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We introduce a class of propagation invariant spatiotemporal optical wave packets with spherical harmonic

symmetries in their field configurations. The evolution of these light orbitals is considered theoretically in

anomalously dispersive media, and their spinning dynamics are analyzed in terms of their corresponding energy

flows. Similarly, localized waves generated via spherical superposition from Archimedean and Platonic solids in
�k-ω space are investigated in this work.

DOI: 10.1103/PhysRevA.86.063811 PACS number(s): 42.25.Fx, 42.25.Hz, 42.25.Bs

I. INTRODUCTION

The evolution dynamics of propagation invariant optical

fields have recently attracted considerable attention within

the optics community [1–10]. Undoubtedly, this area grew

in earnest after the first demonstration of optical Bessel

beams by Durnin et al. in 1987 [1,2]. Since then, other

groups of two-dimensional nondiffracting beams have been

reported in the literature [3–8]. In general, diffraction-free

beams can maintain their localized intensity features over

several Rayleigh lengths until aperture diffraction effects come

into play. Quite recently, accelerating nondiffracting Airy

wave packets have also been observed experimentally in one-

and two-dimensional configurations [8]. By now, such field

arrangements have been systematically used in several diverse

disciplines ranging from microparticle manipulation to plasma

channel generation to nonlinear optics [11–15].

In the spatiotemporal domain, the prospect for localized

waves that can simultaneously negotiate both dispersion and

diffraction effects in the bulk has been actively pursued by sev-

eral research groups in both the linear and nonlinear regimes

[16–18]. In general, an optical wave packet propagating in

a homogeneous dielectric medium will expand because of

diffraction effects while at the same time its temporal profile

will broaden because of dispersion. In the linear domain,

specific wave solutions are known to exist under normally

and anomalously dispersive conditions. For normal dispersion,

these solutions exhibit an X-wave structure [5,19]—a direct

outcome of the bidispersive nature of the underlying wave

equation [6]. In the anomalous domain, spherical O waves

[18,20] are allowed and Bessel-X pulses are possible under

specific conditions [21]; however, this constraint on the sign of

dispersion can be relaxed either under nonparaxial conditions

or when the velocity of the localized wave is largely different

from the medium’s linear group velocity. In fact, not only has

it been shown that a crossover from X to O waves can occur

in a dispersive medium, but localized waves that fit neither

category are also possible [22,23]. Recently, three-dimensional

(3D) Airy-Bessel bullets that are impervious to both dispersion
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and diffraction have been suggested [9] and successfully

demonstrated in dispersive media [24]. This versatile class of

optical wave packets was made possible by exploiting the fact

that nonspreading Airy waves can exist even in one dimension

(1D). This class of Airy-Bessel bullets is possible irrespective

of the dispersion properties of the material itself.

The quest for such spatiotemporal entities is clearly

intertwined with experimental capabilities of simultaneously

shaping their �k-ω spectra. Over the years, various techniques

have been developed to address these needs in either the spatial

or temporal domain [25,26]. Lately, methods that allow for the

generation of quasi-nondiffracting light beams with complex

transverse shapes have been suggested [27]. Further progress

in this area may pave the way towards the generation of other

exotic space-time waves with unique properties tailored for

particular light-matter interaction processes [28].

In this paper, we present a class of spatiotemporal wave

fronts that is possible under anomalously dispersive condi-

tions. Depending on their angular momentum numbers, these

wave packets exhibit polar and azimuthal symmetries akin to

those encountered in the quantum-mechanical wave functions

of a hydrogen atom. The dynamics of such states when they are

apodized are analytically studied along with their associated

energy flows. Other types of localized waves generated through

a spherical superposition from Archimedean and Platonic

solids in �k-ω space are also investigated in this work. The

possibility of spinning localized waves is considered and the

prospect for their realization is discussed.

II. PROBLEM FORMULATION AND ANALYSIS

In general, the primary electric field associated with a

wave packet can be expressed through a slowly varying

envelope via �E(�r,t) = ûψ(�r,t) exp [i(k0z − ω0t)], where ω0

is the carrier angular frequency, k0 = ω0n(ω0)/c is the wave

number evaluated at ω0, and n(ω0) is the refractive index. The

spatiotemporal evolution of the envelope, ψ(�r,t), under the

combined action of diffraction and group-velocity dispersion

is known to obey the following evolution equation:

i
∂ψ

∂z
+ 1

2k

(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)

− k2

2

∂2ψ

∂τ 2
= 0, (1)
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where in (1), τ = t − z/vg is a time coordinate frame moving

at the wave’s group speed, vg , and k2 = ∂2k/∂ω2 represents

the dispersive coefficient of the homogeneous medium again

evaluated at ω0. The material is anomalously dispersive if

k2 < 0 and is normal if k2 > 0. The transverse spatial operators

in (1) account for diffraction effects, while the temporal

operator accounts for the action of dispersion. Equation (1) can

be judiciously scaled by normalizing the independent variables

involved in such a way that the diffraction length Ldiff = 2kd2

is equal to the corresponding dispersion length Ldisp = τ 2
0 /|k2|,

i.e., Ldisp = Ldiff. Here, d is an arbitrary length scale and τ0 is

associated with the pulse width of the wave packet. From this

point on, the material dispersion is taken to be anomalous in

our analysis. Under these assumptions, Eq. (1) takes the form

i
∂ψ

∂Z
+ ∂2ψ

∂X2
+ ∂2ψ

∂Y 2
+ ∂2ψ

∂T 2
= 0, (2)

where in (2) we have employed the set of normalized

coordinates and variables X = x/d, Y = y/d, Z = z/(2kd2),

and T = τ/τ0.

The aforementioned spatiotemporal wave packets can be

studied experimentally in anomalously dispersive bulk media

such as silica glass. Silica, at λ0 = 1550 nm, exhibits a

dispersive coefficient of k2 = −2.8 × 10−2 ps2/m. For this

example, such a dispersion-diffraction equalization (Ldiff =
Ldisp = 5.7 cm) is possible provided that the wave packet

generated from a transform limited femtosecond laser has the

parameters τ0 = 40 fs and d = 100 μm.

In what follows, we will derive the electromagnetic equa-

tions describing the internal power flow associated with a

spatiotemporal wave packet as a result of dispersion and

diffraction. This is necessary in order to comprehend the

underlying dynamics in such systems. With this in mind,

we employ a perturbative approach, valid within the slowly

varying envelope approximation and paraxial diffraction op-

tics. We start our analysis by writing the electric field as

a superposition of plane waves centered around a carrier

frequency, ω0. Without any loss of generality, the primary

electric-field component is taken here to be x̂ polarized. In this

case

�E = x̂

∫∫∫

F0(ω − ω0; kx,ky)

× exp[i(�k · �r − ωt)]dω dkx dky . (3)

This same field can also be expressed in terms of a slowly

varying envelope ψ , i.e., �E(�r,t) = x̂ψ(�r,t) exp [i(k0z − ω0t)].

Given that kz ≈ k − (k2
x + k2

y)/(2k) and that the wave number

can be expanded in a Taylor series around ω0, k ≈ k0 + k1� +
k2�

2/2 (where � = ω − ω0), one finds

ψ(�r,t) =
∫∫∫

F0(�; kx,ky) exp [i(kxx + kyy)]

× exp

[

− i

2k

(

k2
x + k2

y

)

z

]

exp

[

i

(

k1� + k2

�2

2

)

z

]

× exp [−i�τ ] d�dkx dky, (4)

where v−1
g = k1. The associated longitudinal component of the

electric field can be then obtained from ∇ · �E = 0, leading to

a total (corrected to first order) electric field that is given by

�E =
(

x̂ψ + ẑ
i

k0

∂ψ

∂x

)

exp [i(k0z − ω0t)]. (5)

The primary magnetic field of this wave packet can be

obtained from the electric field through the material intrinsic

impedance η(ω) = η0/n(ω), where η0 = √
(μ0/ǫ0). Therefore

�H = ŷ

∫∫∫

F0(�; kx,ky)

η(ω)
exp [i(�k · �r − ωt)]dω dkx dky

= ŷ

∫∫∫

F0(�; kx,ky)

η0

(n0 + n1�) exp [i(kxx + kyy)]

× exp

[

− i

2k

(

k2
x + k2

y

)

z

]

exp

[

i

(

k1� + k2

�2

2

)

z

]

× exp [−i�τ ]d�dkx dky exp [i(k0z − ω0t)]

= 1

η0

ŷ

[

n0ψ + in1

∂ψ

∂τ

]

exp [i(k0z − ω0t)], (6)

where in (6) n(ω) = n(ω0 + �) and n1 = ∂n/∂ω at ω0. These

coefficients can, in principle, be evaluated from the corre-

sponding Sellmeier equation associated with the dispersive

medium. From ∇ · �H = 0, one can determine (to first order)

the longitudinal component of the magnetic field. The total

magnetic field is found to be

�H =
(

1

η0

ŷ

[

n0ψ + in1

∂ψ

∂τ

]

+ ẑi
n0

k0η0

∂ψ

∂y

)

× exp[i(k0z − ω0t)]. (7)

The power flow within the spatiotemporal wave packet can

now be established from Eqs. (5) and(7), i.e.,

−→
Sav = ẑ

n0

2η0

|ψ |2 − iẑ
n1

4η0

[

ψ
∂ψ⋆

∂τ
− ψ⋆ ∂ψ

∂τ

]

+ in0

4k0η0

[ψ∇⊥ψ⋆ − ψ⋆∇⊥ψ], (8)

where ∇⊥ = (∂2/∂x2)x̂ + (∂2/∂y2)ŷ. The last two terms in

Eq. (8) correspond to the relative power flow corrections.

The second term along ẑ is due to temporal effects, while

the ∇⊥ component accounts for the energy transport because

of transverse effects. We note here that the first term in

(8) represents the dominant contribution to the power flow.

Equation (8) can now be expressed in normalized units as

follows:

−→
Sav =

−→
S0 +

−→
Sr ,

−→
S0 = ẑ

n0

2η0

|ψ |2,
−→
Sr = −iẑ

n1

4η0τ0

[

ψ
∂ψ⋆

∂T
− ψ⋆ ∂ψ

∂T

]

+ in0

4k0η0d
[ψ∇̃⊥ψ⋆ − ψ⋆∇̃⊥ψ], (9)

where the transverse ∇̃⊥ operator involves the X and Y scaled

coordinates.

III. LOCALIZED WAVES WITH SPHERICAL

HARMONIC SYMMETRIES

Propagation invariant solutions to Eq. (2) can

be directly obtained via separation of variables in
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spatiotemporal spherical coordinates R,θ,φ, where

R2 = X2 + Y 2 + T 2. To do so, we write the solution as

ψ = ψ0G(R)P (θ ) exp(imφ) exp(−iα2Z). Direct substitution

of this latter form into (2) gives the following equations:

d

dθ

[

sin θ
dP

dθ

]

+ sin θ

[

ℓ(ℓ + 1) − m2

sin2 θ

]

P = 0, (10)

R2 d2G

dR2
+ 2R

dG

dR
+ [α2R2 − ℓ(ℓ + 1)]G = 0. (11)

It is interesting to note that a similar polar-azimuthal

differential equation [Eq. (10)] is encountered in the analysis

of hydrogen quantum orbitals. The solutions to the Legendre

equation (10) can be obtained in terms of the associated

Legendre polynomials P m
ℓ (γ ) of degree ℓ and order m, where

γ = cos θ . Equation (11), on the other hand, has spherical

Bessel function solutions jℓ(αR) = √
π/(2αR)Jℓ+1/2(αR)

which can be expressed in terms of elementary functions since

ℓ belongs to the natural numbers. Therefore, invariant solutions

to Eq. (2) are given by

ψB =
√

2πψ0jℓ(αR)P m
ℓ (cos θ ) exp [imφ]e−iα2Z, (12)

where ψ0 is a constant amplitude. Akin to the two angular

momentum quantum numbers in the hydrogen atom, the

integer index ℓ takes values from the set ℓ = 0,1,2, . . . ,

while the integer order m is constrained in the range |m| � ℓ.

We note that, in general, these solutions depend on how the

spherical coordinate system is oriented with respect to the

X,Y,T axes. If, for example, the T coordinate coincides with

the spherical polar axis, then θ = arctan (
√

X2 + Y 2/T ) and

φ = arctan (Y/X). In principle, however, the spherical polar

axis can be oriented in any direction (for example, along X

or Y ). This choice has an important effect on the associated

relative internal power flows
→
Sr . In this case, the vorticity

arising from the term exp[imφ] takes on a whole new physical

meaning in space-time.

The simplest possible member in this family of solutions

given by Eq. (12) is obtained when ℓ = m = 0. This lowest

state has no internal spin and because it is like hydrogen’s

“s” orbital we call it an s wave. An isointensity contour plot

of this wave packet is depicted in Fig. 1(a). This wave is

evidently spherical and its field follows a j0(R) ∝ sin R/R

radial distribution. As a result, its intensity structure involves

concentric spherical shells as shown in Fig 1(b), which

(a) (b)

FIG. 1. (Color online) (a) Intensity isosurface plots of an ℓ =
m = 0 localized wave. (b) Intensity cross section reveals the j0(R) ∝
sin R/R profile of this “s” state.

(a) (b)

FIG. 2. (Color online) (a) Intensity isosurface plots of an

ℓ = 1, m = 0 localized wave. (b) Intensity cross section of “p” shell

for X = 0.

represents a cross section of this localized wave in the Y -T

plane. We note that this specific s member is identical to

the so-called ‘‘o wave” previously obtained in other studies

[18,20]. Figure 2(a), on the other hand, shows an isointensity

plot of a space-time localized wave when ℓ = 1, m = 0, in

which case it corresponds to a pT -like orbital. The structure

of this solution is no longer spherical and lacks spin since

m = 0. Note that this same state can be arbitrarily oriented in

the X,Y,T system. A cross section of this solution at X = 0

[Fig. 2(b)] reveals the finer structure in its field distribution.

As in the case of s waves these solutions exhibit infinitely

many rings in sharp contrast to the quantum orbitals of

hydrogen. This is because in our case the Coulombic potential

is not involved. Similarly, px and py waves can be generated

from the same “quantum” numbers ℓ = 1, m = 0. By further

increasing the ℓ number, localized waves of higher symmetries

can be generated similar to the ones depicted in Fig. 3.

In particular, when ℓ = 2 and m = 0 [Fig. 3(a)] the propa-

gation invariant wave packet corresponds to the dT T group

(d orbitals). Similarly, an f -symmetric spatiotemporal wave

packet with ℓ = 3, m = 0 is shown in Fig. 3(b).

If we assume a state with finite spin (m 	= 0), an internal

power flow will be present in the wave packet arising from

its exp[imφ] dependence. Figure 4(a) depicts the isointensity

plot of an ℓ = m = +2 wave, while Fig. 4(b) shows its

corresponding internal power circulation,
→
Sr , which happens

in this case to be clockwise. As would be anticipated, for

m = −2 we obtain the same isointensity plot, while the power

circulation is counterclockwise [Fig. 4(c)].

This leads to the possibility of realizing superpositions

(e.g., exp[+imφ] + exp[−imφ]) of spatiotemporal entities

that share the same ℓ number and opposite “spin” numbers, m.

If, for example, ℓ = 2 and m = ±1, the wave packet will have

a fourfold symmetry [Fig. 5(a)] and it will be dYT symmetric.

On the other hand, a dXY -symmetric wave function will be

similar to the one shown Fig. 5(b) for characteristic indices

ℓ = 2 and m = ±2.

In principle, a superposition of two such spatiotemporal

localized waves that have identical “quantum numbers,” ℓ and

m, but with slightly different propagation constants (α1 ≈ α2)

can lead to a “breathing” wave packet. If, on the other hand,

063811-3



M. S. MILLS et al. PHYSICAL REVIEW A 86, 063811 (2012)

(a) (b)

(c) (d)

FIG. 3. (Color online) Intensity isosurfaces corresponding to

higher order localized waves having m = 0 when (a) ℓ = 2, (b) ℓ = 3,

(c) ℓ = 4, and (d) ℓ = 7.

these two wave packets exhibit opposite spins, ±m, then

the resulting intensity pattern rotates during propagation with

period of Z0 = 2π/|α2
2 − α2

1 |. This behavior is illustrated in

(a)

(b) (c)

FIG. 4. (Color online) (a) Intensity isosurfaces of an ℓ = 2;

m = ±2 localized wave. (b) Top view of power circulation when

m = +2. (c) Power circulation in this same state when m = −2.

(a) (b)

FIG. 5. (Color online) Superimposing localized waves with

ℓ = 2; m = ±m0. (a) Intensity isosurfaces with m0 = 1. (b) Isosur-

faces with m0 = 2.

Fig. 6 where a spinning localized wave was generated with two

almost degenerate states having ℓ = 2, m = ±2, and α1 ≈ α2.

IV. PROPAGATION DYNAMICS OF ENERGY

APODIZED LOCALIZED WAVES

It is straightforward to show that the localized waves pre-

sented in this paper carry infinite energy. In other words, these

spatiotemporal waves happen to be dispersion-diffraction free

because they are associated with an infinite norm (very much

like plane waves). In practice, any localized wave can only

involve finite energy. As a result, it is important to study

the dynamics of this family of optical waves when they

are appropriately apodized since it is necessary for their

generation. In this case, a truncated localized wave is expected

to eventually expand in space and time depending on the degree

of the apodization itself. Nevertheless, the bigger the space-

time aperture, the longer these localized waves will maintain

their features and the slower they will deteriorate or expand.

In this section, we assume that the apodization is carried out

in a Gaussian fashion [3,29]. To analyze these dynamics,

we recall that in all cases the electric-field envelope obeys

Eq. (2). We also note that in 3D a Gaussian wave packet of the

form G(X,Y,T ; Z = 0) = exp(−R2/w2) satisfies Eq. (2) and

FIG. 6. (Color online) A rotating localized wave.
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evolves according to the analytical solution:

G(X,Y,T ; Z) = 1

μ3/2(Z)
exp

(

−X2 + Y 2 + T 2

w2μ(Z)

)

, (13)

where μ(Z) = 1 + 4iZ/w2. Let us now assume that a certain

envelope, ψ̃(X,Y,T ; Z), satisfies Eq. (2). In that case, it is

straightforward to show that its Gaussian apodized counterpart

also satisfies Eq. (2); that is,

ψ(X,Y,T ; Z) = 1

μ3/2(Z)
exp

( −R2

w2μ(Z)

)

ψ̃(X̃,Ỹ ,T̃ ; Z̃),

(14)

where the new coordinates appearing in Eq. (14) have

been renormalized with respect to μ(Z), i.e., (X̃,Ỹ ,T̃ ,Z̃) =
(X,Y,T ,Z)/μ(Z). Equation (14) is general and holds in all

cases. In the specific case of the apodized localized waves

discussed here, (14) leads to

ψ = 1

μ3/2(Z)
exp

( −R2

w2μ(Z)

)

ψ0

√
2πjℓ(αR̃)P m

ℓ (cos θ̃ )

× exp [imφ̃] exp [−iα2Z̃], (15)

where the spherical coordinates (R̃,θ̃ ,φ̃) are associated with

the coordinates (X̃,Ỹ ,T̃ ; Z̃) and are given by the relations

R̃ = R/μ(Z), θ̃ = θ , and φ̃ = φ. Figure 7 displays a Y = 0

intensity cross section at different diffraction lengths for

Eq. (15) with ℓ = 2, m = 0, α = 1, ψ0 = 1, and w = 2.

As Fig. 7 clearly indicates, the apodized wave packet

eventually expands during propagation. This expansion can of

course be slowed down by increasing the Gaussian apodization

width, w.

V. LOCALIZED WAVES RESULTING FROM A SPHERICAL

SUPERPOSITION ON ARCHIMEDEAN

AND PLATONIC SOLIDS

In general, any nonspreading spatiotemporal wave packet

can be synthesized through a suitable superposition of

“plane-wave solutions” in the normalized KX,KY ,�̄ space

as long as these points lie on a sphere (where in this

last expression �̄ = �τ0). This can be understood from

Eq. (2), by adopting invariant solutions of the form ψ =
exp (−iα2Z) exp [i(KXX + KY Y − �̄T )]. For this case K2

X +
K2

Y + �̄2 = α2, i.e., the KX, KY , and �̄ points should indeed

lie on a sphere of radius α. Therefore, any superposition of

such plane-wave solutions will also remain invariant as long

as they share the same sphere of radius α in reciprocal space.

Following this approach, infinitely many realizations of such

invariant localized waves are attainable. One such possibility

is to consider polyhedra that happen to be inscribable on a

sphere such as the Platonic or Archimedean solids. In this

case, the field envelope of the localized wave resulting from

this superposition can be obtained by

ψB = exp (−iα2Z)
∑

j

exp (i �Qj · �R), (16)

where �Qj represents the reciprocal vertices �Q = (KX,KY ,

−�̄) on this sphere. Figure 8(a) displays the vertices of

(a)

(b)

(c)

FIG. 7. (Color online) Propagation dynamics of an apodized

localized wave with ℓ = 2; m = 0 after a normalized distance of

(a) Z = 0, (b) Z = 2.66, and (c) Z = 4. Values are normalized to the

maximum value of the wave which occurs at Z = 0.

a Platonic regular hexahedron on a reciprocal space unit

sphere occupying the sites (±1/
√

3,±1/
√

3,±1/
√

3). Sim-

ilarly, the vertices corresponding to an octahedron and dodec-

ahedron are depicted in Figs. 8(b) and 8(c). The respective

isointensity plots of the spatiotemporal wave packets that

are generated from these three polyhedra are shown in

Figs. 8(d)–8(f).
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(a) (d)

(b) (e)

(c) (f)

FIG. 8. (Color online) The vertices of a (a) regular hexahedron,

(b) octahedron, and (c) dodecahedron inscribed in a Q sphere.

(d)–(f) The corresponding isointensity patterns generated from these

arrangements.

VI. FOURIER SPECTRA OF APODIZED

SPATIOTEMPORAL LOCALIZED WAVES

Fourier spectra provide valuable physical insight not

only about the structure of diffraction-dispersion-free waves,

but also dictate the requirements concerning their re-

alization in laboratory experiments. In this section, we

provide a general analytical expression for the Fourier

spectrum of a Gaussian apodized spatiotemporal wave

packet that obeys (2). More specifically we obtain the

spectrum at the origin Z = 0, in which case the initial

field envelope is given by ψ(X,Y,T ,Z = 0) = ψB(X,Y,T ,

Z = 0) exp (−R2/w2). In general, a nonspreading spatiotem-

poral wave packet can be described as a Fourier superpo-

sition of plane waves in spherical coordinates. Note that

in a spherical reciprocal space, KX = KR sin θ cos φ, KY =
KR sin θ sin φ,and �̄ = −KR cos θ . In addition, in this same

domain, the spatiotemporal frequencies of a nonspreading

wave packet satisfying (2) lie on the surface of a sphere,

K2
X + K2

Y + �̄2 = α2, hence its spectrum can be described

through the general function δ(KR − α)ζ (φ,θ ). In this case,

ψB(X,Y,T ; Z = 0) = 1

(2π )3

∫ ∞

0

∫ π

0

∫ 2π

0

dKR dφ dθ

×
[

K2
R sin θδ(KR − α)ζ (φ,θ )

]

× exp(iKR[X cos φ sin θ

+Y sin φ sin θ + T cos θ ]). (17)

Thus,

ψB(X,Y,T ; Z = 0)

= 1

(2π )3

∫ 2π

0

dφ

∫ π

0

dθ [ζ (φ,θ )α2 sin θ ]

× exp (iα[X cos φ sin θ + Y sin φ sin θ + T cos θ ]).

(18)

Given that this localized wave of (18) is apodized in a Gaussian

fashion with width, w, its Fourier transform can be obtained

from

�(KX,KY ,�̄)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dX dY dT exp

(

−X2 + Y 2 + T 2

w2

)

×ψB(X,Y,T ; Z = 0) exp [−i(KXX + KY Y − �̄T )].

(19)

Upon substituting (18) into (19) for ψB(X,Y,T ; Z = 0), all

terms which do not depend on X, Y , or T may be carried out

of the Fourier integral. Hence,

�(KX,KY ,�̄)

= 1

(2π )3

∫ 2π

0

dφ

∫ π

0

dθ [ζ (φ,θ )α2 sin θ ]

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

(

−X2 + Y 2 + T 2

w2

)

× exp (iα[X cos φ sin θ + Y sin φ sin θ + T cos θ ])

× exp [−i(KXX + KY Y − �̄T )]dX dY dT , (20)

where now in (20), KX, KY , and �̄ range from (−∞,∞).

By introducing the auxiliary reciprocal variables �X = KX −
α sin θ cos φ, �Y = KY − α sin θ sin φ, and �T = −�̄

−α cos θ , Eq. (20) becomes

�(KX,KY ,�̄)

= 1

(2π )3

∫ 2π

0

dφ

∫ π

0

dθ [ζ (φ,θ )α2 sin θ ]

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

(

−X2 + Y 2 + T 2

w2

)

× exp [−i(�XX + �Y Y + �T T )]dX dY dT . (21)

The Fourier integrations in (21) can now be performed and

lead to

�(KX,KY ,�̄) = 1

(2π )3

∫ 2π

0

dφ

∫ π

0

dθ [ζ (φ,θ )α2 sin θ ]

×w3π3/2 exp

[

−w2

4

(

�2
X + �2

Y + �2
T

)

]

.

(22)

Substituting the original expressions for the auxiliary pa-

rameters �X, �Y , and �T , Eq. (22) can be rewritten as

063811-6
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(a) (b) (c)

FIG. 9. (Color online) Isosurface spectrum plots of the ℓ =
m = 0 localized wave with various degrees of Gaussian apodization.

The spherical spectrum has been sectioned in half so that the shell

thickness can be viewed. (a) w = 5. (b) w = 10. (c) w = 20. In the

limit that w → ∞, the shell thickness becomes infinitesimally small,

representing the spectrum of the O wave.

follows:

�(KX,KY ,�̄) = w3π3/2e−(w2/4)(α2+K2
X+K2

Y +�̄2)

(2π )3

×
∫ 2π

0

dφ

∫ π

0

dθ [ζ (φ,θ )α2 sin θ ]

× exp

[

iα

(

w2

2i

)

(KX cos φ sin θ

+KY sin φ sin θ − �̄ cos θ )

]

. (23)

From (23) and (18), one finally obtains the Fourier spectrum of

these apodized waves, which is simply given in terms of their

original envelope ψB , where [X,Y,T ] → (w2

2i
)[KX,KY , − �̄].

Therefore, the end result is

�(KX,KY ,�̄) = (πw2)3/2e−(w2/4)(α2+K2
X+K2

Y +�̄2)

×ψB

(

w2

2i
KX,

w2

2i
KY ,−w2

2i
�̄

)

. (24)

Equation (24) states that if an invariant solution to (2) is

known, then the Fourier transform of its Gaussian apodized

version is immediately known. We now see that the Fourier

transforms of all the spherical harmonic localized waves

introduced in Sec. III can be readily obtained by combining

Eqs. (12) and (24). As an example, consider the simplest of

these, for which ℓ = m = 0, and whose field profile is given

by ψ0

√
2πj0(αR) = ψ0

√
2π sin (αR)/αR. Using (24) we

can immediately obtain the corresponding Gaussian apodized

Fourier spectrum:

�(KX,KY ,�̄) ∝ we−(w2/4)(α2+K2
R ) sinh (w2αKR/2)

αKR

, (25)

where K2
R = K2

X + K2
Y + �̄2. Three reciprocal space isosur-

faces for both the ℓ = m = 0 and ℓ = 1, m = 0 cases are

plotted for different degrees of Gaussian apodization (Figs. 9

(a) (b) (c)

FIG. 10. (Color online) Isosurface spectrum plots of the

ℓ = 1, m = 0 localized wave with various degrees of Gaussian

apodization. The spherical spectrum has been sectioned in half so

that the shell thickness can be viewed. (a) w = 5. (b) w = 10.

(c) w = 20.

and 10). As can be seen in Fig. 9, in the limit w → ∞,

the thickness of the surfaces becomes infinitesimally small,

thus approaching a radius of α. As expected, in this limit the

spectrum in Fig. 9 converges to the spectrum of the O wave

displayed in Fig. 1. This behavior can be readily understood

from Eq. (25). Meanwhile the spectrum of a pT -like orbital

that involves two lobes is displayed in Fig. 10.

VII. CONCLUSIONS

In this paper we have shown that a class of propagation

invariant localized waves is possible in anomalously dispersive

optical media provided that dispersion and diffraction effects

are initially equalized. These field configurations carry spher-

ical harmonic symmetries and can simultaneously negotiate

both dispersion and diffraction effects. This offers a robustness

that may be exploitable in diverse fields such as microscopy,

long-range signal processing, laser femtosecond writing, and

laser ablation. The dynamics of such states when they are

apodized in a Gaussian fashion was analytically studied along

with their associated energy flows. The spectra necessary

to generate these waves were analytically obtained. Finally,

other types of localized waves generated from Platonic and

Archimedean symmetries were examined. In principle, this

family of localized waves can also rotate in space-time around

a central axis, a feature that could be highly desirable in quasi-

nonlinear arrangements as, for example, in beam filamentation

studies.
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