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Abstract We report a kind of breather, rogue wave and mixed interaction structures on a variational
background height in the Gross-Pitaevskii equation in the Bose-Einstein condensate by the generalized
Darboux transformation method, and the effects of related parameters on rogue wave structures are
discussed. Numerical simulation can discuss the dynamics and stability of these solutions. We numerically
confirm that these are correct, and can be reproduced from a deterministic initial profile. Results show that
rogue waves and mixed interaction solutions can evolve with a small amplitude perturbation under the
initial profile conditions, but breathers cannot. Therefore, these can be used to anticipate the feasibility
of their experimental observation.

Keywords Gross-Pitaevskii equation · Darboux transformation · Rogue wave · Breather · Mixed
interaction solution · Numerical simulation

1 Introduction

As a new state of matter and a field in physics, the surge of interest in Bose-Einstein condensate (BEC)
has been prompted in recent years by researchers [1–7]. The mean-field Gross-Pitaevskii equation (GPE)
is used to describe and understand some nonlinear phenomena, interesting and important properties and
characteristics of vortex states [8–12] and localized waves including soliton [13–16], rogue wave (RW) [17–
19], breather [20,21] in BEC, which is also one of the main theoretical research methods, and some
predictions have been exposed to agree with relevant vortex and localized wave experiments [22–24]. The
GPE is similar to the famous nonlinear Schrödinger equation (NLSE), the former is a special variant of the
latter, and the latter is widely related to applications in many fields such as optics, quantum mechanics,
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quantum field theory, biophysics, fluid dynamics, plasma physics and so on. [25]. It is interesting that,
from the mathematical viewpoint of BEC, interatomic interaction may be used to derive the nonlinearity
of the GPE which can be explained by the efficient mean-field [26–30]. All that matters is that the
study on GPEs allows to predict and describe some important, interesting, and experimentally relevant,
nonlinear effects, localized waves such as solitons, breathers, RWs, and nonlinear states such as domain-
walls, vortices. The GPE can accurately describe the macroscopic wave function dynamics in the ground
state of BEC of interacting particles, and a lot of other phenomena and effects such as the interference
properties, condensate expansion, collective excitations, sound propagation, etc [31].

Localized waves are very important nonlinear phenomena, and include, mainly, solitons, RWs and
breathers. So far, localized waves have been found in many fields such as nonlinear optics, biophysics,
plasmas, oceanophysics, hydromechanics, and BECs [32–38]. Therefore, creating nonlinear localized waves
in these fields has motivated intense attention and interest in their properties and abundant structures [39–
43]. In recent years, localized waves in BEC have also attracted the attention of researchers [13–21]. The
exact localized wave solutions and time evolution of them in BECs are described by the GPE with
abundant different external potentials. In a general system, the localized waves are spatially, temporally
(solitons and breathers) or spatiotemporally (RWs) localized, and will arise from vanishing or non-
vanishing backgrounds, however, these solutions may also exhibit non-localized phenomena, or appear in
a variable background height in some special systems, e.g. nonautonomous systems [44,45]. Considering
the Gross-Pitaevskii equation (GPE) as [7]

ih̄
∂

∂t
ψ(r, t) =

[
−
h̄2

2m
∇2 + g|ψ(r, t)|2 + Vext(r)

]
ψ(r, t), (1)

where h̄ is the Planck constant, ψ = ψ(r, t) is the macroscopic wave function, m is the mass of an atom,
and external potential Vext = Vext(r), r is n-dimensional vector, i2 = −1. The coefficient g of nonlinearity
strength in the GP is given by g = 4πh̄a

m , which may be negative or positive, and this is because the
scattering length is different, in the other word, one can be a < 0 (for Li BEC) or a > 0 (for Rb or Na
BEC) [7]. Set r = x, g = −2u2h̄, m = h̄

2 , Vext(r) = −h̄(iβ − αx + β2x2), GPE (1) can be transformed
into an integrable one-dimensional nonautonomous GPE that can describe the macroscopic ground state
wave function dynamics in BEC as follows [44,46,47]

i
∂

∂t
ψ = −

(
∂2

∂x2
+ 2u2|ψ|2 + iβ − αx+ β

2
x
2

)
ψ, (2)

where the α and β are real parameters in external potentials, and the coefficient u is the nonlinearity
strength in the GPE (2). The Eq. (2) can describe macroscopic waves in some atom BECs such as Li

BEC due to the a = − h̄u2

4π < 0 for free real nonlinearity strength u. In fact, the Vext(r) can be divided into
three parts including linear external potential −αx, parabolic external potential β2x2, and constant term
iβ. It needs to be pointed out that it can be gain and loss terms for b < 0 and b > 0, respectively. Hence,
for Eq. (2), there are several cases in the BEC [44]: (i) When α = 0, Eq. (2) can be used to describe the
dynamics of wave functions with gain (or loss) term and parabolic external potential [47,48]; (ii) When
β = 0, Eq. (2) can be used to describe the dynamics of wave functions with linear external potential, and
without gain (or loss) term; (iii) When µ = 1, α 6= 0, β 6= 0, Eq. (2) can describe the dynamics of wave
functions with gain (or loss) term, linear external potential and parabolic external potential, constant
interatomic interactions; (iv) When µ = 1, α = β = 0, Eq. (2) reduce to the NLSE which controls the
dynamics of wave function without gain (or loss) term and external potential.

The GPE (2) has a Lax pair as [44]

Φx =
∂

∂x
Φ = LΦ, Φt =

∂

∂t
Φ = VΦ, (3)

with
L = −iσ3λ(t) + uU,

V = −2iσ3λ
2(t) + (2iβxσ3 + 2uU)λ(t)−

(
iu

2
σ3U

2 +
i

2
αxσ3 + 2βuxU − iuσ3Ux

)
,

(4)

where Φ = (ϕ, ζ)T, U =

(
0 Q

−Q∗ 0

)
, σ3 =

(
1 0
0 −1

)
is the Pauli matrix, Ux = ∂

∂xU , Q = ψe−
iβx2

2 ,

λ(t) = ξe−2βt + α
4β , ξ is the spectrum parameter, and the asterisk means the complex conjugate.

This paper includes four sections. The Darboux transformation (DT) [49,50] and exact solutions of
Eq. (2) are constructed in Section 2. Then, in Section 3, the structures of higher-order RW solutions,
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breather solutions, and localized wave mixed interaction solutions in some different backgrounds are
plotted and their dynamical properties are discussed by numerical simulation. The conclusion in the last
section will summarize the whole paper.

2 Darboux transformation and exact solutions

2.1 Darboux transformation

To obtain the exact solutions, first of all, a necessary N -fold DT matrix needs to be constructed. For Lax
pair (3), we consider as following the gauge transformation

Φ̃ = TΦ, (5)

based on the knowledge of DT, the Darboux matrix T is described below

T = ξ
N I2 +

N−1∑

j=0

Γ
(j)
ξ
j
, (6)

where Γ (j) =

(
f (j) g(j)

−g(j)
∗

f (j)
∗

)
, the N is a nonzero positive integer and I2 is the second-order unit matrix,

f (j) and g(j) are functions that depend on x and t and can be solved by T (ξi)Φi(ξi) = 0. The DT matrix
can make the Φ̃ satisfy Φ̃x = L̃Φ̃, Φ̃t = Ṽ Φ̃, while L̃ = (TL+ Tx)T

−1, Ṽ = (TV + Tt)T
−1 have the same

forms as L and V in Lax pair (3), except replacing the original solution q with new one q̃, namely,

q̃ =
uq + 2ig(N−1)e

β(ix2
−4t2)
2

u
. (7)

This is a well-known step for the most standard N -fold DT. However, the method cannot be used to
get the rational solution such as RW, hence, we need to extend it to generalized DT (i.e. generalized
(m,N −m)-fold DT [49,50]). Choosing some appropriate expansion methods of T (ξi)Φi(ξi)|ξi→ξi+z = 0,

namely, T (ξi + z)Φ(ξi + z) = [T (0) + T (1)z + · · · + T (mi)zmi ][Φ(0)(ξi) + Φ(1)(ξi)z
2 + Φ(2)(ξi)z

4 + · · · +
Φ(mi)(ξi)z

2mi +O(z2mi+2)] = 0, where z is a small parameter, T (mi) and ξ(mi) are obtained via binomial
expansion and Taylor expansion, respectively. Then, the f (j) and g(j) in the following systems can be
solved through Cramer’s Rule:

ri∑

j=0

T
(j)(ξi)Φ

(ri−j)(ξi) = 0, i = 1, 2, · · · ,m, ri = 0, 1, 2, · · · ,mi, (8)

which is a system of 2N equations

(
N =

m∑
i=1

(1 +mi)

)
, themi is the highest-order derivative of ξ(ξi)|ξi=ξi+z

in T (ξi)ξ(ξi)|ξi=ξi+z = 0. In fact, themi+1 is the multiplicity of the root ξi of equation |T (ξ)| = 0. Readers
can refer to Refs. [49,50] for details of the generalized DT method.

2.2 Exact solutions

By the generalized (m,N − m)-fold DT, several kinds of analytical solutions including RW, breather,
mixed interaction of localized waves can be produced in this part. Substituting the plane-wave seed

solution q = Ace
h(x,t)

4β2 into (3), where h(x, t) = −2iβ
(
A2
cu

2 −
ω2

c

2

)
e−4βt + 4i(β2x − α

2 )ωce
−2βt + (2ix2 −

8t)β3 − 2iαβx− iα2t, we can give a group of solution as

Φ(ξ) =

[
(Cie

A +Die
−A)eF

(CiM+e
A +DiM−e

−A)e−F

]
, (9)
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with

a(t) = ωce
−2βt −

α

2β
, b(t) = −

e−4βt(2ωcαe
2βt + α2e4βtt− ω2

cβ + 2A2
cβu

2)

4β2
,

A =
iη[4β2x− 2α+ (−2βξ + ωcβ)e

−2βt]e−2βt + η∆

8β2
, F =

i[b(t) + a(t)x]

2
,

M± =
i(ωc ± η + 2ξ)

2Acu
, η =

√
4A2

cu2 + 4ξ2 + 4ωcξ + ω2
c , ∆ =

N−1∑

j=0

(µi + iνi)z
j
,

where Ci, Di are complex constants, Ac, ωc, µi and νi are free real numbers. It should be pointed out
that the parameters µi and νi can make the higher-order RW separate into many lower-order RWs. Then,
let’s substitute the spectral number ξ = M + z2 with M = −ωc

2 + iAcu and C1 = −D1 = 1
z into Eq. (9),

we can give a group of expression of rational functions via Taylor expansion around z = 0, namely,

Φ(z2) =
∞∑

k=0

Φ(k)
z
2k = Φ(0) +Φ(1)

z
2 +Φ(2)

z
4 +Φ(3)

z
6 + · · · . (10)

Then, form the (7), an exact solution of GPE (2) is given by

q =
uAce

h(x,t)

4β2 + 2ig(N−1)e
β(ix2

−4t2)
2

u
, (11)

the g(N−1) can be solved through the following equation group





rl∑

j=0

T
(j)(ξl)Φ

(rl−j)(ξl) = 0, l = 1, 2, · · · , n, 0 ≤ n ≤ m, rl = 0, 1, 2, · · · ,ml,

T (ξn+k)Φ(ξn+k) = 0, k = 1, 2, · · · ,m− n.

(12)

Remark 1. We divide m different spectral parameters into two parts: Ξ1 = {ξ1, ξ2, · · · , ξl, · · · , ξn} and
Ξ2 = {ξn+1, ξn+2, · · · , ξn+k, · · · , ξm}. For system (12), the spectral parameters in set Ξ1 are represented
as ξ = ξl + z2 and substituted into the expression (9), respectively, and then expand them as (10) via
Taylor series expansion. The n represents the number of parameters that need to be substituted and
expanded. In addition, the spectral parameters in set Ξ2 are substituted into (9), respectively, without

Taylor series expansion. The term N −m in generalized (m,N −m)-fold DT equals to
n∑

l=1

ml, in other

words, it represents the sum of the highest derivatives in Taylor series expansion corresponding to each
spectral parameter. When we choose m appropriate spectral parameters, different g(N−1) form system
(12) can be obtained and it may give abundant localized wave structures.

3 Discussion

In this section, we will discuss the localized wave structures with some special parameters:
(I) When m = n = 1 (i.e. Ξ1 = {ξ1} and Ξ2 = Ø) and m1 = 0, set α = 0, β = −1, u = 2, Ac = 2,
ωc = 0, ξ1 =M , C1 = −D1 = 1

z , µ0 = 12, ν0 = 0, the wave function |ψ| is a first-order RW on a growing
plane-wave background height, and the structure can be plotted in Fig. 1 (a1). The special type of RW
solutions on a growing plane-wave background height of the GPE (2) can be found to be

ψ = −2e2t−
ix2

2
+8ie4t − 2e2t−

ix2

2
+8ie4t −32ie4t − 2 + 48i

32e4tx2 − 8e2tx+ 128e8t − 384e4t + 289
. (13)

Figure 1 (b1) shows the contour maps of RW (13) and the lines with different colors indicate the different
amplitudes. It is obvious that the background value is increasing along the t-axis. Change the parameters
α = 1, u = 1, Ac = 1, ωc = −1, µ0 = 8, the structure and corresponding contour map of RW solution
(11) are shown in Fig. 1 (a2)(b2). These changed parameters make the RW have a new direction of
propagation.

Figure 2 exhibits the evolutions of the peak of RW under some distinct parameters. Choose the
parameters α = 1, β = −1, Ac = 2, ωc = 0, µ0 = 15, ν0 = 0, and Fig. 2 (a) shows peak of six different
RWs with distinct nonlinearity strength µ. It is easy to see that the nonlinear strength µ does not affect
the height and growth rate of the amplitude of the background, but does affect the peak value and the
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Fig. 1 (a1)-(a3) The RW structures and (b1)-(b3) their contour maps on a growing plane-wave background height with
the same parameters β = −1, ξ1 = −

ωc

2
+ iAcu, C1 = −D1 = 1

z
and different parameters (a1)(b1) First-order RW:

α = 0, u = 2, Ac = 2, ωc = 0, µ0 = 12, ν0 = 0; (a2)(b2) First-order RW: α = 1, u = 1, Ac = 1, ωc = −1, µ0 = 8, ν0 = 0;
(a3)(b3) Second-order RW: α = 0, u = 1, Ac = 2, ωc = 0, µ0 = 25, µ1 = 100, ν0 = ν1 = 0.

Fig. 2 (Color online) The evolution of peak of RW with distinct parameters.

initial phase of the RW. As the strength increases, the amplitude of RW decreases, and its occurrence
moves along the negative t-axis. When µ < 0, no RW is found in Eq. (2). When we choose the parameters
α = 1, µ = 1, Ac = 2, ωc = 0, µ0 = 15, ν0 = 0, and evolutions of the peak of four different RWs
with different coefficient β of parabolic external potential with a gain term (β < 0) is exhibited in
Fig. 2 (b). The result shows that the larger the value of |β|, the faster the growth rate of background
height, and the smaller the peak value of RW. In particular, no RW is found when the parabolic external
potential has a loss term (β > 0). Fig. 2 (c) exhibits the evolutions of the peak of four different RWs with
different background height Ac, result shows that the larger the value of Ac, the faster the growth rate of
background height, and the larger the peak value of RW. In addition, the coefficient α of linear external
potential and the background frequency ωc do not have an evident effect on the structure of RW and the
background height.

The RW shape wave function |ψ| of such a kind has one local maximum point around |ψ|max =

(0.10201, 0.10161) and two local minimums points |ψ|min,± = (
√
6

24 ±
√
2
8 , 14 ln 3

2 ), and their corresponding
profile maps are exhibited in Fig. 4 (a1)(b1). The deep red line (for x = 1

8e2t
) and blue line (for x =

√
6

24 +
√
2
8 ) in Fig. 4 (a1) show the profiles of RW structure |ψ|. The red line in Fig. 4 (b1) shows the profile

of RW structure |ψ| when t = 1
4 ln 3

2 in solution (13). According to the above analysis, the RW solution
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has a localized peak value of around 7.35 at the point |ψ|max and a localized depression value of 0 at
two points |ψ|min,±. For time t = 1

4 ln 3
2 , the RW peak amplitude of the ψ field becomes now around 3.5

times the background height (Fig. 4 (b1)), and there is a conservation law as
∫∞
−∞

(
|ψ̃| − ψBg

)
dx = 0,

the ψBg represents the background height at different time t. Therefore, the number of atoms in the field
can be conserved even if their macroscopic wave functions show abundant localized wave structures. As
time goes on, RW will disappear from the field, however, the background height will continue to grow.

Fig. 3 (a1)(a2) The RW structures, (a3) nonautonomous breather structure and (b1)-(b3) their contour maps on a

growing periodic-wave background with the same parameters α = 0, β = −1, u = 2, Ac = 1, ωc = 0, ξ2 = i
3

and

different parameters (a1)(b1) First-order RW: C1 = −D1 = C2
z

= D2
z

= 1
z
, ξ1 = −

ωc

2
+ iAcu, µ0 = 16, ν0 = 0;

(a2)(b2) Second-order RW: C1 = −D1 = C2
z

= D2
z

= 1
z
, ξ1 = −

ωc

2
+ iAcu, µ0 = 15, µ1 = 50, ν0 = ν1 = 0; (a3)(b3)

Nonautonomous breather: C1 = D1 = C2 = −D2 = 1, ξ1 = 5i
2
.

(II) When m = n = 1 (i.e. Ξ1 = {ξ1} and Ξ2 = Ø) and m1 = 1, set α = 0, β = −1, u = 1, Ac = 2,
ωc = 0, ξ1 = M , C1 = −D1 = 1

z , µ0 = 25, µ1 = 100, ν0 = ν1 = 0, the wave function |ψ| is second-order
RW (three first-order RWs) on a growing plane-wave background height and its corresponding structure
and contour map are plotted in Fig. 1 (a3)(b3), and the expression of the wave function |ψ| is listed in
Appendix. Due to m1 = 1, the structure will include three first-order RWs. Affected by the increase of
background height over time, the amplitudes of the three RWs at different moments are different. Even
so, each RW still exists a conservation law like (I), and when they reach the highest point, each RW
peak amplitude at the different moment of the field is still about 3.5 times the background height at
the current time. Hence, the generation of multiple RW in the field at corresponding moments can be
described and simulated in BEC by macroscopic wave function ψ of the GPE (2), the atoms in the field
condense more times and the number of them maintains conservation. The first- and second-order RW
solutions in Fig. 1 are spatiotemporally localized, apparently, which differ from the nonautonomous RW
in Ref. [44].

(III) Whenm = 2, n = 1 (i.e. Ξ1 = {ξ1} and Ξ2 = {ξ2}),m1 = 0, set α = 0, β = −1, u = 2, Ac = 1, ωc = 0,
ξ1 = M , ξ2 = i

3 , C1 = −D1 = 1
z , C2 = D2 = 1, µ0 = 16, ν0 = 0, the first-order RW-shape wave function

|ψ| structure on a growing periodic-wave background height and its corresponding contour map can be
exhibited in Fig. 3 (a1)(b1). Besides, the spectral parameter ξ2 is controllable and can affect the structure
of the periodic-wave which presents a nonautonomous periodic-wave [44]. This kind of RW structure is
similar to Fig. 1 (a1), except for the background. In fact, it also may be understood as the interaction of
periodic-wave and RW. The RW has one localized peak value about 5.9 near the point around (0.13, 0.35),
and a localized minimum value 0 at two depression points. The deep red line (for x ≈ 0.13) and the blue
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line (for x ≈ 0.34) in Fig. 4 (a2) show the profiles of RW structure |ψ|. The red line in Fig. 4 (b2)
shows the profile of RW structure |ψ| when t ≈ 0.35. It is clear that the two lines in Fig. 4(a1) will
overlap initially and then evolve into trajectories of maximum and minimum values respectively, while
the two lines in Fig. 4(a2) will not overlap initially (see yellow circles in Fig. 4). This also shows the
difference in background shape. Change the parameters m1 = 1, µ0 = 15, µ1 = 50 and ν0 = ν1 = 0,
the structure and corresponding contour map of second-order RW-shape wave function |ψ| are exposed
in Fig. 3 (a2)(b2). Energy of atoms in the field can be conserved at the peak of RW according to the
macroscopic wave structure. As time goes on, RW will disappear from the field, however, the background
height will continue to grow.

(IV) When m = 2, n = 0 (i.e. Ξ1 = Ø and Ξ2 = {ξ1, ξ2}), set α = 0, β = −1, u = 2, Ac = 1, ωc = 0,
ξ1 = 5i

2 , ξ2 = i
3 , C1 = D1 = C2 = −D2 = 1, the one-breather structure on a growing periodic-wave

background and corresponding contour map can be exhibited in Fig. 3 (a3)(b3), and it exhibits the
dynamics of the bright breather in an attractive parabolic potential. From Fig. 3 (a3)(b3), it can be seen
that with the increase of time t and background height, the peak value of the bright breather increases
and the width is compressed. It can give a bright breather with the assumed peak value for wave function
|ψ|.

Fig. 4 (Color online) (a1) The evolution of peak at x = 1
8e2t

(deep red line) and depression at x =
√

3
√

256e12t−768e8t+577e4t

8e4t
(blue line), and (b1) The profile map for t = 1

4
ln 3

2
of first-order RW in Fig. 1(a1); (a2)

The evolution of peak at x = 0.13 (deep red line) and depression at x = 0.34 (blue line); (b2) The profile map for
t = 0.35 of first-order RW in Fig. 3(a1).

(V) When m = 2, n = 1 (i.e. Ξ1 = {ξ1} and Ξ2 = {ξ2}), m1 = 0, set α = 0, β = −1, u = 2, Ac = 1,
ωc = 0, ξ1 = M , ξ2 = 5i

2 , C1 = −D1 = 1
z , C2 = D2 = 1, µ0 = ν0 = 0, the mixed interaction of nonau-

tonomous RW (red arrow) and one-breather on a growing plane-wave background can be obtained, and
its corresponding structure is shown in Fig. 5 (a1). The one-breather of such a kind shows a transi-
tion of nonlinear phenomena from bright soliton structure to periodic-wave structure, such as Ref. [44].
Therefore, Fig. 5 (a1) exhibits mixed interaction of nonautonomous RW and bright soliton before t = 0,
and after that, the one-breather with an increase in the peak value will appear. Changing the µ0 = 18,
the nonautonomous RW becomes a common RW with a peak and two depressions. Hence, the mixed
interaction structures of one-breather and first-order RW on a growing plane-wave background can be
obtained, and its corresponding structure is exhibited in Fig. 5 (a2). The white circle in Fig. 5 (a2)
indicates where RW appears and interacts with the breather. When the m1 = 0 is changed to m1 = 1,
the mixed interaction of one-breather and second-order RW on a growing plane-wave background can
be obtained, and its corresponding structure is exhibited in Fig. 5 (a3). The white circle in Fig. 5 (a3)
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Fig. 5 Mixed interaction structures with same parameters α = 0, β = −1, u = 2, Ac = 1, ωc = 0. (a1)-(a3) Mixed
interaction of RW and nonautonomous one-breather on a growing plane-wave background with the same parameters

C1 = −D1 = C2
z

= D2
z

= 1
z
, ξ1 = −

ωc

2
+ iAcu, ξ2 = 5i

2
and different parameters (a1) µ0 = ν0 = 0; (a2) µ0 = 18,

ν0 = 0; (a3) µ0 = 15, ν0 = µ1 = ν1 = 0; (a4) Mixed interaction of RW and nonautonomous two-breather on a growing

plane-wave background with the parameters C1 = −D1 = C2
z

= D2
z

= 1
z
, ξ1 = −

ωc

2
+ iAcu, ξ2 = −

ωc

2
+ iAcu + i,

µ0 = ν0 = 10 for ξ1, µ0 = ν0 = ν1 = 0 and µ1 = 100 for ξ2. (a5)(a6) Mixed interaction of RW and nonautonomous

one-breather on a growing periodic-wave background with the parameters C1 = −D1 = C2
z

= D2
z

= C3
z

= −
D3
z

= 1
z
,

ξ1 = −
ωc

2
+ iAcu, ξ2 = i

3
, ξ3 = 5i

2
and different parameters (a5) µ0 = 20, ν0 = 0; (a6) µ0 = 20, ν0 = 10.

indicates where one of RWs appears and interacts with the breather and two red arrows in Fig. 5 (a3)
point to where other RWs appear.

(VI) When m = 2, n = 2 (i.e. Ξ1 = {ξ1, ξ2} and Ξ2 = Ø), m1 = 0, m2 = 1, set α = 0, β = −1, u = 2,
Ac = 1, ωc = 0, ξ1 =M , ξ2 =M+i, C1 = −D1 = 1

z , C2 = −D2 = 1, µ0 = ν0 = 10 for ξ1, µ0 = ν0 = ν1 = 0
and µ1 = 100 for ξ2, the mixed interaction of first-order RW and two-breather structure on a growing
plane-wave background can be exhibited in Fig. 5 (a4). The red arrow in Fig. 5 (a4) points to where the
RW appears. It shows that two soliton-shaped waves appear initially on either side of the field, followed
by two breathers. They seem to attract, and the distance between the two breathers becomes smaller,
allowing RW to appear anywhere in the field via choosing appropriate parameters.

(VII) When m = 3, n = 1 (i.e. Ξ1 = {ξ1} and Ξ2 = {ξ2, ξ3}), m1 = 0, set α = 0, β = −1, u = 2, Ac = 1,
ωc = 0, ξ1 = M , ξ2 = i

3 , ξ3 = 5i
2 , C1 = −D1 = 1

z , C2 = D2 = 1, C3 = −D3 = 1, µ0 = 20, ν0 = 0,
the strong mixed interaction of first-order RW and one-breathers structure on a growing periodic-wave
background can be exhibited in Fig. 5 (a5). Change the parameters ν0 = 10, the weak mixed interaction
structure of one-breather and first-order RW on a growing periodic-wave background can be exhibited
in Fig. 5 (a6). The white circle in Fig. 5 (a5) indicates where one of RWs appears and interacts with the
breather and the red arrow in Fig. 5 (a6) points to where the RW appears.

In Cases (V)-(VII), one or more RWs exist in the field, and they have an interaction with the breather
at any place via choosing different parameters. Forget about the RW, the dynamics of one-breather are
similar to that of (IV), in that the breather propagates at an increased peak value and a decreased width.
Therefore, we may use one or more RWs to act on the breather, causing it to change its amplitude or
width at different times. Thus, the wave function ψ can describe the dynamics of abundant localized
waves and mixed localized waves interaction of bright breathers and RW in BEC with parabolic external
potential.

Since the model (2) is integrable, we can obtain the infinite-order and complex nonlinear wave struc-
tures. However, for higher-order and more complex solutions, it is difficult to realize in the experiment,
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Fig. 6 Numerical simulation for RW on a growing plane-wave background with same parameters in Fig. 1(a1) (for the
first row) and Fig. 1(a3) (for the second row). (a1)(a2) Exact solutions; (b1)(b2) The numerical evolution by using exact
solutions at different time as an initial conditions; (c1)(c2) The numerical evolution by using exact solutions at different
time with 3% perturbation as an initial conditions.

which leads to little significance of its research. Therefore, we omit the more complex nonlinear wave
structure here. DT can provide a good tool to obtain all kinds of complex localized wave solutions.
In addition, a significant feature of the integrable equation is that it possesses an infinite number of
conservation laws [51]. Hence, the Eq. (2) also has the following conservation laws

(
ψ
∗
une

1
2
βx2
)

t
=

[(
iψ∗

un+1e
−2βt +

α

2β
ψ
∗
un − iunψ

∗
x − xβunψ

∗
)
e

i
2
βx2
]

x

, n = 1, 2, 3, · · · , (14)

with

u1 = uψe−
β(ix2

−4t)
2 , u2 =

(
u1,x +

1

2β
iαu1

)
e2βt, · · · ,

un =


uψ∗e

iβx2

2

n−2∑

j=1

ujun−j−1 + un−1,x +
1

2β
iαun−1


 e2βt,

where ψ∗une
1
2
βx2

and
(
iψ∗un+1e

−2βt + α
2βψ

∗un − iunψ
∗
x − xβunψ

∗
)
e

i
2
βx2

represent the density and flux,

respectively and it gives infinite local conservation laws for Eq. (2). The infinite conserved quantities

for the Eq. (2) is then In =
∫∞
−∞ ψ∗une

i
2
βx2

dx, n = 1, 2, 3, · · · . In this, the first three quantities are
conservations of mass, momentum, and energy [51], they are

I1 =

∫ ∞

−∞
u|ψ|2eχdx,

I2 =

∫ ∞

−∞

[
uψxψ

∗ − iu

(
βx−

α

2β

)
|ψ|2

]
eχdx,

I3 =

∫ ∞

−∞

[
uψxxψ

∗ − 2iu

(
βx−

α

2β

)
ψxψ

∗ − u|ψ|2
(
−|ψ|2u2 + β

2
x
2 + iβ − αx+

α2

4β2

)]
eχdx,

with χ = β
2

[
(1− i)x2 + 4t

]
.

Numerical simulation can also confirm above analytical results. Choosing an appropriate initial con-
dition (e.g. the exact solution (13) at t = 0.02) makes the wave propagate by finite difference method. For
comparison purposes, we plot the exact solution after t = 0.02 in Fig. 6 (a1). The numerical simulation
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Fig. 7 Numerical simulation for RW and nonautonomous one-breather on a growing periodic-wave background with
same parameters in Fig. 3(a1) (for the first row), Fig. 3(a2) (for the second row) and Fig. 3(a3) (for the third row).
(a1)-(a3) Exact solutions; (b1)-(b3) The numerical evolution by using exact solutions at different time as an initial
conditions; (c1)-(c3) The numerical evolution by using exact solutions at different time with 3% perturbation as an
initial conditions.

results are shown in Fig. 6 (b1) completely restore the structure of the first-order RW (see Fig. 6 (a1)
and Fig. 6 (b1)), hence, the numerical result proves that the numerical method and analytical solution
are correct. In order to explore the structure stability of first-order RW when it is disturbed, the initial
condition will be added a small-amplitude of 0.03. The perturbed solution is used as the initial condition
to make wave propagate, the numerical simulation result still shows a complete structure of the first-order
RW. The background shows obvious oscillatory behavior only after the RW disappears (see Fig. 6 (c1)).
Therefore, we can assume that the first-order RW is stable enough to resist small-amplitude disturbances.

Figure 6 (a2) and (b2) displays the structure of exact second-order RW solution with the same
structure in Fig. 1 (a3) and numerical simulation results by choosing the exact solution at t = 0.3 as
the initial condition. The numerical simulation exhibits an arbitrary profile of a single-RW can evolve
a second-order RW composed of three independent RWs. The red circles represent RW corresponding
original second-order RW structure as Fig. 6 (a2). Unfortunately, near the end of the numerical evolution,
a large number of oscillations occur, which we believe to be caused by an increasing plane-wave background
height. Figure 6 (c2) shows the numerical simulation result by using the initial condition as Fig 6 (b2),
with a small-amplitude perturbation of 0.03 added. Three RWs may occur with similar results in Fig 6
(b2). The numerical simulation results of this part show that RW can resist some small disturbances,
however, plane-wave with increasing amplitude can not resist disturbances. The above theoretical research
and numerical experiments can provide a good tool for studying the RW of BEC in real experiments.

Moreover, we also plot numerical simulation of first-order on a growing periodic-wave background in
Fig. 7. Figure 7 (a1), (a2) and (a3) exposes the structure of exact solution and Fig. 7 (b1), (b2) and
(b3) shows the numerical structure by using the corresponding exact solution at t = 0.15, t = 0.15 and
t = −0.1 as the initial condition, respectively. Add a small-amplitude perturbation of 0.03 to their initial
condition as a new initial condition, their numerical evaluations are exposed in Fig. 7 (c1), (c2) and (c3).
These RW structures can still evolve in significant oscillations (see red circles), whereas breathers cannot.
These exhibit the same result with Fig. 1. Small-amplitude perturbations are magnified exponentially
due to the increasing background height over a period of time so that apparently large oscillations occur
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Fig. 8 Numerical simulation for mixed interaction solutions on a growing plane-wave or periodic-wave background with
same parameters in Fig. 5(a1) (for the first row), Fig. 5(a2) (for the second row), Fig. 5(a3) (for the third row) and
Fig. 5(a6) (for the fourth row) . (a1)-(a4) Exact solutions; (b1)-(b4) The numerical evolution by using exact solutions at
different time as an initial conditions; (c1)-(c4) The numerical evolution by using exact solutions at different time with
3% perturbation as an initial conditions.

over a period of time. This oscillation of first- and second-order RW subsequently develops into a “sea” of
different wave, as seen in Figs. 6(b2)(c2), 7(c1), 7(b2)(c2), among these waves, the structures excitations
in the original wave function can be found (see red circles).

The numerical simulations of other solutions are shown in Fig. 8. Figure 8 (a1), (a2), (a3) and (a4)
exposes the structure of exact solution and Fig. 8 (b1), (b2), (b3) and (b4) displays the numerical structure
by using the corresponding exact solution at t = −0.35, t = 0.25, t = 0.05 and 0.15 as the initial condition,
respectively. These numerical simulation results show that the exact solutions can arise via numerical
evaluation under an appropriate initial condition. At the end of the numerical evaluation, there will be
significant oscillations. Figure 8 (c1), (c2), (c3) and (c4) shows the numerical evaluation by choosing
their initial condition with a small-amplitude perturbation of 0.03, the results display these solutions
may resist small perturbations for a short period of time. Due to increasing plane-wave amplitude, the
solution will have enormous oscillation after a short time. The above numerical experiments show that
the RW structure can be successfully evolved, and it has a certain stability, that is, it can resist the
disturbance of small-amplitude. If the evolution time is longer, these oscillations will develop into a “sea”
of different wave, and the original wave function structure can still be found like Figs. 6-7. This provides a
well theoretical basis for the study of the RW phenomenon in BEC. Moreover, it also provides an effective
theoretical method for the study of nonlinear waves in one-dimensional GPEs.

4 Conclusions

In conclusion, we give a set of dynamics of analytical solutions of the GPE in some different potentials
with the time-varying nonlinear coefficient. These results describe macroscopic wave functions in BEC
with complex nonlinear structures of higher-order RW, breather and mixed interaction solution on a
variational background height in an attractive gain (or loss) term, linear potential and parabolic potential.
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Numerical simulation exhibits RW and mixed interaction solutions can resist the disturbance of small-
amplitude, however, the breather can’t. These may furnish an effective experimental reference for studying
the validity range of the one-dimensional GPE. More importantly, the amplitude of localized waves is
greatly affected by the background height. We can produce RW at any location in the field based on the
parameters associated with the regulation, which also provides a good way to obtain RW with different
energies and amplitudes. This makes it possible to control the nonlinear waves with different energy in
the experiment in the future.
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Appendix

Second-order RW solution ψ in Fig. 1 (a3)(b3) is expressed as q = −49152 F
G e2t−
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