(t, t’) depending on the positions of sand s’ on
the contour. Furthermore, one can show :

The Dyson equation on the contour is :

where Go is the unperturbed Green’s function defined
on the contour C. One can use 2 x 2 matrices to
describe G0152fJ(t, t’) and E0152fJ(t, t’). The Dyson equation
becomes

where integrations over intermediate times are implicit.
For simplicity we shall use this notation in the follow-
ing sections.

Explicit reduction of eq. (14) to independent
equations is effected by the canonical transformation :

Thus, the matrix Green’s function becomes :

where the retarded and advanced functions are (2) :

G r and G a contain equivalent information ; one is

essentially the Hermitian conjugate of the other.
The function F is given by :

(’) Here we use the standard notation for retarded and advanced
functions, which is the opposite of the convention chosen by
Keldysh [2].
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The self-energy becomes the matrix :

where :

The components of the Dyson equation can now
be written as :

2.2 ONE BODY TIME-DEPENDENT PERTURBATION (3).
- If we restrict the discussion to the caserof a one-
body potential V(t) we can simplify the preceding
discussion. The self-energy matrix becomes :

With this self-energy matrix, one can easily see, using
the Dyson eq. (14) that the Green’s function G(t, t’)
does not depend on Y(i) for times I larger than t and t’.
Due to the minus sign in eq. (22), there is an exact
cancellation of the contributions between Sup (t, t’)
and b. Thus, the value of -6 does not matter, as long
as it is larger than t and t’. We verify, in this simple
case, that the theory satisfies the requirements of
causality.
The canonical transformation gives for the self-

energy matrix :

and the Dyson eq. (21) become :

For such a one-body potential (in the many electron
system of the Fermi sea of a metal) Ga and Gr satisfy

(3) For a one-body perturbation, the function I 41(t) &#x3E; which
describes the system can be written as a Slater determinant made
up with one-electron functions Ti satisfying :

with appropriate initial conditions.
In principle, one can obtain all information from I t/J(t) ).
In practice, the calculations quickly become intractable and use

of the Keldysh method is much more rewarding.

simple one particle equations. These equations do not
involve the occupancy of the one-electron states and
thus the existence of a Fermi level. Ga and Gr are
then readily obtained. The many-body aspects of the
problem reside in the function F. This point can be
seen directly in the explicit formula for Fo as given
in the next section.

Furthermore, one can obtain a solution for F in
terms of Gr and Ga by an iterative solution of the last
integral eq. (24). The result is :

Eq. (24) and (25) form the basis for the discussion
given in this paper.

3. Detailed discussion of a one body time-dependent
potential. - Let us look in more detail at the case of
a one-body potential within the Fermi sea of conduc-
tion electrons. The Hamiltonian is :

We have omitted explicit spin indices for simplicity.
The results below are essentially unchanged if the
indices k, k’ are taken to represent both orbital and
spin quantum numbers.

3.1 CALCULATION OF THE GREEN’S FUNCTION. -

Instead of using the Green’s functions Gkk (t, t’)
(or G a, G r, F), we shall introduce the reduced Green’s
functions g defined by :

and similar expressions for Ga, Gr and F. We intro-
duce also reduced unperturbed functions. Further-

more, we define :

The unperturbed reduced Green’s function matrix
is :

where n’ are the Fermi occupation numbers and 0(t)
is the Heaviside function.
The Dyson equation becomes, in matrix notation :
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We proceed as in the previous section with the
introduction of the same unitary transformation.

The transformed unperturbed Green’s function
matrix is :

Eq. (31) clearly exhibits the fact that only the f (here
f o) functions depend on the occupation numbers nO
The Dyson equations are, similarly to (24) and (25) :

The last equation can be transformed, using the

explicit expressions (31) for fo, go and g’ :

where the notation [...] (t, t’) means that the first and
last times involved in the bracket are t and t’. It
follows from the equations obeyed by r and gr that

The same relation holds for G, G a and G r :

In these equations « 2013 oo » implies the limit T -&#x3E; 00
for the whole product G4(t, r) Gr , (T, t’) .

Eq. (35) and (36) are the main results which we
use throughout this paper : the calculation of the
Green’s function of interest Gxk,(t, t’) is reduced to the
calculation of the advanced and retarded functions
which do not involve the existence of a Fermi level.
The many-body features of Gkk,(t, t’) appear only
through the summations over q as shown by eq. (36).

3.2 ORBITAL OCCUPANCY AND THE X-RAY ABSORP-
TION PROBLEM. - For a time-dependent perturbation
V(t) (which tends towards a constant value for
t -&#x3E; + oo), it is well known that the overlap between
the unperturbed ground state and the state at time t

Now, we obtain gaP in terms of e and g; in particular

This expression can be simplified by using the fact ga
and gr do not depend on n’. Suppose first that nq = 0
for all q. Then from the definition (6) gkk,(t’, t) = 0
for t’ &#x3E; t and the above equation gives :

Similarly, by making nq = 1, one obtains the conju-
gate relation :

Using these two identities, g can be written, Sf being
the Fermi energy, as

varies as t-a for large t, where a generally has a
non-integer value related to the phase-shifts due to
the final potential V(+ oo). This behaviour is the
basis of the threshold singularities in the X-ray spectra
as shown by Nozieres and de Dominicis [3]. Here,
we want to show that, on the contrary, other physical
quantities are quite well-behaved for large times.

Let us consider, for example, the Wannier orbital
which is centered at the origin. Its creation operator
is :
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We are interested in the occupation number no(t)
when a sudden time-dependent perturbation occurs
at time t = 0 :.

This perturbation can be viewed as the potential due
to the creation of a deep hole by X-ray absorption.
We have for no(t) :

For t and t’ &#x3E; 0, Ga,(t, t’) is a function of (t - t’).
It is the Green’s function which corresponds to a

. 

constant potential V. Its Fourier transform is easily
calculated. We will need the quantity :

For t &#x3E; 0 and t’  0 one obtains, using the Dyson
equation,

This leads to the following expression for no(t) :

where p(e) is the density of states of the band and F(T)
the Fourier transform of t(w).

This result gives for no( + oo) the occupation
number for a time independent potentiel V as it
should. Without giving a detailed expression for

no(t), one sees that no(t) tends toward no(+ oo) with
a regular behaviour which does not involve terms of
the type t-", with a taking on either non-integer or
integer values. In particular, contrary to previous
suggestions [5] there is no t-1 behaviour (as can be
seen easily to first order in V).

Mathematically the difference can be explained as
follows. When we look for no(t), the potential V
appears on the contour as shown in figure 2a in bold
print. In the X-ray problem, when absorption occurs

FIG. 2. - (a) The contour C as used for the calculation of nd(t).
(b) The contour C’ used in the X-ray problem.

at time t = 0 the conduction electrons experience
the same time-dependent perturbation (38).
The attractive potential V is created by the deep

hole. The Fourier transform of the absorption
spectral density involves the calculation of a function
T(t, t’) defined on the contour C’ shown in bold print
in figure 2b [3]. It is not a causal function and exhibits
singularities; to first order one obtains a logarithmic
term; summing up to all orders, one obtains a singular
behaviour to a where a is a constant when t and t’ go
to 0 and to, respectively. The constant a is related to
the phase shift associated with scattering from the
perturbation (38) as t. - oo.

In conclusion, one can say that there is no contra-
diction between the results (44) and the X-ray pro-
blem : the difference arises due to the different nature
of the quantities being calculated.

4. Ionization probability : an example. - Let us
consider now the problem of ionization probabilities.
A simple model Hamiltonian is provided by the
Anderson Hamiltonian without interaction between

electrons, but with time dependent parameters gd(t)
and Vdk(t). We suppose that an atom leaving a surface
makes Vdk(t) tend to zero as t -&#x3E; oo. Omitting spin
indices as before, we have

and we look for the d-level occupation number

4.1 GENERAL FORMULATION. - With the previous
notations, we write

Decomposing the Dyson equation for ga, we get,
in particular :



375

These two equations combine to give a Dyson equa-
tion for gdd :

We need gdd, which is given by (35) in terms of gdk,
gk and gdd. We can verify that

as it should, since nd(t) must not depend on the
occupancy na of the d-level before it has been coupled
to the electron gas. Using

The problem is now to calculate gdd, i.e., to solve
the integral eq. (48). We shall make a first simplifica-
tion, assuming that

Thus J can be written as

p being the density of states of the electron gas. We
now assume that A (s) is independent of e. Then :

which means a distribution localized in the vicinity
of 1 = 0 , in the region r &#x3E; 0, the integral of which is
unity. Then

where A (t) = A u(t) 12 appears as an instantaneous
resonance width of the d-level.
The integral eq. (48) can now be solved; we obtain :

Putting this expression back into (50) gives the final
result :

Within some approximations, which are in fact
those usually made, (58) gives an exact expression for
the d-level occupancy. It exhibits important retarda-
tion effects, since it involves the instantaneous position
and width of the d-level at all times before t.

4.9 DISCUSSION. - For a slow variation of the

parameters, the system will adiabatically follow the
perturbation and the final result for nd(oo) will be 0
or 1, depending on the sign of 8e - 8d(00). If the
variation is no longer slow, (58) must be used and
nd( 00 ) may be different from 0 or 1. This gives a simple
example of ionization and the difference between

nd(oo) and the adiabatic value ndd provides an expres-
sion for the ionization probability.
Two cases arise :

decreases no faster than lit at infinity. Then, when
t -&#x3E; oo, the only values of r contributing to the

T-integral in (58) will be at infinity ; due to the phase

to ed( 00) will contribute to the s-integral. Thus nd(oo)
will not depend on the magnitude of 8r - ed( 00) but
only on its sign. More precisely, nd( oo) will be 1 if

8r &#x3E; ed( 00), and 0 if sf  Ed(oo). This is the adiabatic
result.
As an illustration of the behaviour of nd(t); consider

the limiting case A (T) = a/z for 1 &#x3E; 0, with Ed cons-
tant. Then

which depends only on a and (ef - sd t. For instance,
if a = 2,

When t -&#x3E; oo, nd(t) tends towards its adiabatic value.

2) The integral f m A(T’) dr’ converges; i.e., A(t)

decreases faster than Ilt. Then nd(oo) is obtained

directly by putting t = oo in (58). In general, there
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is no reason for the result to be 0 or 1, so that nd(oo)
will depart from the adiabatic value.

As an example, suppose that d ( t) oc e-At with Ed
constant. Then

The result is plotted in figure 3. When A is large (fast
case) :

FIG. 3. - The d-level occupation nd(oo) in the ionization problem
with d(t) oc e -)j (see eq. (59)).

When A is small (slow case) :

In general, when an atom leaves a surface, Vdk(x)
behaves approximately as Vdk(O) exp( - xla), where
a is a characteristic length of the order of the width
of the surface (a few Angstroms). For a constant speed
of the atom, we then have an exponentially decreasing
Vdk(t), and the non-adiabatic description must be
used.
For a small departure from adiabaticity, eq. (61)

appears very similar to the results obtained in refe-
rence [1]. Details will be given in a forthcoming
publication.

5. Friction coefficients. - When an atom is moving
in a metal or near the surface of a metal, it experiences
friction forces. We shall discuss here only the friction
forces which are due to the electrons. Their expression
is usually obtained from a general formula involving
the correlation function of the generalized force
of the system. We present here an alternative deriva-
tion. We will then discuss some applications.

5.1 CALCULATION OF THE FRICTION FORCE. - We

assume that the system is described by the Hamil-
tonian (26) where V(t) is slowly varied. We are inte-
rested in the behaviour of the system at some instant
t = 0 (the choice of this instant being only a matter
of convenience) and treat bY(t) = V(t) - V(O) as

the perturbation. For times not too far from 0, the
system is not far from the instantaneous equilibrium
and the perturbed Green’s function G departs little
from the unperturbed one G corresponding to the
time-independent Hamiltonian JC = K(0) (4). Since
Ga obeys a Dyson equation, we have

retaining only the first order in 3 V. Of course a similar
relation holds for G ‘. Using the expression of G in
terms of Ga and G‘, we obtain, to first order in 6V :

In order to calculate the friction force, we write the
time derivative of the energy :

To lowest order, G = G and we get the adiabatic
limit :

It is instructive for the discussion later to transform
this expression somewhat. Formally,

Under the trace, we can write :

though JC and k do not commute. Defining :

which is, according to Friedel’s rule, the sum of the
phase shifts in the case of a scattering problem, we
may express Ead as :

(4) For convenience we use a slightly different notation here
from that used in the preceding sections.
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With this energy variation there is associated a

conservative force Fd which is applied to the moving
atom :

The first correction to Ead is obtained by substitu-
ting for G in (65) the last three terms of (64). The
third one vanishes when we take the imaginary part,
and we get :

Assuming a linear variation of 6V with time; i.e.,
3 V(t) = V(O) t, we find the friction term :

where Gk k, (w) = Gk*kk(W). Remember that G r = Ga+.
Finally we use the fact that G(w) = Ga(w) for
w &#x3E; Be, = Gr(w) for w  Be. An elementary inte-

gration yields :

Formally, this can be written

Let I sv &#x3E; be the eigenvectors of K, where s is the
eigenvalue and v discriminates between degenerate
states. The normalization is taken as

Then Ef becomes :

This corresponds to a friction force :

where u is the velocity of the particle.
Thus we recover the result usually derived from the

general formula relating the friction coefficient to the
force-force correlation function; e.g., compare (74)
with eq. (12) of reference [4].

5.2 APPLICATIONS. - We can distinguish two

contributions to Ef : the contribution ÊP from dia-
gonal terms and the contribution ËfND from the off-
diagonal terms. Of course Ef ND could be eliminated
if we were able to find a basis in which V is diagonal.
For instance, if V and V are both centrally symmetric,
such a basis is that of the spherical harmonics

v Im}. 
Let us first consider ED :

and define, similarly to (67) :

where the trace is over v-states. For a centrally symme-
tric scattering problem, v = f l, m } and vi is the

l-phase shift at the Fermi level. For the same reasons
as in the calculation of Ed above, we can write :

In particular, for a centrally symmetric potential :

An example where, on the contrary, if appears
naturally through EfND is that of an atom moving
through an infinite electron gas with a velocity u. Then

V has matrix elements between the spherical harmo-
nics {/, m } and { l ± 1, m }. In terms of the phase
shifts, we obtain, me being the electron mass :

This result is obviously linked to the formula for the
resistivity due to the same atom in the electron gas [5].
For the Anderson Hamiltonian which was discussed

in section 4, the friction coefficient is thus propor-
tional to sin’ tf when the atom moves in the bulk.
This result can be extended, at least qualitatively, to
the case of an atom moving along the surface. When,
on the contrary, the atom leaves the surface, the main
effect comes from the variation of Vdk in magnitude. In
the approximation Vdk(t) = Vdk u(t), which implies
that V is taken to remain centrally symmetric, the
friction coefficient is proportional to (dtl’/dx)’, x
being the distance to the surface.
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Thus we have essentially two regimes for the friction
force, depending on the kind of variation of the

potential involved.

6. Conclusion. - We have presented a framework
for the discussion of localized time-dependent one-
body perturbations in metals. Let us summarize the
main results :

1) The Green’s functions Gkk,(t, t’) can be expressed
in terms of the advanced and retarded functions

(eq. (36)). This reduces the many-electron problem
to the solution of a one-body problem.

2) The Green’s functions can be used to calculate
the occupancies of given states. This permits the
calculation of the ionization probability of atoms

leaving surfaces, and charge exchange between metals
and atoms or ions.

3) We have discussed the friction forces which are
experienced by moving atoms and the two extreme
regimes which can occur. Applications to surfaces
are obvious (5). The electronic stopping power of
channeled particles can be interpreted within the
same framework.
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(’) This concerns only the friction due to electrons. Friction due
to the vibrations of the solid have to be added. The electronic
contribution (79) or (80) can be of the same order of magnitude as
the phonon contribution.
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