
Frontiers in Human Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 209 | 1

HUMAN NEUROSCIENCE

REVIEW ARTICLE
published: 22 November 2010

doi: 10.3389/fnhum.2010.00209

From the cross-spectra S( f ) one can construct coherency matri-

ces C( f ), which are a normalized version of S( f ), as
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In contrast to the imaginary parts of the cross-spectra, (C( f )) 

also depends on independent sources through the denomina-

tor in Eq. 2. However, independent sources can only lead to a 

decrease of (C( f )) and hence also (C( f )) reflects true inter-

action even though the physiological interpretation is not trivial 

especially when interpreting differences of (C( f )), e.g., between 

different tasks.

Based on these observations we suggested a series of meth-

ods to identify and localize brain interactions (Meinecke 

et al., 2005; Nolte et al., 2006; Stam et al., 2007; Marzetti et al., 

2008; Nolte et al., 2009). Additionally, we proposed a method 

to  identify causal structures of the dynamical system under 

study (Nolte et al., 2008). We here give a brief review of some 

of these  methods (Nolte et al., 2006; Marzetti et al., 2008; Nolte 

et al., 2008) to identify interacting brain sources and to estimate 

causal  relationships. All the methods will be demonstrated using 

simulated data whose characteristics are defined in the following 

section.

2. SIMULATED INTERACTING NEURAL DATA

We simulated a seminal case with four dipolar sources as shown 

in Figure 1, in which the dipoles have all a parallel orientation 

and are spatially well separated. The sources on the right (left) are 

interacting with each other but not with the sources on the left 

(right). We thus considered two interacting subsystems. For both 

subsystems the source in the back served as driver while the activity 

1. INTRODUCTION

Electroencephalography (EEG) can directly measure ongoing 

brain activity with very high temporal but low spatial resolution. 

In the past decades the main focus was the analysis of event related 

potentials, i.e., the average brain response to a given stimulus. More 

recently, the variability of brain activity and especially its inter-

pretation as signatures from the brain as a dynamical network has 

attracted many researchers (Daglish et al., 2005; Womelsdorf and 

Fries, 2006; Buckner and Vincent, 2007; Damoiseaux and Greicius, 

2009; Fries, 2009; Miller et al., 2009).

Studying brain connectivity using noninvasive electrophysio-

logical measurements like EEG or MEG faces the challenge that the 

data are largely unknown mixtures of activities of brain sources.

To address this issue, we suggest to construct estimates of brain 

connectivity from quantities that are unbiased by non-interacting 

sources. For zero mean data1 the linear statistical signal properties 

can be determined by the cross-spectral matrices S( f ) defined as

S f x f x fij i j( ) ( ) ( )
*= 〈 〉

 
(1)

where x
m
(f) are the Fourier transforms at frequency f in channel m for 

a given segment or trial and 〈·〉 denotes the expectation value which 

is typically approximated by an average over the segments or trials.

It is straight forward to show that noninteracting sources do 

not contribute systematically, i.e., apart from random fluctuations 

around zero to the imaginary part of the cross-spectra, (S( f )), 

regardless of the number of sources and details of the forward map-

ping (Nolte et al., 2004). The reason is that the forward mapping 

is essentially instantaneous and does not induce phase delays to 

excellent approximation (Stinstra and Peters, 1998) which would 

be necessary to yield a nonvanishing imaginary part of S( f ).

Localizing and estimating causal relations of interacting 
brain rhythms

Guido Nolte1* and Klaus-Robert Müller 2

1 Intelligent Data Analysis Group, Fraunhofer FIRST, Berlin, Germany
2 Machine Learning Group, Technical University Berlin, Berlin, Germany

Estimating brain connectivity and especially causality between different brain regions from 

EEG or MEG is limited by the fact that the data are a largely unknown superposition of the 

actual brain activities. Any method, which is not robust to mixing artifacts, is prone to yield 

false positive results. We here review a number of methods that allow for addressing this 

problem. They are all based on the insight that the imaginary part of the cross-spectra cannot 

be explained as a mixing artifact. First, a joined decomposition of these imaginary parts into 

pairwise activities separates subsystems containing different rhythmic activities. Second, 

assuming that the respective source estimates are least overlapping, yields a separation of 

the rhythmic interacting subsystem into the source topographies themselves. Finally, a causal 

relation between these sources can be estimated using the newly proposed measure Phase 

Slope Index (PSI). This work, for the first time, presents the above methods in combination; all 

illustrated using a single, simulated data set.

Keywords: EEG, volume conduction, causality, interaction, PISA, MOCA, PSI

Edited by:

Kai J. Miller, University of Washington, 

USA

Reviewed by:

Pedro Valdes-Sosa, Cuban 

Neuroscience Center, USA

Andreas Daffertshofer, VU University 

Amsterdam, Netherlands

*Correspondence:

Guido Nolte, Intelligent Data Analysis 

Group, Fraunhofer FIRST, Kekul estr. 7, 

12489 Berlin, Germany.

e-mail: nolte@first.fhg.de

1In an event related design the mean can be subtracted.



Frontiers in Human Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 209 | 2

Nolte and Müller Causal relations of brain rhythms

of the more frontal sources appeared merely identical to the ones 

of the drivers but the activity was delayed by 20 ms. The activity 

of the right driver was given as

u t u t u t t1 1 1 10 35 1 0 7 5( ) . ( ) . ( ) ( )= − − − + ξ
 

(3)

where ξ
1
(t) is white Gaussian noise with standard deviation 1. Similarly, 

the activity of the driver on the left side was simulated via

u t u t u t t2 2 2 20 35 1 0 7 4( ) . ( ) . ( ) ( )= − − − + ξ
 

(4)

We defined a single time step to equal 10 ms, i.e., we consid-

ered a sampling rate of 100 Hz, by which the time series u
1
(t) 

and u
2
(t) displayed pronounced spectral peaks at around 8 and 

12 Hz, respectively, and had roughly identical magnitudes. Both 

time series also have (weak) higher harmonics at 24 and 36 Hz, 

respectively.

The frontal sources, v
1
(t) and v

2
(t) for right and left side, respec-

tively, are merely delayed versions of the drivers:

v t u t
i i
( ) ( )= − 2

 
(5)

corresponding to a delay of 20 ms. In total, we modeled 200 s of 

EEG data.

The activities of the four dipolar sources were mapped into 118 

EEG channels equally distributed on the scalp. As volume conductor 

we assumed a three-shell realistic model calculated from the MRI data 

containing brain, skull, and scalp with equal conductivities for brain 

and scalp and 50:1 conductivity ratio between scalp and skull. The 

Maxwell equations were solved using a semianalytic expansion of the 

electric lead fields (Nolte and Dassios, 2005). An accurate forward 

model is important but difficult. For the sake of simplicity we here 

assumed that the forward model is correct, i.e., for the inverse methods 

we used the same forward model as for the forward simulation.

To the activities of the sources of interest we superimpose spatially 

correlated and temporally white noise generated as the activity of a 

collection of dipoles placed on a 1 cm grid within the entire brain. All 

components of all dipoles were modeled as iid Gaussian noise leading 

FIGURE 1 | Four dipolar sources overlayed on MRI-slices.
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least when focussing on the current discussion. These assumptions 

can be expressed for an even number of N channels as a model for 

the imaginary part of the cross-spectra:

ℑ = −( )
=

∑( ( )) ( )
/
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For each k the set of topographies (a
k
 and b

k
) and the “interac-

tion spectrum” P
k
( f ) form a – what we call – PISA component. We 

note that this model is only unique up to linear mixing of the two 

topographies for each k. In other words, the model only identifies 

the 2D-subspace spanned by the two topographies and not the 

individual components.

The model is found by joined diagonalization (cf. Ziehe et al., 

2004) of (S( f )) in the complex domain: we find a demixing matrix 

W such that W(S( f ))W† is diagonal. It can be shown that real 

and imaginary parts of the columns of the mixing matrix A = W−1 

span the same subspaces as the pairs of topographies a
k
 and b

k
. For 

technical details we refer to Nolte et al. (2006).

Results of the PISA decomposition for the simulated data set are 

shown in Figure 4, where we show the largest three components. 

Only the first and the second component revealed a significant 

interaction spectrum corresponding to the two interacting sub-

systems in the left and right hemisphere, respectively.

3.2. MINIMUM OVERLAP COMPONENT ANALYSIS (MOCA)

In order to uniquely decompose the 2D-subspaces found by the 

PISA method into contributions from individual sources we must 

introduce further spatial constraints on the nature of the sources. 

to highly correlated noise in the EEG electrodes. The noise level was 

chosen such that the average of power over all channels and frequen-

cies was 20 times higher than the respective average of the signal of 

interest. In “good” channels and at peak frequencies the power of the 

signal of interest was still around 10 times higher than the noise.

Power (imaginary part of coherency) over all channels (pairs 

of channels) are shown as function of frequency in Figure 2. The 

spatial distribution of the imaginary part of coherency at 10 Hz, i.e., 

between the peaks and with contributions from both interacting 

subsystems, is shown in Figure 3.

3. METHODS

3.1. PAIRWISE INTERACTING COMPONENT ANALYSIS (PISA)

In general, EEG data are a superposition of many subsystems 

including (effectively) independent sources but also interacting 

rhythmic sources of various physiological content. To separate these 

systems we assumed that (a) all interactions are pairwise and that 

(b) there are not more interacting sources than channels. These two 

assumptions are a clear simplification of the true brain dynamics, 

but they yield a unique decomposition of the data and may capture 

the most relevant aspects of the interaction observed in EEG data, at 

FIGURE 2 | Left: Power over all channels. Right: Imaginary part of coherency 

over all pairs of channels.

FIGURE 3 | Imaginary part of coherency at 10 Hz. Each small circle 

corresponds to one row of the coherency matrix.

FIGURE 4 | Each row displays the result for one PISA Component. Left 

and middle columns show the respective topographies. Panels in the right 

column show the interaction as a function of frequency.
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3.3. PHASE SLOPE INDEX (PSI)

We finally want to estimate causal structures between the esti-

mated sources. Since the combination of PISA and MOCA 

resulted in a complete basis of topographies we can find the 

source activities by applying the inverse of the respective matrix 

onto the data.

The “Phase Slope Index” (PSI) estimates the causal structure 

between any two source activities. It is defined as Nolte et al. 

(2008)

Ψij

f F

ij ijC f C f f= ℑ +





∈
∑ *

( ) ( )δ
 

(11)

where C
ij
( f ) is the complex coherency between sources i and j, as 

given in Eq. 2, and δf is the frequency resolution of the coherency. 

F is the set of frequencies over which the slope is summed. Usually, 

F contains all frequencies, but it can also be restricted to a specified 

band for rhythmic activities.

To see that the definition of Ψij
 corresponds to a meaningful 

estimate of the average slope it is convenient to rewrite it as

Ψ Φ Φij ij ij

f F

f f f f f f= + + −
∈
∑α α δ δ( ) ( ) ( ( ) ( ))sin  (12)

with C
ij
( f ) = α

ij
( f )exp(iΦ( f )) and α

ij
( f ) = |C

ij
( f )| being frequency 

dependent weights.

For smooth phase spectra, sin(Φ(f + δf ) − Φ( f )) ≈ Φ(f + δf ) − Φ
( f ) and hence Ψ corresponds to a weighted average of the slope.

We list the most important qualitative properties of Ψ:

1. For an infinite amount of data and for arbitrary instanta-

neous mixtures of an arbitrary number of independent 

sources, Ψ is exactly zero, because mixtures of independent 

sources do not induce an imaginary part of coherencies 

(Nolte et al., 2004) which in turn is necessary to generate a 

non-vanishing Ψ. For finite data, Ψ will then fluctuate in this 

case around zero within error bounds. A special case of this 

are phase jumps from 0 to ±π which can arise also for mixtu-

res of independent sources.

To this end we apply a linear inverse operator, e.g., a minimum 

norm solver G onto the topographies denoted here for any fixed k 

as x
1
 = a

k
 and x

2
 = b

k
, such that the topographies are mapped into 

distributions s
i
 of the source field

s G
i i
= ( )x

 
(7)

where s
i
 = s

i
(m,k) is a three dimensional vector field calculated in 

brain voxels m = 1,..,M and in directions k = 1,..,3. The distribu-

tions do not represent the sources of the brain, denoted as q
i
, but 

are, within the accuracy of the inverse method, a yet unknown 

superposition of them:

s H qi

j

ij j=
=

∑
1

2

 

(8)

for i = 1,2. The 2 × 2 mixing matrix H can be calculated uniquely 

under the following constraints

1. The sources are orthonormal:

< >≡ =∑q q q m k q m ki j

m k

i j ij, ( , ) ( , )
,

δ
 

(9)

2. The sources have minimum overlap:

L q q q m k q m k min
m k

( , ) ( , ) ( , )1 2 1 2

2

≡




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=∑ ∑
 

(10)

This cost function first squares the scalar product of two dipole 

moments at each voxel and then sums these squares over all voxels. 

It vanishes if the two dipole distributions have disjoint support (i.e., 

disjoint regions of non-vanishing activity), thus measuring overlap. 

It also vanishes if the orientations at each voxel are orthogonal 

and therefore corresponds to a weaker form of overlap allowing in 

principle also activities at the same location as long as the orienta-

tions are sufficiently different. Thus, a strong bias toward remote 

interaction is removed.

The minimization in Eq. 10 can be realized analytically 

(Marzetti et al., 2008). If the concept is generalized to more 

than two topographies the minimization requires a numerical 

approach, which, however, is surprisingly fast and robust (Nolte 

et al., 2009). We note that the spatial constraints (Eqs 9 and 10) 

and the methods to solve the minimization are similar to those 

used in ICA in the context of fMRI data analysis (McKeown and 

Sejnowski, 1998; Matsuda and Yamaguchi, 2004) with the major 

difference that we here decompose vector fields rather than scalar 

ones. In particular, the orthogonality constraint in Eq. 9 corre-

sponds, mutatis mutandis, to “sphering” as is used in most ICA 

methods also used for EEG/MEG data analysis: for simplicity, 

the data are transformed to be exactly uncorrelated while inde-

pendence in higher statistical orders is only forced to be as good 

as possible.

For the present data set we further assumed the sources to be 

located on the cortex but allowed for arbitrary orientation. Source 

estimates of the first two PISA components for the simulated data 

set are shown in Figure 5. We observe that each of the topographies, 

decomposed from the PISA results using MOCA, corresponds to 

one of the simulated dipoles.

FIGURE 5 | Left and middle panels: estimated sources of the PISA 

components. Right panels: causal structure as function of function. Positive 

results indicate that the sources shown in the left panels drive those shown in 

the middle panels.
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2. Ψ is expressed in terms of coherencies, only. The standard 

deviation of a coherency is approximately constant and only 

depends on the number of averages which is equal for all fre-

quencies. Thus, large but meaningless phase fluctuations in 

frequency bands containing essentially independent signals 

are largely suppressed.

3. If the phase Φ( f ) is linear in f and provided that the frequency 

resolution is sufficient (i.e., δf is sufficiently small), the argu-

ment in the sum has the same sign across all frequencies and 

then Ψ will have the same sign as the slope of Φ( f ).

It is convenient to normalize Ψ by an estimate of its standard 

deviation

Ψ Ψ
Ψ

=

std( )  

(13)

with std( )Ψ  being estimated by the Jackknife method, which we 

validated in own simulations. In the examples below we consider 

absolute values of each larger than 2 as significant.

It is important to point out that the phase of coherency itself is 

not interpreted in terms of causality. For example, a phase of π/2 

switches to −π/2 if the sign of one of the signals is reversed, but the 

PSI measure is invariant with respect to the sign of the signals. Rather 

than on phase, PSI is based on the slope of the phase as a function of 

frequency. Note, that a sign change adds a constant to the phase and 

has no effect on the slope. The method assumes that the studied fre-

quency range properly covers the dynamical range. For purely periodic 

signals, any causality estimate would be dubious. In that case Ψ would 

be insignificant because negative and positive slopes cancel.

Results for the causal structure of the sources estimated from 

the simulated data are shown in the right panels of Figure 5. To 

calculate PSI we chose segments of length 2 s corresponding to a 

frequency resolution of δf = 0.5 Hz. We observe that in both cases 

the source in the back is estimated as the driver.

4. CONCLUSION

Accurately measuring the interaction of oscillatory brain sources 

from EEG/MEG is a challenge. Due to the well-known effects of 

volume conduction, it is easy and not uncommon to detect spuri-

ous interaction and thus reach spurious neuroscientific insight. 

The present review has assembled three data analytical techniques 

that avoid such erroneous conclusions as they are based on the 

imaginary parts of the cross-spectra S( f ) that – as outlined above – 

immunizes analysis against volume conduction artifacts. To clarify 

this basic message we have used simulated EEG data from inter-

acting neural systems and took the reader through three essential 

analysis steps (a) discovering interacting sources by PISA, (b) local-

izing them under constraints by MOCA and (c) estimating their 

causal relationship by PSI.

Future research will extend the studies on causal relations of 

interacting sources also for high noise situations (cf. Nolte et al., 

2010) and nonstationary processes (cf. von Bünau et al., 2009) and 

the broad application of the presented computational methods in 

the neurosciences.
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