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This paper reviews and extends existence results for spatially localized waves in nonlinear chains
of coupled oscillators. The models we consider are referred as Fermi-Pasta-Ulam (FPU) or Klein-
Gordon (KG) lattices, depending whether nonlinearity takes the form of an anharmonic nearest-
neighbors interaction potential or an on-site potential. Localized solutions include solitary waves of
permanent form [20, 24, 27, 29], and travelling breathers which appear time periodic in a system
of reference moving at constant velocity. Approximate travelling breather solutions have been pre-
viously constructed in the form of modulated plane waves, whose envelopes satisfy the nonlinear
Schrödinger equation [64], [51]. For KG chains and in the case of travelling waves (where the phase
velocity of the plane wave equals the group velocity of the wave packet), the existence of nearby
exact solutions has been proved by Iooss and Kirchgässner, who have obtained exact solitary wave
solutions superposed on an exponentially small periodic tail. By a center manifold reduction they
reduce the problem locally to a finite dimensional reversible system of ordinary differential equations,
which admits homoclinic solutions to periodic orbits. It has been recently shown by James and Sire
[36, 57] that the center manifold approach initiated by Iooss and Kirchgässner is still applicable
when the breather period and the inverse group velocity are commensurate. The particular case
when the breather period equals twice the inverse group velocity has been worked out explicitly
for KG chains, and yields the same type of reduced system as for travelling waves if the on-site
potential is symmetric. In that case, the existence of exact travelling breather solutions superposed
on an exponentially small periodic tail has been proved. In this paper we apply the same method
to the FPU system and treat the commensurate case in full generality (we give the main steps of
the analysis and shall provide the details in a forthcoming paper [34]). We reduce the problem
locally to a finite dimensional reversible system of ordinary differential equations, whose dimension
can be arbitrarily large and is of the order of the number of resonant phonons. Its principal part is
integrable, and admits solutions homoclinic to quasi-periodic orbits if a hardening condition on the
potential is satisfied. These orbits correspond to approximate travelling breather solutions super-
posed to a quasi-periodic oscillatory tail. The problem of their existence for the full system is still
open in the general case, and constitutes the final step for proving the existence of exact travelling
breather solutions. In the particular case of an even potential and if the breather period equals
twice the inverse group velocity, we prove indeed the existence of exact travelling breather solutions
superposed to an exponentially small periodic tail.
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I. MODELS AND LITERATURE REVIEW

We consider one-dimensional lattices described by the
system

d2un
dt2

+W ′(un) = V ′(un+1−un)−V ′(un−un−1), n ∈ Z

(1)
where un is the displacement of the nth particle from
an equilibrium position. This system describes a chain
of particles nonlinearly coupled to their first neighbors,
in a local anharmonic potential. The interaction poten-
tial V and on-site potential W are assumed analytic in
a neighborhood of u = 0, with V ′(0) = W ′(0) = 0,
V ′′(0),W ′′(0) > 0. System (1) is referred as Fermi-Pasta-
Ulam (FPU) lattice [13] for W = 0 and Klein-Gordon
(KG) lattice if V is harmonic (V (x) = γ

2x
2). These mod-

els have been used for the description of a broad range
of physical phenomena, such as crystal dislocation [40],
localized excitations in ionic crystals [55], thermal denat-

uration of DNA [9].
In this paper, we consider solutions of (1) satisfying

un(t) = un−p(t− p τ), (2)

for a fixed integer p ≥ 1 (p being the smallest possible)
and τ ∈ R. The case when p = 1 in (2) corresponds to
travelling waves with velocity 1/τ . Solutions satisfying
(2) for p 6= 1 consist of pulsating travelling waves, which
are exactly translated by p sites after a fixed propagation
time p τ and are allowed to oscillate as they propagate on
the lattice. Solutions of type (2) having the additional
property of spatial localization (un(t) → 0 as n → ±∞)
are known as exact travelling breathers (with velocity
1/τ) for p ≥ 2 and solitary waves for p = 1.

A. Exact and approximate travelling breathers

Approximate travelling breather solutions propagating
on the lattice at a non constant velocity have drawn a
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lot of attention. They have been numerically observed in
various one-dimensional nonlinear lattices such as FPU
lattices [62], [8], [52], [15], KG chains [10],[6] and the dis-
crete nonlinear Schrödinger (DNLS) equation [14]. Other
references are available in the review paper [17]. One
way of generating approximate travelling breathers con-
sists of “kicking” static breathers consisting of spatially
localized and time periodic oscillations (see the basic pa-
pers [63], [44], [17], [33], [5] for more details on these
solutions). Static breathers are put into motion by per-
turbation in the direction of a pinning mode [6]. The
possible existence of an energy barrier that the breather
has to overcome in order to become mobile has drawn a
lot of attention, see e.g. [10], [6], [15], [38] and the re-
view paper [54]. Approximate travelling breathers can be
formally obtained via effective Hamiltonians, which ap-
proximately describe the motion of the breather center
on the lattice, at a nonconstant velocity [45], [38].

It is a delicate task to examine the existence of ex-
act travelling breathers using numerical computations.
Indeed, these solutions might not exist without being su-
perposed on a small nonvanishing oscillatory tail which
violates the property of spatial localization. Solitary
waves [6] and travelling breathers [58] superposed on
a small oscillatory tail have been numerically observed
in KG lattices. Numerical results indicate similar phe-
nomena for the propagation of kinks [11], [53], [4]. Fine
analysis of numerical convergence problems also suggests
that different nonlinear lattices do not support exact soli-
tary waves or travelling breathers in certain parameter
regimes [61], [3].

Different situations have been considered for the ex-
istence of exact travelling breathers in various simpler
models. On the one hand, exact travelling breathers can
be explicitly computed in the integrable Ablowitz-Ladik
lattice [1], and other examples of nonlinear lattices sup-
porting exact travelling breathers can be obtained using
an inverse method [16]. On the other hand,.travelling
breather solutions of the Ablowitz-Ladik lattice are not
robust under various non-Hamiltonian reversible pertur-
bations as shown in [7].

B. The multi-scale expansion approach

Formal multi-scale expansions have been used by sev-
eral authors to obtain travelling breather solutions of (1).
The case of KG lattices has been treated by Remoissenet
[51]. A multi-scale expansion provides an evolution equa-
tion for the envelopes of well-prepared initial conditions
corresponding to modulated plane waves

un(t) = ǫA(ǫ2t, ǫ(n− c t)) ei(qn−ωt) + c.c.+O(ǫ2). (3)

Here ω = ω(q) is given by the dispersion relation for
the linear phonons and c = ω′(q) is the group velocity
of the wave packet. The amplitude A(s, ξ) satisfies the

nonlinear Schrödinger (NLS) equation

i ∂sA = −1

2
w′′(q) ∂2

ξA+ h|A|2A, (4)

h depending on q and V,W . In the focusing case
w′′(q)h < 0, the NLS equation admits sech-shaped so-
lutions corresponding (at least formally) to travelling
breather solutions

un(t) = ǫα
ei(qn−ωt)

cosh (ǫ(n− c t))
+ c.c.+O(ǫ2) (5)

(a O(ǫ2) correction to ω has been left in higher order
terms). One can write alternatively un(t) = u(n−c t, t)+
O(ǫ2) where

u(ξ, t) = ǫα
eiqξ

cosh (ǫξ)
eiωbt + c.c. (6)

and ωb = qc−ω. The function u(ξ, t) is localized in ξ and
time-periodic with frequency ωb (denoted as travelling
breather frequency).

The multi-scale approach has been used by Tsurui [64]
and Flytzanis et al [18] for the FPU lattice. For sys-
tem (1) with V ′′(0) > 0 the validity of the nonlinear
Schrödinger equation on large but finite time intervals
has been proved recently by Giannoulis and Mielke [25],
[26].

C. Generalized solitary waves in Klein-Gordon

lattices

It is a challenging problem to determine if the approx-
imate solutions (5) could constitute the principal part of
exact travelling breather solutions of the Klein-Gordon
system. This would imply that linear dispersion is bal-
anced by nonlinear terms at any order in the above men-
tioned multi-scale expansion.

This problem has been solved by Iooss and
Kirchgässner for the KG system in the case of travel-
ling waves [29], where the phase velocity of the plane
wave equals the group velocity of the wave packet i.e.
c = ω/q. In that case approximate solutions (5) read
un(t) = u(n − ct) + O(ǫ2). Travelling wave solutions of
(1) with V (x) = γ

2x
2 (and p = 1 in (2)) have the form

un(t) = u0(t − nτ) and are determined by the scalar
advance-delay differential equation

d2u0

dt2
+W ′(u0) = γ (u0(t+ τ) − 2u0 + u0(t− τ)). (7)

Iooss and Kirchgässner have studied small amplitude so-
lutions of (7) in different parameter regimes and have
obtained in particular “nanopterons” (or generalized soli-
tary waves) consisting of a solitary wave superposed to
an exponentially small oscillatory tail. The leading or-
der part of these solutions (excluding their tail) coincides
with approximate solutions obtained via the NLS equa-
tion.
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Their analysis is based on a reduction to a center man-
ifold in the infinite dimensional case as described in ref-
erences [39], [49], [65]. Equation (7) is rewritten as a re-
versible evolution problem in a suitable functional space,
and considered for parameter values (τ, γ) near a critical
curve (defined by 1/τ = c = ω/q) where the imaginary
part of the spectrum of the linearized operator consists
of a pair of double eigenvalues and a pair of simple ones.
Close to this curve, the pair of double eigenvalues splits in
two pairs of hyperbolic eigenvalues with opposite nonzero
real parts, which opens the possibility of finding solutions
homoclinic to 0.

Near these parameter values, the center manifold the-
orem reduces the problem locally to a reversible 6-
dimensional system of differential equations. The re-
duced system is put in a normal form which is integrable
up to higher order terms. In some regions of the param-
eter space, the truncated normal form admits reversible
orbits homoclinic to 0, which bifurcate from the trivial
state and correspond to approximate solutions of (7).

However, as it is shown by Lombardi for different
classes of reversible systems [42], these solutions should
not generically persist when higher order terms are taken
into account in the normal form. The existence of corre-
sponding travelling waves decaying exactly to 0 should be
a codimension-1 phenomenon, the codimension depend-
ing on the number of pairs of purely imaginary eigenval-
ues (i.e. the number of resonant phonons) in the parame-
ter regime considered by the authors (there is one pair of
purely imaginary eigenvalues, in addition to hyperbolic
ones). However, to confirm the nonexistence of reversible
homoclinic orbit to 0 (close to a small amplitude homo-
clinic orbit of the truncated normal form) for a given
choice of W , γ, τ , one has to check the nonvanishing of
a certain Melnikov function being extremely difficult to
compute in practice [42].

Due to this codimension-1 character, in a given system
(7) (with fixed coupling constant γ and on-site potential
W ) exact travelling wave solutions decaying to 0 at in-
finity might exist in the small amplitude regime, but for
isolated values of the wave velocity 1/τ .

Instead of orbits homoclinic to 0, the full normal form
admits orbits homoclinic to small periodic ones [42] (orig-
inating from the pair of purely imaginary eigenvalues).
These solutions correspond to exact solitary wave solu-
tions of (1) superposed on a small periodic oscillatory
tail, which can be made exponentially small with respect
to the central oscillation size (the minimal tail size should
be generically nonzero for a given value of (τ, γ)).

D. Travelling breathers in Klein-Gordon lattices

The above results do not cover the case of travelling
breathers in which the wavepacket has different phase
and group velocities. However, it has been recently
shown by James and Sire [57], [36] that the center mani-
fold approach initiated by Iooss and Kirchgässner is still

applicable to the KG model when the travelling breather
period and the inverse group velocity are commensurate
i.e. ωb/c = 2πm/p (m ∈ Z). In that case the prin-
cipal part of (5) satisfies (2) with τ = 1/c. For fixed
p ≥ 2, problem (1)-(2) with V (x) = γ

2x
2 reduces to the

p-dimensional system of advance-delay differential equa-
tions

d2u1

dt2
+W ′(u1) = γ (u2 − 2u1 + up(t+ p τ)), (8)

d2un
dt2

+W ′(un) = γ (un+1 − 2un + un−1), (9)

n = 2, . . . , p− 1,

d2up
dt2

+W ′(up) = γ (u1(t− p τ) − 2up + up−1).(10)

The case p = 2 in (8)-(10) has been worked out explic-
itly and corresponds to the situation when the breather
period equals twice the inverse group velocity.

The case when W is even yields the same type of re-
duced system for travelling breathers as for travelling
waves. In this case, there exist exact travelling breather
solutions superposed on an exponentially small periodic
tail and satisfying un(t) = −un−1(t− τ).

For asymmetric potentials, the simplest homoclinic bi-
furcation yields a higher-dimensional (8-dimensional) re-
duced system, with a supplementary pair of simple imag-
inary eigenvalues of the linearized operator (the imagi-
nary part of the spectrum consists of a pair of double
eigenvalues and two pairs of simple ones). The reduced
normal form of the system is reversible and integrable up
to higher order terms. In some regions of the parameter
space, the truncated normal form admits reversible orbits
homoclinic to 0, which bifurcate from the trivial state and
correspond to approximate solutions of (8)-(10). These
approximate solutions coincide at leading order with spa-
tially localized modulated plane waves obtained via the
NLS equation.

However, by analogy with results of Lombardi [42] it
has been conjectured in [36] that these solutions do not
generically persist when higher order terms are taken into
account in the normal form. Persistence might be true
if parameters (τ, γ, and coefficients in the expansion of
W ) are chosen on a discrete collection of codimension-2
submanifolds in this infinite dimensional space. For gen-
eral parameter values, instead of orbits homoclinic to 0
one can expect the existence of reversible orbits homo-
clinic to exponentially small 2−dimensional tori, origi-
nating from the two additional pairs of simple purely
imaginary eigenvalues. These solutions should constitute
the principal part of exact travelling breather solutions
of (1) superposed on a small quasi-periodic oscillatory
tail. However, in order to obtain exact solutions one has
to prove the persistence of the corresponding homoclinic
orbits as higher order terms are taken into account in the
normal form. This step is non-trivial and would require
to generalize results of Lombardi [42] available when one
pair of simple imaginary eigenvalues is removed. An-
other promising approach is developed in the recent work
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of Iooss and Lombardi [30] on polynomial normal forms
with exponentially small remainder for analytic vector
fields.

The general case p ≥ 2 in (8)-(10) is analyzed in a work
in progress [59] (this case is technically more difficult but
the approach used in [57], [36] works as well).

When the travelling breather period and the inverse
group velocity are incommensurate, the principal part of
(5) is not exactly translated on the lattice after time p/c
but is modified by a spatial shift. The existence of exact
travelling breather solutions of this type is still an open
problem.

E. Solitary waves and travelling breathers in

Fermi-Pasta-Ulam lattices

The center manifold reduction method has been also
used in [27] for studying travelling waves in FPU lattices.

Near the largest critical value of velocity 1/τ =
√
V ′′(0)

(denoted as sound velocity), all small amplitude travel-
ling waves are given by finite-dimensional reversible dif-
ferential equations. In particular, solitary wave solutions
have been obtained above (and near) the sound velocity
(in addition, heteroclinic solutions connecting a stretched
pattern with a compressed one have been obtained). The
global existence of solitary waves in FPU models has been
proved with other types of methods [19, 20, 24, 60]. In
the small amplitude limit these solutions can be described
by the Korteweg-de Vries (KdV) equation [37, 56], or the
modified KdV equation in degenerate cases.

In the FPU system there are no exponentially small
phenomena preventing the existence of KdV solitary
waves decaying exactly to 0, unlike for the KG lattice.
This difference is due to the fact that localized solutions
in the KG model (rather described by the NLS equation)
mix a slow envelope decay with additional fast oscilla-
tions of a plane wave (see [42, 43] for more details on this
type of nonpersistence phenomena).

The stability (in appropriate exponentially weighted
spaces) of solitary wave solutions on fixed low energy sur-
faces has been proved in recent works [21–23]. A local-
ized perturbation of a supersonic solitary wave produces
(asymptotically in time) a perturbation of the speed and
phase of the wave, and a radiating part that travels slower
than the wave and decays locally near it.

A discrete version of the center manifold method has
been developped in [32, 33] and applied to the existence
of small amplitude static breathers in FPU chains. The
FPU system is rewritten as a (reversible) mapping in a
loop space, the index n playing the role of a discrete time.
When the frequency of solutions is near the top of the
phonon band, the system can be locally reduced to a (re-
versible) 2-dimensional mapping. Static breathers (cor-
responding to orbits of the reduced map homoclinic to 0)
have been proved to exist when a certain hardening con-
dition on the interaction potential is satisfied. The case
of diatomic FPU chains has been examined [35] using

the same method, and the existence of small amplitude
breathers has been proved for arbitrary mass ratio and
hard or soft potentials in various frequency regimes (ex-
tending previous results valid for large mass ratio [41]).

In this paper we study the existence of travelling
breathers in the FPU system and treat the commen-
surate case (2) in full generality. Near critical param-

eter values τ = τk (with τk > (V ′′(0))
−1/2

), the cen-
ter manifold theorem reduces the problem locally to a
finite dimensional reversible system of ordinary differen-
tial equations, whose dimension can be arbitrarily large
(the dimension is of the order of the number of resonant
phonons). Its principal part is integrable, and admits
solutions homoclinic to quasi-periodic orbits if a hard-
ening condition on the interaction potential V is satis-
fied. These orbits correspond to approximate travelling
breather solutions (close to the NLS limit (5)) superposed
on a quasi-periodic oscillatory tail. The problem of their
persistence for the full reduced system is still open in
the general case, and constitutes the final step for prov-
ing the existence of exact travelling breather solutions
in FPU chains. Note that in the particular case of an
even potential, and if the breather period equals twice
the inverse group velocity (p = 2, ωb/c = π in (5)-(6)),
we indeed prove the existence of exact travelling breather
solutions superposed on an exponentially small periodic
tail.

Near the critical parameter value τ = (V ′′(0))
−1/2

(i.e.
near the sound velocity), the problem is locally reduced
to a finite dimensional reversible system of ordinary dif-
ferential equations, which admits homoclinic orbits to 0
if V ′′′(0) 6= 0. These orbits correspond to the FPU soli-
tary waves obtained in reference [27] and satisfy (2) with
p = 1. In addition, the principal part of the reduced
system admits homoclinic orbits to quasi-periodic orbits
(the persistence of these solutions for the full reduced
equation is not yet established). For the FPU system,
these solutions should correspond to solitary waves su-
perposed on time-periodic pulsating travelling waves.

In section II A we set the search of travelling breathers
into the form of a spatial dynamical system, and give
the results on the linearized system. In section II B we
treat the general case where the inverse critical velocity

τk is not (V ′′(0))
−1/2

(”sound velocity”). In this section
we derive the center manifold reduction, and the study of
the solutions of the normal form of the reduced reversible
system (we give the main steps of the analysis and shall
provide the details in a forthcoming paper [34]). We also
give the interpretation of the corresponding solutions of
the original system. In section II C we consider the case

τ ≈ (V ′′(0))
−1/2

, which was partly treated in [27], adding
the study of cases p ≥ 2.



5

II. LOCALIZED WAVES IN

FERMI-PASTA-ULAM CHAINS

This section treats the case of the FPU system

d2un
dt2

= V ′(un+1 − un) − V ′(un − un−1), n ∈ Z (11)

with

V (x) =
1

2
x2 +

α

3
x3 +

β

4
x4 +O(|x|5) (12)

(one can fix V ′′(0) = 1 without loss of generality). We
shall analyze small amplitude solutions of (11) satisfying
(2) using the center manifold reduction approach.

The case p = 1 of (2) is equivalent to fixing un(t) =
y(x) with x = n− t/τ . System (11) is transformed into

1

τ2

d2y

dx2
= V ′(y(x+1)−y(x))−V ′(y(x)−y(x−1)), (13)

which is a scalar advance-delay or mixed type differential
equation. Further references on advance-delay differen-
tial equations can be found in [46].

We note that equation (13) can be written in the form
dI1
dx = 0, where

I1 =
dy

dx
− τ2

∫ 1

0

V ′(y(x + v) − y(x+ v − 1)) dv.

Equation (13) is a particular case in the study which
follows, and was studied in [27] for wave velocities τ close
to the sound velocity τ = 1, i.e. the maximal velocity of
linear phonons.

In the general case of (2) we set un(t) = yn(x), or
equivalently yn(x) = un(τ(n − x)). This change of vari-
ables transforms condition (2) into the periodic boundary
condition

yn+p(x) = yn(x) (14)

and system (11) is transformed into the (p-dimensional)
system of advance-delay differential equations

1

τ2

d2yn
dx2

= V ′(yn+1(x+1)−yn(x))−V ′(yn(x)−yn−1(x−1)).

(15)
Equation (13) arises as a particular case of (14)-(15) with
p = 1. Note that system (15) admits the following first
integral (use condition (14))

Ip =
1

p

p∑

n=1

Jn, (16)

Jn =
dyn
dx

− τ2

∫ 1

0

V ′(yn+1(x + v) − yn(x + v − 1)) dv.

The general case of system (14)-(15) will be treated in
section II A. Due to the evenness of (15) in τ we shall
assume τ > 0.

Althought the center manifold theorem describes all
small amplitude solutions (14)-(15) we shall concentrate
on “spatially localized” waves in a generalized sense.
These solutions are asymptotic as x → ±∞ to simple
shifts yn = b± (b± ∈ R), or to periodic (or quasi-periodic)
orbits of small amplitude with respect to central oscilla-
tions.

Considering shifted solutions at infinity is necessary
because system (15) possesses the invariance yn → yn+b
(b ∈ R). The linearized system at yn = 0 admits a second
invariance yn → yn + ax, which is lost in the nonlinear
case. This invariance is replaced by a more subtle one,
as discussed in the following remark.

Remark 1. Note that (15) admits the particular so-
lutions yn(x) = ax, a ∈ R being an arbitrary constant.
These solutions correspond to uniformly compressed or
stretched states un(t) = a(n − t/τ) (depending whether
a < 0 or a > 0). Moreover, if one chooses a ∈ R such
that V ′′(a) > 0 (this holds at least for a ≈ 0), system
(14)-(15) has the invariance

yn → ỹn = yn − ax, τ →
√
V ′′(a) τ,

V → Va := (V (x+ a) − V ′(a)x )/V ′′(a),

where V ′
a(0) = 0, V ′′

a (0) = 1. Consequently, from a
given class of spatially localized solutions for τ ≈ τk
one can construct similar solutions of (14)-(15) for τ ≈
τk/

√
V ′′(a), superposed on a uniformly compressed or

stretched state. Such solutions have been denoted as
“mainly localized” solutions in [27] (case p = 1, τ ≈ 1).
They have the form yn(x) = ỹn(x, a) + ax where ỹn is a
spatially localized solution of (14)-(15) for the modified
potential Va.

A. Travelling breathers as solutions of a

spatial-dynamical system

1. Spatial evolution problem

Instead of treating (14)-(15) directly, we adopt a “dy-
namical system” point of view by rewriting (15) as an
(infinite-dimensional) evolution problem in the spatial
coordinate x. For this purpose we introduce the new co-
ordinate v ∈ [−1, 1] and functions Yn(x, v) = yn(x + v).

We use the notations ξn = dyn

dx , δaYn = Yn(x, a). The

notation Un(x)(v) = (yn(x), ξn(x), Yn(x, v))T indicates
our intention to construct Un as a map from R into some
function space living on the v-interval [−1, 1]. System
(14)-(15) can then be formulated as an evolution prob-
lem in a suitable Banach space. For this purpose we
introduce the following Banach spaces D for Un(x) and
H for dUn

dx

H = R
2 × (C0[−1, 1]),

D =
{
U = (y, ξ, Y )T ∈ R

2 × (C1[−1, 1]) / Y (0) = y
}
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with the usual maximum norms. Then we define
Yn(x, v) = yn(x + v), ξn = dyn

dx and Un = (yn, ξn, Yn)T .
The sequence U(x) = (Un(x))n∈Z is a p-periodic sequence
in D. In the sequel we shall note

U(x) ∈ Dp =
{
U ∈ D

Z /Un+p = Un ∀n ∈ Z
}
.

Similarly we look for dU
dx (x) in

Hp =
{
U ∈ H

Z /Un+p = Un ∀n ∈ Z
}
.

These spaces are equiped with the usual maximum
norms. System (14)-(15) can now be written in the form

dU

dx
= LτU + τ2M(U) (17)

where the nth term of Lτ U reads

(LτU)n =




ξn

τ2(δ1Yn+1 − 2yn + δ−1Yn−1)
dYn

dv





and the nth term of M(U) is given by

(M(U))n = ( 0, N(δ1Yn+1 − yn)−N(yn− δ−1Yn−1), 0 )T ,

where we have set N(y) = V ′(y)−y = O(y2) as y → 0. It
is clear that system (17) is equivalent to the original equa-
tion (15) since solutions satisfy Yn(x, v) = yn(x+v). The
linear operator Lτ maps Dp into Hp continuously. The
nonlinearity M : Dp → Dp is analytic in a neighborhood
of 0 and ‖M(U)‖Dp = O(‖U‖2

Dp
).

We note that Lτ and M (hence Lτ + τ2M) both com-
mute with the index shift σ defined by (σU)n = Un+1

(this comes from the invariance n → n + 1 of (15)).
Invariant solutions under σ correspond in particular to
travelling wave solutions of (11) (U(x) ∈ Fix(σ) is inde-
pendent of n and its first component y(x) satisfies (13)).
If p is even, note that equation (17) is invariant under
the symmetry σp/2.

Moreover Lτ and M both anticommute with the re-
flection R in Hp given by

(RU)n = (−y−n, ξ−n,−Y−n(−v))T .

Therefore, equation (17) is reversible under R. This
property is due to the invariance yn → −y−n(−x) of
(15).

Equation (17) admits the first integral

Iτ (U) =
1

p

p∑

n=1

(
ξn − τ2

∫ 1

0

V ′(Yn+1(v) − Yn(v − 1)) dv
)
,

(18)
which is issued from the first integral Ip of (15). One can
check that Iτ is left invariant by σ and R (use (14)).

Note that particular solutions of (17) are given by
Ua,b(x) = (ax+ b)χ0 + aχ1, where a, b ∈ R are arbitrary
constants and

(χ0)n = (1, 0, 1)T , (χ1)n = (0, 1, v)T (19)

(the components of χ0, χ1 are independent of n). These
solutions originate from the solutions yn(x) = ax + b
of (15). Solutions Ua,0 are reversible under R (i.e.
RUa,0(−x) = Ua,0(x)) since Rχ0 = −χ0 and Rχ1 = χ1.

2. Study of the linearized problem

We begin by studying the spectrum of Lτ , which con-
sists of isolated eigenvalues with finite multiplicities (Lτ ,
acting in Hp with domain Dp, has a compact resolvent
in Hp). Since Lτ has real coefficients and due to re-
versibility, its spectrum is invariant under the reflections
through the real and the imaginary axis. Due to the pe-
riodic boundary condition (14), solving Lτ U = z U (for
z ∈ C) is equivalent to searching for solutions of (15) in
the form yn(x) = ezxe−2iπmn/p for m = 0, . . . , p−1. This
yields the dispersion relations

z2

τ2
+ 2(1 − cosh (z − 2iπm/p)) = 0. (20)

As in reference [29], Lτ is not sectorial and the central
part of its spectrum (i.e. the set of purely imaginary
eigenvalues) is isolated from the hyperbolic part. For
purely imaginary eigenvalues z = iλ, the dispersion rela-
tions read

λ2

τ2
+ 2(cos (λ − 2πm/p)− 1) = 0. (21)

Corresponding linear particle displacements read

un(t) = a ei(qn−ωt) + c.c. (22)

with q = λ − 2πm/p, ω = λ
τ , hence one recognizes in

equation (21) the usual form of the dispersion relation
ω2 = 2(1 − cos q) of equation (11) linearized at un = 0.
The case m = 0 of (21) has been treated in [27]. We note
that (21) simplifies into

|λ|
2τ

−
∣∣ sin

(λ
2
− π

m

p

)∣∣ = 0. (23)

Equations (21) and (23) admit the same roots, with iden-
tical multiplicities (at most 2) for λ 6= 0.

Simple roots λ 6= 0 correspond to simple eigenvalues
iλ of Lτ for almost all values of τ . They occur in pairs
±iλ corresponding to conjugate modes m, p−m. A pair
of double semi-simple eigenvalues exists if (23) admits a
same root λ for m = m1 and m = m2 with m1 6= m2.
This occurs for a finite number of parameter values τ =
τm1m2

defined by

τm1m2

∣∣ cos (
π

2p
(m1 −m2))

∣∣ =
π

2
+

π

2p
(m1 +m2).

or

τm1m2

∣∣ sin (
π

2p
(m1 −m2))

∣∣ =
π

2p
(m1 +m2).
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Double roots λ 6= 0 correspond to double non semi-
simple eigenvalues iλ of Lτ . They occur (in pairs) for
critical parameter values τ = τi (i ≥ 1), ordered as an
unbounded increasing sequence formed by the solutions
of

τ
∣∣ cos

(λ
2
− π

m

p

)∣∣ = 1,
λ

2
= tan

(λ
2
− π

m

p

)
, (24)

where m ranges over 0, . . . , p − 1. Note that 1
τ can be

interpreted as a group velocity regarding (22) ( 1
τ = ω′(q))

and the second condition reads ω′(q)(q + 2πmp ) = ω(q)

(phase and group velocities are equal for m = 0).
A closer look at equation (23) indicates that, for p = 1,

τ1 > π, while for p ≥ 2, τ1 is obtained for m = 1, p− 1,
1 < τ1 < π and τ1 → 1 as p → +∞. Moreover, the
set of critical velocity values ck(p) = 1/τk(p) (p, k ≥ 1)
densely covers the interval [0, 1]. In addition, note that
(24) implies

λk ∼ 2τk as k → +∞. (25)

The following lemma summarizes the evolution of the
spectrum as τ is varied.

Lemma II.1 For τ < 1, the spectrum of Lτ on the imag-
inary axis consists of p − 1 pairs of simple eigenvalues
and the double non semi-simple eigenvalue 0. Two pairs
coincide if τ = τm1m2

, forming double semi-simple eigen-
values. For τ = 1 a pair of real eigenvalues collides at 0,
forming a four-fold eigenvalue. For 1 < τ < τ1, the spec-
trum on the imaginary axis consists of p pairs of simple
eigenvalues and the double eigenvalue 0. For τ = τ1, two
pairs of eigenvalues (originating from the hyperbolic part
of the spectrum) collide on the imaginary axis, forming
a pair of double non semi-simple eigenvalues ±iλ with
λ 6= 0 (corresponding, for p ≥ 2, to m = 1, p− 1). These
pairs split on the imaginary axis for τ > τ1. Similar
eigenvalue collisions occur for all critical values τ = τi,
increasing (by 4 at each step ) the number of imaginary
eigenvalues.

The vectors χ0, χ1 given in (19) define an eigenvector
and a generalized eigenvector associated with the double
eigenvalue 0 (Lτχ0 = 0, Lτχ1 = χ0).

An eigenvector ζ of Lτ associated with a pair (λ,m)
(λ 6= 0) is given by

(ζ)n = ie−2iπmn/p(1, iλ, eiλv)T . (26)

With this choice one has Rζ = ζ̄. We note that σζ =
e−2iπm/pζ (this explains why eigenvalue collisions related
with different modes m correspond to semi-simple eigen-
values, the two colliding modes having different symme-
tries). If iλ is a double eigenvalue, a generalized eigen-
vector η satisfying (Lτ − iλ)η = ζ is given by

(η)n = ie−2iπmn/p(0, 1, veiλv)T , (27)

and Rη = −η̄.

B. Cases τ ≈ τk

Let us analyze the situation when τ ≈ τk and consider
L = Lτk

. The central part of the spectrum of L consists
in

* N = p+ 2(k − 1) pairs of simple eigenvalues ±iλj
(j = 1, . . . , N), λj being associated with m = mj

and an eigenvector ζj ((ζj)nis given by (26)),

* 2 pairs of double eigenvalues ±iλ0, λ0 being associ-
ated with m = m0, an eigenvector ζ0 given by (26)
and a generalized eigenvector η0 given by (27),

* the double eigenvalue 0.

In the sequel we denote by P the spectral projection
on the 2N + 6-dimensional central subspace, i.e. the in-
variant subspace associated with the central part of the
spectrum for τ = τk. An efficient method for computing
P is detailed in [29], [27].

The property of optimal regularity (see [65], hypothesis
(ii) p.127) is fulfilled by the affine linearized system

dU

dx
= LU + F (x),

where F (x) lies in the range of the nonlinear term M and
has the form (F (x))n = (0, gn(x), 0)T . This part of the
analysis is similar to [29], lemma 3 p. 448. Alternative
methods of proof can be found in references [47], [48].

The property of optimal regularity and the existence
of a spectral gap around the imaginary axis allow us to
reduce (17) locally to a 2N+6-dimensional reversible evo-
lution problem on a center manifold [65].

1. Center manifold reduction

System (17) is invariant under the shift operator U 7→
U + qχ0, which corresponds to the invariance yn →
yn + q in (15). The spectral projection on the gener-
alized eigenspace corresponding to the double eigenvalue
0 (τk 6= 1) has the form P0U = χ∗

0(U)χ0 + χ∗
1(U)χ1,

where Un = (yn, ξn, Yn)
T ,

χ∗
0(U) =

1

p(1 − τ2
k )

p∑

n=1

(
yn − τ2

∫ 1

−1

F Yn dv
)
,

F (v) = 1 − |v| and

χ∗
1(U) = χ∗

0(Lτk
U) =

1

p(1 − τ2
k )

p∑

n=1

(
ξn + τ2

k

∫ 1

−1

F ′ Yn dv
)

(χ∗
i (χj) = δij). Note that DIτk

(0) = (1 − τ2
k )χ∗

1.
Due to the shift invariance it is natural to decompose

any U ∈ Hp as follows

U = W + qχ0, χ∗
0(W ) = 0
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and we denote by H̃ the codimension-one subspace of
Hp where W lies. We use the similar definition for the

subspace D̃ of Dp. Noticing that χ∗
0(M(U)) = 0, system

(17) becomes

dW

dx
= L̃τW + τ2M(W ), (28)

where L̃τW = LτW − χ∗
1(W )χ0. The operator L̃ = L̃τk

acting in H̃ has the same spectrum as Lτk
except that the

eigenvalue 0 is now simple (with eigenvector χ1) instead
of double. This eigenvalue is linked with the existence
of the line of equilibria W = aχ1 (a ∈ R) of (28), corre-

sponding to the projection of Ua,b on D̃ (one can check
that M(aχ1) = 0).

System (28) is supplemented by the scalar equation

dq

dx
= χ∗

1(W ). (29)

Due to the fact that Iτ (W + qχ0) = Iτ (W ), Iτ (W ) also
defines a first integral of (28).

Recalling that P is the spectral projection on the 2N+
6−dimensional central space, we shall use the notations
Dc = P D̃, Dh = (I−P )D̃, Hh = (I−P )H̃,Wh = (I−P )W ,
Wc = P W . The center manifold reduction theorem [65]
applied to system (28) yields the following.

Theorem II.2 Let fix integers p and k ≥ 1, then for
any m ≥ 2, there exists a neighborhood U × V of (0, τk)

in D̃ × R and a map ψ ∈ Cm(Dc × R,Dh) such that the
following properties hold for all τ ∈ V (with ψ(0, τ) =
0, Dψ(0, τk) = 0).

i) If W : R → D̃ is a solution of (28) and W (x) ∈ U
for all x ∈ R, then Wh(x) = ψ(Wc(x), τ) for all
x ∈ R and Wc : R → Dc is a solution of

dWc

dx
= L̃Wc + Fτ (Wc), (30)

where Fτ (Wc) = O(‖Wc‖2 + |τ − τk|‖Wc‖ ) reads

Fτ (Wc) = P [L̃τ − L̃τk
+ τ2M(.)](Wc + ψ(Wc, τ)).

ii) Conversely, if Wc is a solution of (30) with
Wc(x) ∈ U for all x ∈ R, then W = Wc +ψ(Wc, τ)
is a solution of (28).

iii) The map ψ(., τ) commutes with R and σ, and (30)
is reversible under R and σ-equivariant.

Consequently, the 2N + 5-dimensional reduced equa-
tion (30) describes all small amplitude solutions of (28)
as τ ≈ τk. Corresponding solutions of (17) are given by
U = W + qχ0 with

dq

dx
= χ∗

1(Wc). (31)

Note that ψ(aχ1, τ) = 0 for all a ≈ 0, due to the fact
that Rχ1 is a line of equilibria of (28). In the same way,
Rχ1 defines a line of equilibria of (30).

In addition, equation (30) admits the first integral

Ic(Wc, τ) =
1

1 − τ2
Iτ (Wc + ψ(Wc, τ))

= χ∗
1(Wc) +O(‖Wc‖2 + |τ − τk|‖Wc‖ ),

and one can check that Ic is left invariant by σ and R.

2. Normal form

Now we perform a change of variables close to the iden-
tity which simplifies (30) and preserves its symmetries.
For that purpose we proceed in two steps.

Firstly we decompose Wc into Wc = dχ1 + Vc (with
χ∗

1(Vc) = 0) and express the d-coordinate with D =
Ic(Wc, τ) = d + h.o.t. Indeed, this equation can be lo-
cally inverted in d = ϕ1(D,Vc, τ), where

ϕ1(D,Vc, τ) = D +O(‖ (D,Vc)‖2 + |τ − τk|‖(D,Vc)‖ ).

System (30) takes the form

dD

dx
= 0,

dVc
dx

= G(Vc, D, τ), (32)

where G(0, D, τ) = 0.
Secondly we consider the differential equation on Vc,

treating D, τ as parameters (the eigenvalue 0 is then re-
moved in the Vc-component). We use a normal form
technique (see e.g. [28]), i.e. we perform a polynomial

change of variables Vc = Ṽc + P̃τ,D(Ṽc) close to the iden-
tity which simplifies (32) and preserves its symmetries.
In the sequel we set

Ṽc = Aζ0 +Bη0 +

N∑

j=1

Cjζj + c.c.,

where A,B,Cj ∈ C. The normal form computation is
similar to [29] (section 6 and appendix 2), to which we
refer for details. We compute the normal form at order
3 under the following nonresonance condition

λ · r 6= 0 for all r ∈ Z
N+1 such that 0 < |r| ≤ 4, (33)

where λ = (λ0, . . . , λN ) and |r| = |r0| + . . . + |rN | (we
avoid strong resonances). It is simple to show that (33)
is satisfied for p = 1 and k = 1 (N = 1), and we have
checked (33) numerically for p = 2 and k = 1. In fact we
make the conjecture that (33) is satisfied for any couple
(p, k).

The normal form of (32) at order 3 is given in the
following lemma.

Lemma II.3 Assume strong resonances do not occur at
τ = τk, i.e. property (33) is satisfied. The normal form



9

of (32) at order 3 reads

dA

dx
= iλ0A+B + iAP(|A|2, I, Q,D) + h.o.t.,

dB

dx
= iλ0B + [iBP +AS](|A|2, I, Q,D) + h.o.t.,

dCj
dx

= iλjCj + iCjQj(|A|2, I, Q,D) + h.o.t., (34)

dD

dx
= 0

(Cj is considered for j = 1, . . .N), where Q denotes the
vector Q = (|C1|2, . . . , |CN |2), I = i(AB̄ − ĀB) and
P ,S,Qj are polynomial functions of their arguments,
with real coefficients depending smoothly on τ for τ ≈
τk. The principal part of (34) is a cubic polynomial in
A,B,C1, . . . , CN , their conjugates, and D. Higher order
terms are O(‖Ṽc‖4 + ‖Ṽc‖ |D| (‖Ṽc‖2 + D2)). Equation
(34) is reversible under the symmetry R restricted to Dc

R : (A,B,C1, . . . , CN , D) 7→ (Ā,−B̄, C̄1, . . . , C̄N , D),

and equivariant under the isometry σ restricted to Dc

σ = diag(e−2iπ
m0

p , e−2iπ
m0

p , e−2iπ
m1

p , . . . , e−2iπ
mN

p , 1).

The polynomials P , S in the normal form (34) have
the form

P = p0(τ) + r |A|2 + f I

+O(|D| + |τ − τk|‖(A,B)‖2 +O(‖(C1, . . . , CN )‖2),

S = s0(τ) + s |A|2 + g I

+O(|D| + |τ − τk|‖(A,B)‖2 +O(‖(C1, . . . , CN )‖2),

where r, s, f, g ∈ R and p0, s0 are real-valued functions
satisfying p0(τk) = s0(τk) = 0.

Small amplitude solutions of (34) correspond via the-
orem II.2 and equation (29) to solutions of the evolution
problem (17) having the form

U = Aζ0 +Bη0 +

N∑

j=1

Cjζj + c.c.+Dχ1 + qχ0

+ψ̃(A,B,C, Ā, B̄, C̄,D, τ), (35)

where C = (C1, . . . , CN ) and ψ̃ ∈ Cm(C2N+4 × R2, D̃)

satisfies ψ̃(0, τ) = 0, Dψ̃(0, τk) = 0. Note that ψ̃ has a
component on Dc due to the normal form transformation
(see [28]). We have in addition

dq

dx
= D + χ∗

1(ψ̃(A,B,C, Ā, B̄, C̄,D, τ)). (36)

The truncated normal form (in which higher order
terms are neglected) is integrable (|Cj |2, D and I are
first integrals), and its study directly follows from the
reversible 1:1 resonance case treated in [31]. Small am-
plitude solutions of the truncated normal form yield ap-
proximate (leading order) solutions of (17) (cancel in ψ̃

the terms of order higher than 3 in (A,B,Cj , D) in (35),
(36)). For obtaining exact solutions one has to prove
the persistence of a given class of solutions of the normal
form when higher order terms are taken into account in
(34). This problem is specially difficult in the case of
homoclinic solutions, as we explain in the next section.

3. Homoclinic solutions of the normal form system

For τ ≈ τk and τ < τk, s0(τ) > 0 and the linearized

operator L̃τ has four symmetric hyperbolic eigenvalues
±√

s0 ± i(λ0 + p0) close to ±iλ0. The truncated normal
form possesses orbits homoclinic to 0 related to these
pairs of eigenvalues if s < 0. These solutions are given
by Cj = D = 0 and

A(x) = r0(x)e
i(λ0x+ψ(x)+θ), B(x) =

dr0
dx

ei(λ0x+ψ(x)+θ),

where θ ∈ R and

r0(x) =

√
2s0
−s

1

cosh (
√
s0 x)

,

ψ(x) = p0x+ 2
r

s

√
s0 tanh (

√
s0 x).

These orbits are reversible under R if one chooses θ equal
to 0 or π.

Following the classical normal form computation
scheme (see [29] p. 457), we find

s =
λ4

0

(τ2
k − 1)2

(
4α2

(
1 − 1

2τ2
k

)
− 3β

(
1 − 1

τ2
k

) )
. (37)

The limit k → +∞ in (37) corresponds to travelling
breather velocities decaying to 0, since their inverses
τk → +∞. As k → +∞, s converges towards the fi-
nite value s∞ = 16(4α2 − 3β) (use (25)). The condition
s∞ < 0 is equivalent to the condition b = 3β − 4α2 > 0
for the existence of small amplitude static breathers in
the FPU chain [32], [33].

We now discuss the sign of s in more detail (we assume
that at least one of the coefficients α, β is nonzero).

For an even potential V (α = 0), s has the sign of
−β and orbits homoclinic to 0 exist (for the truncated
normal form) in the hard potential case β > 0.

The situation is more complex if α 6= 0. We note that
s has the same sign as −b + c2k(b + 2α2), where ck(p) =
1/τk(p) densely covers the interval [0, 1] for p, k ≥ 1.

On the one hand, if b < 0 one obtains s > 0 (since
ck < 1) and orbits homoclinic to 0 do not exist for the
truncated normal form. This is the case in particular for
β ≤ 0 (case of ”dark breathers”, by analogy with dark
solitary waves).

On the other hand, if b > 0 the condition s < 0 is
satisfied on the velocity interval 0 ≤ ck < cmax, where

c2max =
b

b+ 2α2
< 1.
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We now discuss the question of persistence of reversible
solutions homoclinic to 0, as higher order terms are taken
into account in the normal form. For that purpose we
restrict the flow of (34) to one on the invariant manifold
D = 0.

In the general case the persistence problem discussed
along these lines is still an open question. Relevant tools
for this problem are described in references [42], [30].

The particular case N = 1, in which there is only one
pair of purely imaginary eigenvalues ±iλ1 in addition to
weakly hyperbolic ones, is denoted as (iλ0)

2iλ1 resonance
and has been treated in [42]. This case arises only for
p = 1, i.e. for a certain type of travelling wave solu-
tions of (11). Under suitable nonresonance conditions on
the eigenvalues, reversible solutions of the normal form,
which are homoclinic to periodic orbits, persist above a
critical orbit size, which is exponentially small with re-
spect to |τ−τk|. On the contrary, reversible orbits homo-
clinic to 0 do not persist generically for the full normal
form when higher order terms are taken into account.

In what follows we shall examine the general case N ≥
1 intuitively using formal geometric arguments. Since
the phase space is now 2N + 4-dimensional (with D =
0), the subspace Fix(R) is N + 2-dimensional and the
stable manifold W s(0) of the origin (for τ < τk) is 2-
dimensional, the intersection of Fix(R) and W s(0) (at a

point Ṽc 6= 0) should be a phenomenon of codimension
N . In particular, the lowest codimension value is p and
occurs at τ ≈ τ1. Consequently, one can expect that
reversible solutions homoclinic to 0 should not persist
generically for the full normal form (34).

By analogy with the (iλ0)
2iλ1 resonance case [42], we

expect the splitting size between Fix(R) and W s(0) to
be exponentially small as τ → τk. Exponential smallness
can be intuitively understood in the sense that (under
suitable nonresonance assumptions) the truncated nor-
mal form of (30) at any order admits solutions homoclinic
to 0 (the normal form structure is the same as (34)).

Note that one could allow for an additional degree of
freedom by searching orbits homoclinic to nonzero equi-
libria, D ≈ 0 being treated as a free paramete (this is in
connection with Remark 1).

In addition to solutions homoclinic to 0 (for s < 0,
τ ≈ τk and τ < τk), the truncated normal form admits
reversible solutions homoclinic to small quasi-periodic or-
bits, corresponding to |Cj | = const, j = 1, ..N . Similar
solutions exist around nonzero equilibria, provided D is
small enough (D = o(|τ − τk|). By analogy with the
(iλ0)

2iλ1 resonance case [42], we conjecture for the full
normal form the existence of reversible orbits homoclinic
to N -dimensional tori, whose sizes could be made expo-
nentially small with respect to |τ − τk|.

Special features arise in the case p = 2 and τ ≈ τ1
(N = 2) if the interaction potential V of (11) is even. Due
to the additional invariance un → −un of (11), equation
(17) is also invariant under the symmetry −σ. Fixed
points of −σ correspond to solutions of (11) satisfying
un+1(t) = −un(t−τ). If one considers the reduced equa-

tion (30) on the invariant subspace Fix(−σ), one pair
of purely imaginary eigenvalues ±iλ2 (corresponding to
m = 0 in (21) and an eigenvector ζ2 invariant under σ) is
removed. One has also χ∗

1(Wc) = 0 on Fix(−σ) (since χ1

is invariant under σ), hence the eigenvalue 0 is removed.
The invariant subspace Fix(−σ) contains the stable and
unstable manifolds of 0 and one recovers the (iλ0)

2iλ1

resonance case (both eigenvalues corresponding to m = 1
in (21)). In addition we note that Ic = 0 on Fix(−σ) (Ic
is invariant under σ and commutes with −I).

Consequently, reversible solutions under R or −R, ly-
ing on Fix(−σ) and homoclinic to periodic orbits persist
above a critical orbit size, which is exponentially small
with respect to |τ − τ1|. On the contrary, reversible or-
bits homoclinic to 0 should not persist generically for the
full normal form when higher order terms are taken into
account.

This reduction procedure generalises to the case when
p is even (V being symmetric), the relevant symmetry
being −σp/2. However, for τ ≈ τ1 there remain p/2 pairs
of simple imaginary eigenvalues in addition to the two
weakly hyperbolic pairs, and we have no existence result
for p ≥ 4.

4. Travelling breather solutions

The solutions of the truncated normal form yield ap-
proximate (leading order) solutions of (15)

yn(x) ≈ A(x) ie−2iπm0n/p +

N∑

j=1

(Cj(x) ie
−2iπmjn/p)

+c.c.+ q(x), (38)

with dq
dx = D (principal part of equation (36)). Corre-

sponding approximate solutions of the FPU system (11)
read un(t) ≈ yn(n− t/τ).

Leading order solutions of the normal form, which are
homoclinic to small quasi-periodic orbits, should consti-
tute the principal part of travelling breather solutions
of system (11), superposed at infinity on a quasiperiodic
oscillatory tail and a uniformly stretched or compressed
state (even for D = 0, due to the ψ̃ contribution in (36)).
We sum up our findings in the following theorem (we ex-
clude the case p = 1 corresponding to travelling waves).

Theorem II.4 Fix p ≥ 2 in (2), k ≥ 1 and consider
the near-critical case τ ≈ τk(p), and assume m0 6= 0.
Assume the nonresonance condition (33) holds. Assume
s < 0, τ sufficiently close to τk with τ < τk, and D ≈ 0
(D = o(|τ − τk|). The reduced equation (32) written in
normal form and truncated at order 4 admits a N + 1−
parameter family of orbits homoclinic to N -dimensional
tori with N = p+ 2(k − 1).

Remark 2: Such solutions should correspond to the
principal part of travelling breather solutions of system
(11), satisfying the commensurability condition (2), and
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superposed at infinity on both a quasiperiodic oscillatory
tail and a uniformly stretched or compressed state.

This result is the first step in the proof of the exis-
tence of exact travelling breather solutions superposed
on an exponentially small oscillatory tail. For obtaining
exact solutions of (11) one has to prove the persistence of
the above mentioned homoclinic solutions of (34) without
h.o.t., when higher order terms are taken into account.
This problem is still open in the general case N ≥ 1 but
can be solved in a particular case.

Remark 3: In the case when m0 = 0, we obtain a
principal part invariant under σ, hence a travelling soli-
tary wave superposed on small oscillating pulsating trav-
elling waves.

Theorem II.5 Assume p = 2, s < 0 and τ ≈ τ1 with
τ < τ1. Moreover assume that the potential V is even.
Equation (17) is invariant under the symmetry −σ. The
full reduced equation (30) restricted to Fix(−σ) admits
small amplitude reversible solutions (under ±R) homo-
clinic to periodic orbits. For a fixed value of τ (and
up to a shift in x), these solutions occur in a one-
parameter family parametrized by the amplitude of pe-
riodic orbits. The lower bound of these amplitudes is

O(e−c/|τ−τ1|
1/2

) (c > 0). These solutions correspond to
exact travelling breather solutions of system (11) super-
posed at infinity on an oscillatory (periodic) tail and sat-
isfying un+1(t) = −un(t− τ).

Note that the existence of modulated plane waves in
FPU chains has been studied by Tsurui [64] using for-
mal multiscale expansions. Under this approximation,
the wave envelope satisfies the NLS equation. The con-
dition obtained by the author for the existence of NLS
solitons (with group velocity ω′(q) = 1/τk) is exactly the
condition s < 0 derived above.

C. Case τ ≈ 1

This section is an extension of the study made in [27],
where only p = 1 was considered. Let us follow the same
lines as for τ ≈ τk. In the present case, following Lemma
II.1 for τ = 1 we have for the linear operator L1, in
addition to the p − 1 pairs of simple eigenvalues ±iλj
on the imaginary axis, a quadruple eigenvalue in 0, with
eigenvectors

(χ0)n = (1, 0, 1)T , (χ1)n = (0, 1, v)T ,

(χ2)n = (0, 0, v2/2)T , (χ3)n = (0, 0, v3/6)T ,

which satisfy

L1χ0 = 0, L1χj = χj−1, j = 1, 2, 3

Rχ0 = −χ0, Rχ1 = χ1, Rχ2 = −χ2, Rχ3 = χ3.

The spectral projection on the 4-dimensional generalized
eigenspace belonging to 0 has the form

P0U =
∑

0≤j≤3

χ∗
j (U)χj ,

where

Un = (yn, ξn, Yn)
T , χ∗

j (χi) = δij ,

χ∗
0(U) =

2

5p

∑

1≤n≤p

(
yn −

∫ 1

−1

GYndv

)
,

G(v) = 1 − |v| − 5(1 − |v|)3,

χ∗
1(U) = χ∗

0(L1U) =
2

5p

∑

1≤n≤p

(
ξn +

∫ 1

−1

G′Yndv

)
,

χ∗
2(U) = χ∗

1(L1U) =
−12

p

∑

1≤n≤p

(
yn −

∫ 1

−1

FYndv

)
,

χ∗
3(U) = χ∗

2(L1U) =
−12

p

∑

1≤n≤p

(
ξn +

∫ 1

−1

F ′Yndv

)
,

where we note that for v 6= 0, G′′ = −30F = −30(1−|v|),
and χ∗

3(L1U) = 0.

1. Center manifold reduction

In the same way as in section II B we use the decom-
position of any U ∈ Hp as

U = W + qχ0, χ∗
0(W ) = 0,

and we obtain a system (28), (29), where the operator

L̃ acting in H̃ has the same spectrum as L1 except that
the eigenvalue 0 is triple (eigenvector χ1). Theorem II.2
still applies in this case, replacing τk by 1, Wc lies in a
2(p-1)+3 - dimensional space, and the first integral (18)
becomes

Ic(Wc, τ) = − 1

12
Iτ (Wc + ψ(Wc, τ))

= χ∗
3(Wc) +O(||Wc||2 + (|τ − 1|)||Wc||).

2. Normal form

Following the same structure as in section II B, we de-
compose Wc as follows

Wc = dχ3 + Vc, χ∗
3(Vc) = 0,

and use coordinate D instead of d, where, as above

D = Ic(Wc, τ), d = ϕ3(D,Vc, τ),

ϕ3(D,Vc, τ) = D +O(‖(D,Vc)‖2 + |τ − 1|‖(D,Vc)‖).

Then system (32) is still valid, except that

G(0, D, τ) 6= 0
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since the line of solutions for (28) is Rχ1 and not Rχ3.
As above, D and τ are treated as parameters, and 0 is
now a double eigenvalue of the linearized system in Vc,
for τ = 1, D = 0. Then we have the following (see [27],
[28] where the invariant D corresponds there to the first
integral H of the normal form)

Lemma II.6 Assume strong resonances do not occur at
τ = 1, i.e. property (33) is satisfied for λj , j = 1, ...p−1.

Denoting by A,B the components of Ṽc (after the poly-
nomial change of variables) along χ1 and χ2, the normal
form of (32) at order 3 reads

dA

dx
= B

dB

dx
= D +Aφ(A,Q,D, τ) + h.o.t. (39)

dCj
dx

= iλjCj + iCjQj(A,Q,D, τ) + h.o.t.

dD

dx
= 0,

(Cj is considered for j = 1, . . . p−1), where Q denotes the
vector Q = (|C1|2, . . . , |CN |2), and φ and Qj are polyno-
mial functions of their arguments A,B,Cj , D, with real
coefficients depending smoothly on τ for τ ≈ 1. The prin-
cipal part of (39) is a cubic polynomial in C1, . . . , CN ,
their conjugates, and A,B,D. Higher order terms are
O(‖Ṽc‖4 + ‖Ṽc‖ |D| (‖Ṽc‖2 +D2)). Equation (39) is re-
versible under the symmetry R restricted to Dc

R : (A,B,C1, . . . , CN , D) 7→ (A,−B, C̄1, . . . , C̄N , D),

and equivariant under the isometry σ restricted to Dc

σ = diag(1, 1, e−2iπ
m1

p , . . . , e−2iπ
mN

p , 1), N = p− 1.

The polynomial φ has the form

φ(A,Q,D, τ) = ν + aA+

+bA2 +
∑

1≤j≤p−1

bj|Cj |2

where ν, a, b, bj are smooth functions of (D, τ) near (0, 1),
and ν(D, 1) = 0,

ν(D, τ) = 24(1 − τ){1 +O(|D| + |1 − τ |)},
a(D, τ) = −12α{1 +O(|1 − τ |)} +O(|D|),
b(D, τ) = −12β{1 +O(|1 − τ |)} +O(|D|), if α = 0.

(see [27] for the computation of the coefficients a and b).
Small amplitude solutions of (39) correspond, via theo-
rem II.2 and equation (29) to solutions of the evolution
problem (17) having the form

U = Aχ1 +Bχ2 +

N∑

j=1

Cjζj + c.c.+Dχ3 + qχ0

+ψ̃(A,B,C, C̄,D, τ), (40)

where C = (C1, . . . , Cp−1) and ψ̃ ∈ Cm(R2 × C2p−2 ×
R2, D̃) satisfies ψ̃(0, τ) = 0, Dψ̃(0, 1) = 0. Note that ψ̃
has a component on Dc due to the normal form transfor-
mation (see [28]) and that the line of steady solutions of
(28) corresponds to

B = 0, D +Aφ(A, 0, D, τ) + h.o.t. = 0

which gives a component on χ3 anihilated by
ψ̃(A, 0, 0, 0, D, τ). We have in addition

dq

dx
= A+ χ∗

1(ψ̃(A,B,C, C̄,D, τ)). (41)

The truncated normal form (in which higher order
terms are neglected) is integrable (|Cj |2 and D are first
integrals), and its study directly follows from the re-
versible 02+ singularity case (see for example [28]). Small
amplitude solutions of the truncated normal form yield
approximate (leading order) solutions of (17) (cancel in ψ̃
the terms of order higher than 3 in (A,B,Cj , D) in (40),
(41)). For obtaining exact solutions one has to prove
the persistence of a given class of solutions of the normal
form when higher order terms are taken into account in
(39).

3. Homoclinic solutions of the normal form system

For τ ≈ 1 and τ < 1, then ν > 0 and the linearized

operator L̃τ has one simple eigenvalue 0, and a pair of
real symmetric eigenvalues ±√

ν near 0. For 4aD < ν2,
the truncated normal form (39) possesses two equilibria
(A = A±

0 , B = 0, Cj = 0), one hyperbolic, one elliptic,
and an orbit homoclinic to the hyperbolic equilibrium.
For D = 0, and α 6= 0 this orbit is homoclinic to 0 and
given by

A(x) = − 3ν(0, τ)

2a(0, τ) cosh2(ν1/2x/2)
,

B(x) = A′(x), Cj = 0, j = 1, ...p− 1.

For α = 0, τ < 1 and b < 0, and D = 0, orbits homoclinic
to 0 are given by

A(x) = ± (−2ν/b)1/2

cosh(ν1/2x)
,

B(x) = A′(x), Cj = 0, j = 1, ...p− 1,

while for α = 0, τ > 1 and b > 0 we have for D = 0 a
pair of symmetric front solutions , given by

A(x) = ±(−ν/b)1/2 tanh((−ν/2)1/2x),

B(x) = A′(x), Cj = 0, j = 1, ...p− 1,

while for D 6= 0 we have orbits homoclinic to one of the
two hyperbolic fixed points (see [27] for the details with
respect to the dependency in function of D).
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It is shown in [27] that all the homoclinics and front
solutions of the normal form persist when one considers
the complete system, when p = 1, i.e. when we only
look for travelling waves. This also corresponds to the
persistence of such solutions for larger p, in considering
solutions in the subspace invariant under the mapping σ.

Now, we see that the cubic normal form also admits
a family of orbits homoclinic to quasi-periodic solutions,
with |Cj | = const where these constants are small enough
(change ν in the above formulas into ν +

∑
bj |Cj |2). As

for the case τ ≈ τk, we are not able to prove the per-
sistence of such homoclinics, except for the case p = 2
where there is only one coordinate C1 ∈ C: in such a
case we recover the study made in [42] of the reversible
02+iλ1 singularity of a reversible vector field, where there
exists a family of two reversible orbits homoclinic to pe-
riodic orbits, provided that their size is not smaller than
a quantity which is exponentially small with respect to
|1 − τ |. Note that in this latter case, the action of the
map σ exchanges the two orbits in changing C1 into −C1,
and that the orbit homoclinic to 0 persists, due to its in-
variance under σ.

4. Solitary waves superposed to small oscillatory pulsating
travelling waves

The solutions of the cubic normal form yield approxi-
mate solutions with leading order

yn(x) =
∑

1≤j≤p−1

Cj(x)ie
−2iπmjn/p + c.c.+ q(x)

dq

dx
= A(x)

and corresponding solutions of the FPU system (11) read
un(t) ≈ yn(n− t/τ).

Leading order solutions of the normal form, which are
homoclinic to small quasi-periodic orbits, should consist

in a principal part of solitary waves, solutions of system
(11), superposed to a quasiperiodic oscillatory pulsating
travelling wave, and to a uniformly stretched or com-
pressed state (see (41)). We sum up our findings in the
following theorem (we exclude the case p = 1 correspond-
ing to travelling waves).

Theorem II.7 Fix p ≥ 2 in (2), and consider the near-
critical case τ ≈ 1. Assume the nonresonance condition
(33) holds. Assume τ sufficiently close to 1, and D ≈ 0
(D = o(|τ − 1|). In the general case, the reduced equa-
tion (32) written in normal form and truncated at or-
der 4 admits p− parameter family of orbits homoclinic
to p − 1-dimensional tori. In the case of an even and
hardening potential, we have for τ < 1 a p− parameter
family of symmetric homoclinics to (p−1)− dimensional
tori, while in case of an even softening potential, we have
for τ > 1 a (p−1)− parameter family of symmetric fronts
connecting symmetric (p − 1)− dimensional tori, in ad-
dition to a p− parameter family of orbits homoclinic to
(p − 1)− dimensional tori. For p = 2, the above result
holds in replacing the tori by periodic orbits, and holds
true for the full system. The lower bound of the ampli-
tudes of limiting periodic orbits is O(e−c/|τ−1|), (c > 0).
These last solutions are superpositions of a solitary wave
or a front, solution of system (11), with small oscillatory
pulsating travelling waves.

Remark 2 above is still valid for p ≥ 3, i.e. such so-
lutions should correspond to a pure travelling principal
part solution of system (11), superposed on both a small
quasiperiodic oscillatory pulsating travelling wave and a
uniformly stretched or compressed state.
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J. Sprekels, editors, International Conference on Differ-
ential Equations Appl., 5 (1), 69-82 (1998).

[57] Y. Sire, G. James. Travelling breathers in Klein-Gordon
chains, C. R. Acad. Sci. Paris, Ser. I 338, 661-666 (2004).

[58] Y. Sire, G. James. Computation of large amplitude trav-
elling breathers in Klein-Gordon chains, in preparation
(2004).

[59] Y. Sire. Travelling breathers in Klein-Gordon lattices as
homoclinic orbits to p-tori. In preparation.

[60] D. Smets, M. Willem. Solitary waves with prescribed
speed on infinite lattices, J. Funct. Anal. 149, 266-275
(1997).

[61] J. Szeftel, G. Huang and V. Konotop. On the existence
of moving breathers in one-dimensional anharmonic lat-
tices, Physica D 181, 215-221 (2003).

[62] S. Takeno and K. Hori. A propagating self-localized mode
in a one-dimensional lattice with quartic anharmonicity,
J. Phys. Soc. Japan 59, 3037 (1990).

[63] A.J. Sievers and S. Takeno. Intrinsic localized modes in
anharmonic crystals, Phys. Rev. Lett. 61, 970-973 (1988).

[64] A. Tsurui. Wave modulations in anharmonic lattices,
Progress of Theoritical Physics, 48 , number 4, 1196-1203
(1972).

[65] A. Vanderbauwhede, G. Iooss. Center manifold theory in
infinite dimensions. Dynamics reported 1, new series,125-
163 (1992).


