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When can quantum information be localized to each of a collection of
spacetime regions, while also excluded from another collection of regions?
We answer this question by defining and analyzing the localize-exclude task,
in which a quantum system must be localized to a collection of authorized
regions while also being excluded from a set of unauthorized regions. This
task is a spacetime analogue of quantum secret sharing, with authorized and
unauthorized regions replacing authorized and unauthorized sets of parties.
Our analysis yields the first quantum secret sharing scheme for arbitrary ac-
cess structures for which the number of qubits required scales polynomially
with the number of authorized sets. We also study a second related task
called state-assembly, in which shares of a quantum system are requested at
sets of spacetime points. We fully characterize the conditions under which
both the localize-exclude and state-assembly tasks can be achieved, and give
explicit protocols. Finally, we propose a cryptographic application of these
tasks which we call party-independent transfer.
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1 Introduction

The study of the interplay between quantum theory and relativity has recently begun
a new chapter with the consideration of quantum information tasks in a Minkowski
space background |1, 2, 3|. For instance, the study of information causality [4] and of
causal operators [5| has given further insight into ties between information processing
and relativity. Along with other results in this area [6, 7, 8, 9|, these can be placed into
the general framework of quantum tasks in Minkowski space [10].

One task of particular interest is summoning, defined by Kent [11], where the associ-
ated no-summoning theorem is a statement of no-cloning appropriate to the spacetime
setting. We have also argued that a generalization of the summoning task [6] provides
an operational framework within which to study how quantum information can move
through spacetime. The importance of having such a framework is highlighted by recent
subtle questions concerning spacetime structure and the no-cloning principle in the con-
text of black holes [12, 13]. Understanding how a quantum system may be delocalized
in Minkowski space should be a useful step towards understanding such fundamental
puzzles.

The study of quantum tasks in Minkowski space has been given a second motivation
with the discovery of cryptographic protocols that exploit the properties of either or
both of quantum mechanics and special relativity. Bit-commitment is a well-known
example [14, 15]; other examples include coin flipping [16], key distribution (where sig-
nalling constraints enter into some security proofs [17, 18|), and two spacetime analogues
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Figure 1: An example of a localize-exclude task. A single copy of an unknown quantum system is
initially localized near the spacetime point s, and needs to be localized to within regions .2/} and
a5, while avoiding region %4. Theorem 8 shows that this is possible to do.

of oblivious transfer dubbed location-oblivious transfer [19] and spacetime-constrained
oblivious transfer [20].

In quantum secret sharing, a central result of quantum cryptography, a quantum
system is distributed among many parties such that only certain subsets of parties may
collectively use their shares to reconstruct the system. Other subsets of parties are
required to not be able to learn any information about the secret from their shares. In
the context of quantum tasks in Minkowski space, where the movement of information
in spacetime is central, and in the context of relativistic quantum cryptography, it is
natural to consider a spacetime generalization of quantum secret sharing.

To do this we replace the notions of authorized and unauthorized sets of parties with
authorized and unauthorized spacetime regions. We define the localize-exclude task,
where the goal is to move a quantum system through spacetime in such a way that
it is localized to each of the authorized regions and excluded from the unauthorized
ones. Figure 1 gives a simple example. In theorem 8, we find necessary and sufficient
conditions for completing the localize-exclude task. To argue that the localize-exclude
task is a natural spacetime generalization of secret sharing, we show in the main text
that there is a simple construction that embeds any quantum secret sharing scheme
as a localize-exclude task, and that the conditions of this theorem reduce to those for
quantum secret sharing in that case.

In the summoning task one party, Bob, puts in requests for the quantum system at
certain spacetime points, asking that the system be returned at one of another set of
points. The localize-exclude task removes this structure, but adds a notion of unautho-
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rized region. It is interesting to also consider a task in the request-return setting, but
which includes unauthorized regions. In this state-assembly task, we consider many
parties Bob; who may each request a share of the quantum system at an associated
spacetime region D;. Alice should respond to the collection of requests given by the
Bobs in a careful way: she should hand over a collection of shares sufficient to construct
a single copy of the system when the collection of requests is authorized, and she should
not reveal any information about the system when that collection is unauthorized. The
conditions for Alice to complete this task are the same as for localize-exclude in the
case of causally separated regions, but differ when non-trivial causal structures are con-
sidered. In theorem 13 below we precisely characterize the conditions under which this
task can be completed, and describe an explicit protocol for completing it when it is
possible.

Together the state-assembly and localize-exclude tasks provide a rich set of scenarios
to consider. We suggest party-independent transfer as a potential cryptographic appli-
cation of this framework, a task where two other parties wish to receive information
from Alice and want the information they receive to be both private and independent
of their identity. We propose a protocol for completing this task which is built on the
state-assembly task. Establishing the security of this protocol we leave to future work.

The layout of this paper is as follows. Section 2 gives the necessary definitions to
study localization to arbitrary spacetime regions and proves theorem 8, which charac-
terizes the localize-exclude task. We discuss the relation between localize-exclude and
quantum secret sharing in the same section. In section 3 we discuss state-assembly and
give its characterization. In section 4 we study the party-independent transfer task.
Two appendices are included which clarify the relationship of this work to earlier work
on summoning. The first shows that state-assembly is equivalent to a certain summon-
ing task, and the second addresses the points raised by Adlam and Kent [7| against
interpreting summoning tasks in terms of the localization of information.

2 Localizing and excluding quantum information

2.1 Localizing quantum information to many regions

As a first step towards characterizing the localize-exclude task we discuss the problem
of localizing quantum information to a collection of spacetime regions, leaving excluded
regions to the next section. To do this we consider the following setting. Alice holds the
A subsystem of a pure state |U)r4, with A recorded into a collection of classical and
quantum systems held within secure laboratories not accessible to her adversary, Bob®.
We would like to ask where system A is. For instance, Alice might have recorded A into
an error-correcting code and distributed the shares of this code to various laboratories.

I Alice and Bob are both agencies, who have many agents that may be distributed to many different
laboratories.
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Further, she might be constantly rerouting these shares between labs, so that shares
are held only at certain labs between specified times.

We can ask where the subsystem is in spacetime by temporarily relaxing the security
of Alice’s labs — we give Bob access to some collection of Alice’s labs for certain time
intervals. If by accessing these labs Bob is able to prepare the A system (potentially
making use of later data processing), we say that system A was localized to the collection
of labs and intervals of time Bob accessed. More generally, we can abstract away from
the language of labs and time intervals and give a more general definition.

Definition 1 Suppose one party, Alice, holds system A of a quantum state |V)ag.
Then we say the subsystem A is localized to a spacetime region X if a second party,
Bob, for whom the state is initially unknown is able to prepare the A system by collecting
quantum and classical systems from within 3, and then applying later data processing.

Conversely, if Bob is unable to learn anything about A we say the system is excluded
from . Note that the later data processing referred to in the definition may occur
outside of the region Y. Further, a system may be neither localized nor excluded from
a region if partial information about the system is available there.

To be more precise we should specify how it is verified that Bob holds the A system
after he has accessed Y. One natural possibility is to introduce a third party, call him
Charlie, who plays the role of a referee. We have Charlie hold both the purifying system
R of |U) 4 as well as a classical description |U) 4. To verify Bob holds the system then,
we have Bob pass the A system to Charlie, who performs a projective measurement
of the AR system in a basis that includes |¥)4g. If Alice can pass Charlie’s test with
certainty, we declare that Alice localized the system to Y. Of course, Alice will also pass
this test with some probability so long as Charlie’s final state has non-trivial overlap
with ‘\If> A R2'

It is interesting to compare this notion of localizing a quantum system to a spacetime
region to a notion of spacetime localization based on the summoning task [6]. Perhaps
the key distinction is that, in the definition given here, information processing may
occur outside the spacetime region in order to prepare the system. This point carries
with it certain subtleties that are taken up in appendix A and the discussion. The key
advantage of definition 1 however is its applicability to regions of arbitrary shape.

One strategy for hiding a quantum system from Bob would be for Alice to send A
into a region Y, while also sending various decoys Ag1, Ago, ... so that Bob, though he
may collect all of the systems A, Ag1, Ago, ... is left unsure as to which system to hand
to Charlie. This reveals a finer point to definition 1: the system Bob is searching for
may enter X, but if appropriate classical instructions do not also enter ¥ (in this case

2Tn the context of the localize-exclude tasks we consider later, we may be interested in whether or
not a quantum system can be localized to two or more regions with fixed relative positions, rather than
if a system can be localized to one particular spacetime region. In this case, and when the spacetime
is suitably translation invariant, one can consider repeating the task many times (sequentially or in
parallel). In this scenario Charlie could determine with what probability Alice is able to complete the
task.
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a label denoting which system actually holds A), then definition 1 says the system is
not localized there. To avoid confusion around this point we will always have Alice, at
some early time, reveal the classical instructions that constitute her protocol to Bob.
The only information Alice will not broadcast is a classical string k (as well as the
quantum system itself). As we will see, protocols where Alice holds only a secret key
k and reveals all other details to Bob are sufficient to complete any physically possible
localize-exclude task, so this restriction on Alice amounts to a useful simplification of
notation and language.

In the protocols we construct Alice will encode her quantum system into an error-
correcting code that corrects erasure errors, and then apply a quantum one-time pad
to each of the shares in the quantum code. Alice does not broadcast the classical
strings used in the one-time pads; taken together these constitute her secret key k.
However, she does reveal her procedure for putting A into an error-correcting code and
applying the one-time pad, and reveals the spacetime trajectories of each share in the
code. Within this context, Bob reconstructs A by accessing a region > whenever a
correctable subset of shares in the error-correcting code along with their corresponding
classical keys from the the one-time pad pass through ..

Definition 1 specifies what is meant by a quantum system being localized to a single
spacetime region. To extend this to multiple regions, we define the localize task as
follows.

Definition 2 A localize task is a task involving two agencies, Alice and Bob, specified
by a tuple {A,s,{, ..., o, }}, consisting of:

e A quantum system A. In general A may be a subsystem of some overall pure state
|W)ar. The state on AR is unknown to both Alice and Bob.

o A start point s, at which Alice initially holds system A

e A collection of spacetime regions { <A, ..., I, }, which we call the authorized regions

Alice successfully completes the task if Bob is able to prepare system A after he accesses
any one of the <7;.

If Alice is able to successfully complete the localize task with regions {.#, ..., @, } we
say she has localized the system to each of those regions. The authorized regions may
be of arbitrary shape and may overlap.

To analyze this task it is useful to introduce some language. We give the following
definition which specifies a relation between pairs of spacetime regions.

Definition 3 Two spacetime regions ¥; and X; are said to be causally connected if
there is a point q; in 3; and q; in X; such that there is a causal curve from g; to q;, or
from q; to g;.

We illustrate this definition in figure 2a. If two regions are not causally connected we
say they are causally disjoint. In the context of the localize-exclude task discussed in
the next section we will also need one further definition relating to spacetime geometry.
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Figure 2: Two geometric notions used in the text. a) Two causally connected regions. Two
spacetime regions X; and X; are said to be causally connected if there is a point ¢; in 3; and g; in
¥; such that there is a causal curve from g; to ¢;, or from g; to ¢;. b) The domain of dependence
(light grey) of a spacetime region X (dark grey). The domain of dependence is defined as the set
of all points p in the spacetime such that all causal curves passing through p must also enter 2.

Definition 4 The domain of dependence of a spacetime region %, denoted D(X),
15 the set of all points p such that every causal curve through p must also enter 3.

This definition is illustrated in figure 2b.
As a first step towards the more general scenario consider the localization of a
quantum system to two authorized regions .o/, and .o%.

Theorem 5 Given a quantum system initially localized near a spacetime point s, the
system may be localized to both of the spacetime regions <7y and 5 if and only if the
following two conditions hold.

i. @ and ol both have a point in the future light cone of s.

1. @ and <t are causally connected.

Proof. First, note that if an authorized region is entirely outside the future light cone
of the start point then successfully localizing the system to that region would constitute
superluminal communication. Thus, the first condition is necessary. To see necessity of
the second condition suppose there exists a protocol for localizing a quantum system to
two causally disjoint regions 7] and .@%. Then by definition it is possible to construct
the system by accessing the region .7, and by accessing «%. By causality however
accessing region 7, cannot affect the system constructed from .o, and vice versa, so it
would be possible to construct two copies of the quantum system. But this constitutes
cloning, so no such protocol can exist.

To understand sufficiency we construct a task with the minimal properties specified
by the two assumed conditions. Such a task is shown in figure 3. There, a point p; € &
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Figure 3: An arrangement of two authorized regions that has the minimal requirements to satisfy
the conditions of theorem 5. By the first condition < and o7 are causally connected. This
guarantees the existence of a point py in @ which is in the causal future of some point ps in o
(up to relabelling). The second condition gives that each region have at least one point in the
future light cone of s. However, the regions <7 and ./ may be disconnected (as shown here) and
so satisfy this requirement while having the points p1, p2 be outside the future light cone of 5. To
localize a system A to both regions a maximally entangled state [U'™) ;5 is shared between s and
p1. Near to s the A system is teleported using this entanglement, and the entangled system at
p1 is sent to pa. Meanwhile, the classical measurement outcomes from the teleportation protocol
are sent to the points in @4 and % which are in the causal future of s. Each region has both
the classical measurement outcomes and the entangled particle pass through it, so the A system
is localized to each.
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is causally connected to py € %, and each of &/, and 2% have a point in the future light
cone of s. However, p; and py sit outside the future light cone of s. Nonetheless it is
straightforward to complete such a task. To do so a system F is maximally entangled
with E, then E is brought to s while E is brought to p;. At s, E is used to teleport the A
system onto the E system. The measurement outcome from the teleportation is sent to
gy and . from s. Meanwhile, E is sent from p; to p,. Each authorized region contains
the classical measurement outcome and the system E, so accessing either region allows
reconstruction of A. =

We can now move on to understanding localize tasks with arbitrary numbers of au-
thorized regions. We find in particular that it is only the structure of causal connections
between pairs of regions and the start point that are needed to characterize a task as
possible or impossible.

Theorem 6 Given a quantum system A initially localized near a spacetime point s, the
system may be localized to each spacetime region < in a collection {4, ...., o} if and
only if the following two conditions hold.

i. Fach region <7; has at least one point in the causal future of s
it. Each pair of regions (<7, 9;) is causally connected.

Proof. Necessity of the two conditions follows from the same arguments as in the two
region case given as theorem 5: localizing a system to a region outside of its future light
cone violates no signaling, and localizing a system to two spacelike separated regions
would allow two copies of the system to be produced.

To demonstrate sufficiency we construct an explicit protocol for completing any task
satisfying the two conditions. To this end it is useful to introduce a directed graph G
which describes the causal structure of the task: for each authorized region .7 introduce
a vertex, also labelled 7, to the graph. For each pair of regions (47, <7;) such that
there is a point in .¢7; connected by a causal curve to a point in o7 introduce a directed
edge (#% — 7). An example of a task and its associated graph is given as figure 4.

From the no-cloning theorem it follows that some quantum information must be
shared between every pair of authorized regions. In our construction these quantum
systems that move between pairs of authorized regions form the shares of an error-
correcting code. In particular, for each edge in the graph G we associate one share. In
theorem 5 and figure 3 we showed how to localize a quantum system to two authorized
regions whenever they share a causal connection. We can execute this protocol on the
shares of our error-correcting code to ensure the share associated to edge % — 7}
is localized to both 47 and .7;. To complete the task then, our error-correcting code
should have the property that, given any vertex, the set of shares associated to the edges
attached to that vertex are sufficient to construct the initial system A. We illustrate
the requirement on this code in figure 5.

In fact, given that every pair of vertices in this graph share an edge, which is guar-
anteed by condition (ii), such error-correcting codes have already been constructed.
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Figure 4: An example of a task with three authorized regions <7, <% and <#5. (a) The arrangement
of the regions in spacetime, notice that each region consists of two disconnected ball-shaped
regions. (b) The corresponding graph of causal connections, used in the proof of theorem 6 to
construct the error-correcting code needed to complete the task.

To encode finite-dimensional quantum systems we constructed such codes using the
codeword-stabilized formalism in the context of a similar summoning problem [6]. Con-
structions for continuous variable systems have also been given [8] and then adapted
to the finite-dimensional case [21]. In the code-word stabilized construction a single
logical qubit is recorded using 2 physical qubits for each edge in the graph, resulting in
a total of 2(2) physical qubits for n the number of authorized regions. m

This result is particularly simple and expected from earlier work on summoning.
Indeed, the conditions for summoning to a collection of diamonds are the same as for
localizing to a collection of authorized regions (see 6], or appendix A).

2.2 Localizing and excluding quantum information

Now that we have an understanding of when and how a quantum system can be lo-
calized to many spacetime regions, we can approach the localize-exclude task. This
task includes a notion of unauthorized region, a region in spacetime from which the
system must be excluded in the sense described in the last section. Further, we will re-
quire that accessing an unauthorized region reveals no information about the quantum
system. We collect these ideas into the following definition.

Definition 7 A localize-exclude task involves two agencies, Alice and Bob, and is
specified by a tuple {A, s,{A, ..., 0}, {V, ..., Un}}, consisting of:

i. A quantum system A. In general A may be a subsystem of some overall pure state
|W)ar. The state on AR is unknown to both Alice and Bob.

1. A start point s, at which Alice initially holds system A

iti. A collection of spacetime regions { <A, ..., o, }, which we call the authorized regions
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Figure 5: lllustration of the functioning of the error-correcting code used in theorem 6. a) A
directed graph that describes the causal connections between the authorized regions of a localize
task. In this case the task involves four authorized regions. b) To complete the task, we employ an
error-correcting code that associates a share to each edge in the corresponding undirected graph.
The encoded qubit can be reconstructed from the shares associated with the edges attached to
any one vertex, corresponding to the sets of edges crossed by the purple arcs. For a single logical
qubit, the shares on each edge consist of two qubits. A detailed construction of the code can be
found in [6], and a more efficient version in [21]. For infinite dimensional versions see [8].

iv. A collection of spacetime regions {24, ..., Un}, which we call the unauthorized
TEGIONS

Bob will choose to access one of the <, or %;, and will attempt to construct the quantum
system A from his access. Alice successfully completes the task if both (a) Bob is able
to construct A when he accesses any one of the < and (b) Bob learns no information
about A if he accesses any one of the ;.

If Alice successfully completes the localize-exclude task, we say she has localized system
A to the corresponding authorized regions while excluding it from the unauthorized
regions.

As an initial approach to understanding the localize-exclude task we can list off the
most basic restrictions that we expect to apply. First, the two restrictions occurring in
the context of the localize task are still relevant: the start point should have a point
from each authorized region in its future light cone, and there should be no causally
disjoint pairs of authorized regions. There are also additional restrictions relating to
the unauthorized regions however. In particular, we can never have an authorized
region o7 be contained in the domain of dependence of an unauthorized region %;,
since then all information which enters 7 also enters %;. Finally, the start point
too should not be contained in the domain of dependence of any unauthorized region.
We illustrate each these conditions in figure 6. Remarkably, a localize-exclude task
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Figure 6: Four impossible localize-exclude tasks: (a) An authorized region is entirely outside the
future light cone of s, so system A can't be localized there without violating the no-signalling
principle. (b) The initial location of the quantum system is in the domain of dependence of an
unauthorized region %/, so can be reconstructed from data in %4. (c) A quantum system cannot
be localized to both the spacetime regions <7, and %, due to the no-cloning theorem. (d) A
quantum system cannot be localized to ./ without passing through the region %4, since there is
no causal curve which passes through % and not %;. The red shaded region indicates the domain
of dependence of the unauthorized region %4. The yellow shading indicates the future light cone
of the start point.
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{A,s,{A, ...} {%, ..., %,}} will turn out to be possible to complete so long as
none of the four situations in figure 6 occur.

As a warm-up to the general case, consider the example given in the introduction as
figure 1. There, a single unauthorized region blocks the path between two authorized
ones. As we illustrate in figure 7, it is nonetheless possible to complete the task using
the quantum one-time pad [22|. Near the start point, a unitary Uy is applied to A
with & chosen at random. The overall pure state is then Uy, ® Z|V) 4g. To an observer
who is unaware of the key k, the density matrix of the state is par = > ﬁ(u,ﬂ ®

)| UNT|(U ®T). By carefully choosing the set of possible unitaries Uy, one can arrange
that par = Za/d4 ® pr, so that Bob has learned nothing about the A system whenever
he does not learn k. This is possible when A consists of n qubits and & consists of 4n
bits [22]. Once encoded using the one-time pad, the A system is sent through both
authorized regions by allowing it to pass through the unauthorized region. An access
to the unauthorized region then only sees the maximally mixed state. The classical
key k is also sent to both authorized regions, but along trajectories that avoid the
unauthorized one.

A similar technique can be applied to the general case of many authorized and many
unauthorized regions. As we show in the proof of theorem 8 given below, the strategy is
to first encode the A system into an error-correcting code so that it can be localized to
each authorized region. Then each share in that error-correcting code is encoded using
a classical string and the quantum one-time pad. We then leverage classical secret
sharing to allow us to get the encoding string to the needed authorized regions while
avoiding all the unauthorized regions.

We are now ready to state theorem 8 and give the proof. The proof of sufficiency is
somewhat lengthy, so we have provided figure 8 which summarizes the key steps taken.

Theorem 8 Given a collection of authorized regions {4, ..., @, }, unauthorized regions
{2, ..., %}, and start point s, a localize-exclude task is possible if and only if the
following three conditions are satisfied.

i. The starting location of the system A (a) has at least one point from each autho-
rized region in its causal future, and (b) is not in the domain of dependence of
any unauthorized region.

ii. Every pair of authorized regions (<%, o7;) are causally connected.

iii. For every pair (<7, %;) of authorized and unauthorized regions, <; is not contained
in the domain of dependence of ;.

Proof. The necessity of conditions (i)(a) and (i7) follow from the same arguments as
in theorem 6. To argue the necessity of condition (iii), notice that if <7 is contained
in the domain of dependence of %;, then the state of the quantum fields within <7}
is determined by unitary evolution from the fields within %;. Then whenever the A
system can be determined from .o7 it is also possible to recover it from %;. Condition
(7)(b) is necessary for the same reason.
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Figure 7: lllustration of the protocol for completing a localize-exclude task with two authorized
regions and one unauthorized region that satisfy the conditions of theorem 8. In the distant past,
Alice prepares copies of the classical string k. She brings one copy of k to each of &} and <% along
a path which does not cross %2 — this is always possible by condition (iii). She must also bring
the classical string to the start point s, and encode the A system using the quantum one-time
pad [22]. The overall state on A and its purifying system R is then of the form (U @ Z)|V) aR.
The encoded system A is sent through both authorized regions. By following this protocol both
authorized regions contain k£ and the encoded A system, while the unauthorized region contains
the encoded system only.
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Figure 8: Diagram of the sufficiency proof of theorem 8. In three steps, the proof reduces
completing the localization task on the system A with n authorized sets and m unauthorized sets,
denoted by (A, s, {9, ..., @p},{?, ..., %n}), to completing (3) instances of (S;;, s, {%%, </;},0)
on quantum shares, and 3m(72‘) instances of (kéj, —00, Ri, ;) on classical shares, where the region
R; may be either the start point or an authorized region. The notation —oo indicates the share is
available at early times. The first step in the protocol is to recycle the error-correcting code from
theorem 6 to encode the A system into shares .S;;. At the second step, the one-time pad is applied
to each of the S;;. This allows the unauthorized regions to be avoided by introducing additional

classical shares, but without the need for further uses of quantum error-correcting codes.
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Figure 9: An example of a localize-exclude task and illustration of the protocol provided by theorem
8 for its completion. Near the start point the system A is encoded using the quantum one-time
pad and sent (along the blue curve) through both authorized regions. The string k satisfies
k = ki1 @ ko, so that ki, ko form the two shares of a ((2,2)) secret sharing scheme. k; is sent
through @7 and <7 while avoiding %/, while ko is sent through @7 and <% while avoiding %.
Consequently, each o contains all of the classical shares k; along with the encoded A system,

while each %; is missing one k;.
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To demonstrate sufficiency we construct an explicit protocol to complete the task
in the case where all three conditions are true. It is useful to recall the notation
(A, s,{A, ..., o, },{?, ..., %n}), which describes a localize-exclude task by specifying
the system on which we must complete the task, the start point, authorized regions, and
unauthorized regions. As a first step in constructing our protocol, we encode the system
A into the error-correcting code used in theorem 6. Using this code and localizing each
share in the code to its two associated authorized regions would localize the system
to each authorized region. However, here we also need to exclude the system from all
of the unauthorized regions. To do this, we will localize each share S;; to <7 and <7}
while also avoiding every unauthorized region. In other words, encoding A into the
codeword stabilized code reduces completing the original task to completing the tasks
(Sij, s, {, ;} {, ..., %y}) for every share S;.

By using the quantum one-time pad and classical secret sharing it is possible to
further reduce completing the (S;;, s,{%%, ;}, {7, ..., %,}) task. In particular, at s
use the quantum one-time pad to encode the share S;; using some classical string k;;. We
may freely send the encoded share through .7 and 7; so long as the classical string k;; is
kept out of all of the unauthorized regions, and is made available at s, <7, and <7;. Thus,
the task (S, s, {4, ;},{?, ..., %,}) is equivalent to completing (S;;, s, {<%, <}, 0)
along with (ki;, —o0, {s, %, o}, { P, ... Un})".

To finish the protocol, we first notice that theorem 6 shows that we can complete
any task of the form (5;;, s, {<%, <7}, 1) given that conditions (z)(a) and (4i) hold. The
task (k;;, —oo, {s, o, ;}, {, ..., %n}) is also easily handled. Note that since the task
is to be completed on a classical string, we can produce three copies of k;; and worry
separately about sending the string to s and each of & and 7}, so we have to complete
three instances of (k;j, —0o, R,{?A, ..., %n}), where R can be s, o7 or 7;. To complete
these, encode k;; into an ((m, m)) secret sharing scheme” with shares k/;. Then complete
the tasks (k:fj, —00, R,%4). This completes the task with all m unauthorized regions
since the classical string is kept out of %4 so long as at least one of the shares in the
((m, m)) scheme is.

It remains to complete the tasks of the form (kﬁj, —00, R, 7). When R is one of the
authorized sets, condition (iii) guarantees that R is not in the domain of dependence
of %4, which means there is a causal curve passing through R which does not enter %/.
To complete the task, simply send kﬁj along this curve. When R is the start point s,
condition (i)(b) guarantees there is a causal curve passing through s and not %4, so
again we can complete this task. m

An example of the protocol used in this proof is given as figure 9.

3We’ve introduced the notation —oo to indicate the start point is located in the distant past. This
is the appropriate task to consider completing on the classical system k;; as Alice may prepare these
strings at some early time.

4A ((k,n)) secret sharing scheme is one where any k of the n total shares can be used to reconstruct
the secret while any k — 1 shares reveal nothing about the secret. A ((m,m)) scheme is the appropriate
one here because we want every share to be needed to reconstruct £;;.
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Figure 10: Example of the embedding of a secret sharing scheme with arbitrary access structure
into a localize-exclude task. We consider a secret sharing scheme that involves three parties,
and has authorized sets S; = {1,2}, S2 = {2,3} and S3 = {1,2,3}, with all other subsets of
parties deemed unauthorized. In the corresponding localize-exclude task, the three parties become
three causally disjoint spacetime regions 31,35 and X3. Further, this localize-exclude task has
authorized regions @ = X1 U Xo, @ = Yo U X3 and @3 = X1 U Xo U X3. The start point s has
been placed at an early enough time that all the 3; are in its future light cone.

Earlier we mentioned the similarity of conditions (i7) and (éi7) to corresponding con-
ditions for quantum secret sharing. A quantum secret sharing scheme [23] is specified
by an access structure, with the access structure consisting of subsets of parties deemed
authorized and subsets deemed unauthorized. A quantum secret sharing scheme can
be constructed under two conditions [23]: (a) (no-cloning) no two authorized sets can
be disjoint and (b) (monotonicity) no authorized set can be contained within an unau-
thorized set. Conditions (ii) and (i7i) of the localize-exclude theorem are exactly these
conditions rephrased in a context appropriate to spacetime.

Beyond this similarity, we can embed any secret sharing scheme into a localize-
exclude task. Consider n parties, Boby,...,Bob,, who each can potentially access an
associated spacetime region ;. Take the authorized and unauthorized regions to consist
of unions of ¥,’s so that a full authorized region .« can be accessed only if some
collection of Bobs agree to cooperate. Choose the regions ¥; to be all causally disjoint.
In this setting two authorized regions being causally connected occurs if and only if
they share a ¥;. Then condition (ii) of theorem 8, which requires causal connections
between authorized regions, reduces to the requirement that every pair of authorized
regions share at least one ;. This is exactly the no-cloning requirement on secret
sharing. Further, condition (ii7) reduces to no %; = %; U ... U %, containing as a
subset some &7, = ¥;; U ... U X, under the same restriction of having causally disjoint
>;. This is just the monotonicity condition on quantum secret sharing schemes. Finally,
to embed our quantum secret sharing task into a localize-exclude task we should ensure

Accepted in { Yuantum 2019-07-02, click title to verify 18



that condition (i) becomes trivial, which we can do by sending the start point s to an
early time. We illustrate the embedding of a secret sharing task into a localize-exclude
task in figure 10.

Theorem 8 shows that completing a localize-exclude task with unauthorized regions
requires only the same quantum error-correcting code as used in the case with no unau-
thorized regions. Hiding the system from the unauthorized regions can be accomplished
using only the quantum one-time pad and classical secret sharing. This is similar to
the approach taken in [24], where quantum error-correcting codes are combined with
the quantum one-time pad to yield quantum secret sharing schemes. By using the effi-
cient error-correcting code underlying our protocol however, we arrive at a particularly
efficient construction of quantum secret sharing schemes. In particular we find that
there is a universal quantum error-correcting code with 2(7;) shares for n the number
of authorized sets which, along with uses of the one-time pad and classical secret shar-
ing, constructs quantum secret sharing schemes with arbitrary access structures. Using
Shamir’s method [25] to construct the classical secret sharing schemes, the 3m (Z) in-
stances of the ((m,m)) classical scheme will each require O(mlogm) bits, where m was
the number of unauthorized sets. In total, O(n?) qubits and O(m?n?logm) classical
bits are used in the localize-exclude construction. This provides the first construction
of quantum secret sharing schemes using a number of qubits polynomial in the num-
ber of authorized sets. Previously, efficient constructions were known for threshold
schemes and certain other special access structures. (See, e.g. [26, 27, 24].) Since the
number of unauthorized sets can grow exponentially with n, the classical bits used can
be exponentially large. This is to be expected since it is conjectured to be impossi-
ble to construct classical secret sharing schemes for arbitrary access structures without
consuming exponential resources [28].

3 State-assembly

3.1 State-assembly with authorized regions

In the localize-exclude task Bob can access any one of a set of spacetime regions. Alice,
who holds various quantum systems within those regions, is helpless to prevent Bob’s
access. In an alternative scenario we can have Bob request information from Alice.
Alice is free to comply with the request or to reject it, and hand over no information.
Certain sets of requests are deemed authorized, others unauthorized. Sets of requests
corresponding to authorized sets should result in Alice handing over sufficient informa-
tion for the system to be reconstructed; requests to unauthorized sets should reveal no
information about the system. Considering such scenario’s leads us to construct the
state-assembly task.

Before giving a precise definition of the task we introduce a few constructions. To
specify locations where Bob may request the system we designate certain spacetime
points as call points ¢;. At each call point a bit b; € {0,1} is revealed to Alice. To
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each call point there corresponds a return point r;. Together, a call point and the
corresponding reveal point define a causal diamond.

Definition 9 The causal diamond D; is defined as the intersection of the points in
the past light cone of r; with those in the future light cone of ¢;.

If b; = 1 we say the diamond D; has been called to. The causal diamond represents
the spacetime region in which it is possible to both know that a call was received, and
to use this information to influence what is handed over at the corresponding return
point.

We can now define the state-assembly task.

Definition 10 A state-assembly task involves two agencies, Alice and Bob, and is
specified by a tuple {A, s,{A, ..., },{%, ..., Un}}, consisting of

1. A quantum system A. In general A may be a subsystem of some overall pure state
|W)ar. The state on AR is known to Alice and unknown to Bob.

1. A start point s at which Alice initially holds A.

iii. A collection of authorized sets of diamonds {4, ..., ,}. FEach authorized set
consists of a collection of diamonds, <f; = {D1;, ..., Dy;}.

. A collection of unauthorized sets of diamonds {, ..., %n}. Fach authorized set
consists of a collection of diamonds, U = { D14, ..., Dy}

Alice will receive calls at a subset of the D;. If the set of called to diamonds corresponds
to an authorized set, Alice should return quantum systems and classical instructions
sufficient to reconstruct A at the associated reveal points r;. If the set of calls corre-
sponds to an unauthorized set, the systems she hands over should reveal no information
about A. Further, no set of calls should result in Alice returning systems sufficient to
construct two copies of the system.

There are a few points to clarify regarding this definition. First, Alice need not hand
the system over at any one of the called to diamonds. Instead the systems she hands
over at the called to diamonds should together be sufficient to recover the A system.
Second, calls to sets of diamonds not specified as authorized or unauthorized may result
in the system being handed over — Alice still completes the task successfully so long
as she does not hand over two copies of the system.

In state-assembly Alice knows the state | V) 4z and can potentially prepare many
copies of the A system. This differs from the localize-exclude task and earlier work on
summoning. However, we have also required that she never hand over more than one
copy of A. As discussed in more detail in appendix A, this is actually leads to conditions
on state-assembly that are equivalent to having Alice hold an unknown state. We have
chosen to discuss this task from the perspective of a known quantum state however as
it is more natural in the context of the application given in section 4.
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Figure 11: A state-assembly task with two call-return pairs. A call to ¢y is required to result in the
system returned at 71, and likewise for co and ry (indicated by the black lines), while a call to both
shouldn't result in more than one copy of the system being turned over. This task is impossible
as shown by theorem 11, because 75 is outside the future light cone of ¢; and ry is outside the
future light cone of cy. In the language of definitions 9 and 10, ¢; and r; form a causal diamond
Dy (shown in blue), and the authorized set 27 consists of the single diamond D; (similarly for c;
and rg).

Before discussing more general constructions we begin with the simplest state-
assembly task, illustrated in figure 11, and prove a no-assembly theorem. In this scenario
there are just two authorized sets o) and .o7.

Theorem 11 Consider a state-assembly task with authorized sets o/ and <5 which are
causally disconnected. Then this assembly task is impossible to complete with a perfect
success rate.

Proof. For Alice to successfully complete the assembly task, she must have a protocol
which

i. Returns sufficient information to construct the system when o/ or .7 receive
calls.

ii. Hand over information sufficient to construct at most one copy of the system for
any set of calls.

We can straightforwardly show that any protocol which satisfies the first requirement
cannot satisfy the second, and consequently there is no such successful protocol. Indeed,
suppose both o7 and .27 receive calls. Then since 2/, and o7, are causally disjoint Alice’s
agents at the diamonds in . cannot distinguish this situation from one where only
o/ has been called to. By (i) then they hand in sufficient information to construct
the system. Similarly, Alice’s agents at .o% will also hand in sufficient information to
construct the system. Since Bob may now construct two copies of A, (ii) is violated. =

We see that completing the assembly task to causally separated regions is impossible.
Notice that it is essential that the Bobs may give calls to both diamonds: the possibility
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Figure 12: lllustration of condition (iii) in theorem 13. Dashed red boxes enclose unauthorized sets
while dashed blue boxes enclose authorized sets. The condition states that every pairing (7,, %)
of authorized with unauthorized set must have either (a) <7, \ % # 0 or (b) % \ <, is causally
connected to «7,.

of a call to & U 7 along with the requirement that Alice allow assembly of not more
than one copy of the system leads to Alice being unable to complete the task successfully.

Next, we look at a wider class of assembly tasks involving an arbitrary number of
authorized sets {47 }.

Theorem 12 An assembly task with authorized sets {., ..., %, } and start point s can
be completed with a perfect success rate if and only if the following conditions hold.

1. The return point of at least one diamond from each authorized set is in the causal
future of the start point.

it. BEvery pair of authorized sets (<7, o/;) are causally connected.

Proof. The first condition is necessary by no-signalling. The necessity of the second
condition follows from the same argument as given in theorem 11.

We can use theorem 8 to show sufficiency of these conditions. There, we constructed
an explicit protocol that localizes the system to each authorized region. In particular,
the system is recorded as classical teleportation data and shares in a quantum error-
correcting code. To complete the assembly task then, Alice should execute the local-
ization protocol from theorem 8, with the authorized sets of diamonds considered as
authorized regions. Then to complete the assembly task Alice need only hand over the
classical and quantum data in <7, when she receives calls there.

Notice that this protocol automatically ensures Bob cannot give calls to receive two
copies of the system, since Alice only uses one copy of A. =
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3.2 State-assembly with authorized and unauthorized regions

We can now proceed to characterize the state-assembly tasks with both authorized
and unauthorized sets that can be completed by Alice. The difficulty here for Alice is
different than in the case of localize-exclude. In localize-exclude, she had to keep the
system out of a region %; from an attacker who might gain full access to %;. Now, Alice’s
labs are secure. However the sets of spacetime points corresponding to an authorized
call can be overlapping with those corresponding to an unauthorized call. This means
that locally she may not be able to tell an authorized and unauthorized call apart.

To understand under what conditions Alice can avoid an accidental reveal of the
system to an unauthorized set of diamonds, we can first consider a task of the form
(A, s, o, %) having one authorized and one unauthorized set of diamonds. In this case,
Alice can be successful if either (a) there is a diamond in &7 which is not in %, since
then she can turn over the system at that diamond only when there is a call there or
(b) there is a diamond D, in & which, although it is in %, is positioned such that
Alice can tell at D, whether the global set of calls is authorized or unauthorized. In
particular, this occurs exactly when there is a diamond in % \ & which is causally
connected to 7. Figure 12 illustrates these two possibilities.

We now state and prove the theorem characterizing the state-assembly tasks with
authorized and unauthorized sets of diamonds.

Theorem 13 A state-assembly task with authorized sets {<,} and unauthorized sets

{%} and start point s can be completed if and only if the following three conditions
hold:

i. The return point of at least one diamond from each authorized set is in the causal
future of the start point.

it. Each pair of authorized sets (<, %) is causally connected.

iti. Each pair (<, ;) of authorized with unauthorized sets has the property that either
g\ U £ D or U\ A, is causally connected to <.

Proof. The necessity of conditions (i) and (ii) follow from the same arguments as in
theorem 12. To see the necessity of condition (iii), consider that its negation is that
both o7, C %; and %; \ <7, is not causally connected to o7,. Then Alice’s agents in the
diamonds of .¢7,, should they receive calls, cannot distinguish a call to <7, from a call to
U; since they are causally disconnected from diamonds in %; \ <7,. In order to complete
the task, Alice must always hand the system over to <7, when she receives a call there.
She will then also always hand over the system when the call is to %;, leading to her
failing the task.

To demonstrate sufficiency we construct an explicit protocol to complete the task
in the case where all three conditions are true. Using the error-correcting code con-
structed from the graph of causal connections (also used in theorems 6, 8, and 12) we
can reduce the initial (A, s, {A, ..., },{%, ..., %»}) task to many tasks of the form
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(Sij, s, { e, o;} {7, ..., Un}), where the S;; are the shares of the error-correcting code
associated to the ¢ — j pair of regions.

To complete the (S;;, s, {%, ;},{%, ..., % }) tasks, we encode the share S;; using
the quantum one-time pad with some classical randomness £;;. Now notice that we can
complete the (Sy;, s, {<, o}, {%, ..., %,}) task by completing (S;;, s, {<, <}, 0) on
the quantum share S;; and (k;;, s, %, {%, ..., %»}) and
(kij, s, 9;,{, ..., %y}) on the classical string. Stated another way, the use of the one-
time pad lets us ignore avoiding the unauthorized sets when considering the quantum
data, and only worry about not handing the classical string over at the unauthorized
sets.

To complete the tasks of the form (kyj, s, o, {?, ..., %»}), we encode k;; into a
((m,m)) classical secret sharing scheme with shares labelled k!;. Then completing the
tasks (kﬁj,s,@é,%) ensures each share kfj ends up at 4, so the string k;; can be
constructed there along with the quantum share S;;. At the same time, completing the
tasks (k;ﬁj, s, 9, %) ensures the share kfj is missing from %, and since every share k:ll-j
is needed to recover S;;, S;; cannot be decoded there.

To complete these (k, s, o7, %;) tasks, recall that by condition (iii) either <7 \ %; is
not empty or %; \ < is causally connected to <. If <7 \ %; is not empty, then send k
to a diamond D, in &7 \ %;. Then hand over k at D, if there is a call there. If %; \ <
is causally connected to 7 then send k to any diamond D, in .7 which has at least
one call point of %; \ <7 in its causal past. Then hand over k at D, if there is a call
there and no call at the diamonds in %, \ <. m

We give a task on four diamonds in figure 13 and demonstrate how to complete it
using the protocol constructed in this proof.

The state-assembly task seems a less natural extension of quantum secret sharing
to spacetime, since condition (iii) differs notably from the corresponding condition in
secret sharing. In particular, some allowed state-assembly tasks have unauthorized
sets which contain authorized ones, violating the monotonicity requirement of quantum
secret sharing [23]. In contrast, the localize-exclude task mimics the monotonicity
requirement closely, since the condition there is that (the domain of dependence of) the
unauthorized region not contain the authorized region. However, this distinction from
secret sharing opens up interesting new possibilities; in the next section we propose
a cryptographic task and protocol which exploits the failure of monotonicity in the
state-assembly task.

4 An application: party-independent transfer

As discussed in the introduction, relativistic tasks in Minkowski space have provided an
interesting set of tools for the cryptographer. In part, our motivation for considering the
state-assembly task with authorized and unauthorized regions is in the hope it will find
such application. The state-assembly task includes scenarios with many parties, and
allows for a rich array of possible causal structures. Each causal structure translates to
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Figure 13: An arrangement of causal diamonds on which we can define an assembly task. Define
authorized sets @} = {Dg 1, Dp1} and o = {D, 2, Dy 2} while any set of three or four diamonds
is deemed unauthorized. One can check that every unauthorized set has %;\ <7; causally connected
to 47}, so theorem 13 gives that this task can be completed. To do so, the initial system A is
encoded using the quantum one-time pad and sent towards the pair of diamonds labelled ‘a’, D1
and Dgo. It should be handed over at whichever diamond receives a call. The key k£ from the
one-time pad is stored in a ((2,2)) secret sharing scheme as k = k, @ k;, and k, and k; are sent
towards the ‘a’ and ‘b’ pairs of diamonds respectively. At the ‘a’ pair of diamonds, k, is returned
to D, if there is a call there and no call at D,s, or at D,s if there is a call there and no call
at Dg1. The kp string is returned to Dp; or Dps using the same logic. If three or four diamonds
receive calls, then at least one of the ‘a’ or ‘b’ pairs of diamonds will not receive a share of the
((2,2)) scheme, so Bob will not receive the A system. Notice that the task is possible even though
4, o are subsets of the unauthorized sets, violating the monotonicity requirement of quantum
secret sharing.
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a set of restrictions on which parties can know what, and when, and it seems plausible
that these restrictions can be exploited to perform some interesting multiparty task or
computation securely.

We suspect there are many possible directions to consider, and make a small start
at this by suggesting below one particular task. We do not offer complete security
arguments for our proposal or careful discussion of the practicality of this task. Our
aim is simply to suggest the applicability of the state-assembly task to cryptography.

To motivate the task consider the following scenario. Alice is an employer who
wishes to hire either Bob; or Bob,. Alice is known to be inclined to prejudice, and the
Bobs wish to ensure they are paid based on the work done alone, without regard to
their identity. An easy solution would be to announce publicly the position’s salary,
but unfortunately the Bobs are private people. They wish to keep their salaries secret
while also having a guarantee of fairness. We define the party-independent transfer task
in order to satisfy these two competing needs.

In the party-independent transfer task, we specify that each Bob will give an input
X; to Alice. Alice will then output quantum systems S(Xi, X5, a) and T'(X;, X, a),
with one system handed to each of the Bobs, where a is a variable fixed by Alice. The
task occurs in a spacetime setting, so in general the X; may be stored as several bits
handed over from Bob’s agents to Alice’s agents at distributed spacetime points. The
X; should be distinct. If not, then the protocol aborts.

To meet the needs of our jealousy-prone but private Bobs, and guard against the
prejudiced Alice, we need the transfer to have the following properties:

i. Party independence: The output systems S and T produced by Alice have the
property that

S(X17X27a) = T(XQ,Xl,CL) CLTLd S(XQ,XI,(I> = T(Xl,XQ,CL). (].)

In words, we require that the output given to Bob; would have been given to
Bobs had the Bobs reversed their inputs.

ii. Fized: As aset, {S(X1, X2,a),T(X;1,X2,a)} is determined by the variable a only.
In words, the Bobs’ input influences who receives which system only, not which
two systems are handed over.

iii. Secret: Each Bob does not learn Alice’s output to the other Bob. In particular,
this requires that Alice not satisfy condition 1 trivially by having S(X;, Xs,a) =
T(X1, Xy, a) always.

To assure ourselves completing this task is not trivial consider various naive ap-
proaches. We might have Alice share two entangled sets of degrees of freedom, FE;
given to Bob; and FE, given to Boby, onto which she will later teleport 7" and S, re-
spectively. The Bobs could then exchange degrees of freedom if they decide to reverse
the arrangement of who receives which system. This is certainly party-independent,
since Alice performs the teleportation without knowing who holds which degrees of
freedom. However, the fixed property is violated, as either Bob can act on their degrees
of freedom before exchanging it.
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Figure 14: Arrangement of call-reveal pairs used in the proposed party-independent transfer pro-
tocol. Boby controls the diamonds D 1, Dy 1, D1 while Boby controls Dy 2, Dy 2, D¢ 2.

Another strategy would be to have Alice publicly announce a protocol for preparing
each of S and T'. Clearly this is fixed and party-independent, but fails to be secret.
Finally, Alice could separately hand S to Bob; and 7' to Boby (or vice versa). This
would be fixed and secret but not party-independent.

Although the obvious strategies fail, the state-assembly task seems to be well-suited
to achieving party-independent transfer. As intuition, we can note that in a state-
assembly task Alice’s agents, who only have access to local information and not the
global set of calls made by the Bobs, may not be aware of who has received the system
until a late time when she has been able to collect and compare all of the call data.
Further, we have already introduced the notion of an unauthorized set of calls and can
hope to exploit this to achieve the secrecy property of party-independent transfer.

Indeed, we can put forward a candidate protocol built on a state-assembly task
that seems to achieve all three security requirements of party-independent transfer.
Before explaining the protocol however, we need to highlight one feature of the ((2,3))
secret sharing scheme which will be used. We will use an error-correcting code on three
physical qutrits which stores one logical qutrit. The logical states are given by

1
02) = 5 (1000) + [111) +[222)),
1) = ;5(|o12> + [201) + [120)),
1
22) = = (1020)+[102) +[210)). @)

One may check explicitly that there exists a decoding operation UIQ supported on the
first two qutrits such that

Z/11T2|Z'L> = [9)1]X) 23, (3)
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where

1

X} = \/3(!00>+!11>+!22>)- (4)
By the symmetry in the code, a similar decoding operation exists for any subsystems
of two qutrits. We wish to highlight that after the decoding operation is applied, two
of the qutrits are left in a maximally entangled state.

To construct the protocol, we will use the arrangement of diamonds shown in figure
14. Bob; controls the diamonds D, 1, Dy 1, D1 while Boby controls Dg o, Dy o, Dc2. We
consider a scenario where the Bobs choose at random which of them receives which sys-
tem, although modifications to this are easy. We divide the protocol into a preparation
phase, transfer phase, and checking phase for clarity in presentation.

Protocol 14 Compensation protocol

i. Preparation phase

(a) Alice prepares a quantum state |¥)gg, and encodes the S system into the
((2,3)) secret sharing scheme using the encoding given in equation 2.

(b) Bob; and Bob, execute a coin flipping protocol. The outcome is not revealed
to Alice. Without loss of generality, suppose that Bob; wins the coin toss,
which determines that he should receive S.

(c) Boby chooses at random two of the three diamonds he controls and sends
calls to each of them. Without loss of generality, we call these diamonds
D, and Dy ;. Boby then sends a call to the diamond he controls which is
not causally connected to D, or Dy, which in this case is D, 5.

ii. Transfer phase

(a) Alice routes one share of her secret sharing scheme towards each of the
diamond pairs labelled by a, b and c.

(b) Alice responds to the summons at each of the call points by comparing the
calls from D,; and D,s. If both have b = 1 or both have b = 0, Alice
does not hand over the share to either diamond. If exactly one of the two
diamonds has b = 1, Alice hands the share over at the corresponding return
point.

iii. Checking phase

(a) Bob; applies the decoding map to his two shares, producing |¥V)sg ® |x)
where |x) is the maximally entangled state given in equation 4.

(b) Boby sends his share of the maximally entangled state to Boby, who then
measures the pair jointly to ensure he holds |y).

In the notation of our security definition, the inputs X; by the Bobs consist of their three
output bits X; = {b; 4, bip, b;c}. Before the checking phase, the state is |¥)sr ® |x).,
with the receiving Bob holding S and half the maximally entangled state |y), and the
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non-receiving Bob holding the other half of |x). After the checking phase however one
Bob holds only S and the |x) state has been measured. We should then identify the T’
system of the definition as 7' = (). If we would like both Bobs to receive some quantum
system we can run the protocol twice.

We can argue for the secret and fixed properties of this protocol. Fixed is clear, since
the receiving Bob can reconstruct the system from degrees of freedom that have never
been held by the non-receiving Bob. Regarding secrecy, we note that the non-receiving
Bob receives only one share of the secret sharing scheme, so learns no information about
S. The non-receiving Bob may try to receive additional shares by sending additional
calls, but in this case Alice will notice that calls have been made at two causally related
diamonds and not hand over any shares to those diamonds.

To argue for party-independence, note that Alice is already limited in her knowledge
of who is receiving the system. Although at each pair of diamonds she knows whether
she is handing a single share over to Bob; or Boby, none of Alice’s agents have the
global information of which Bob is receiving two shares, and thus the system S. Later
on she will be able to collect information from all the call points and determine this, but
at the spacetime points of transfer this is not known. Alice might try to have one set of
shares which she hands to Bob; and a separate set to Boby, but using two unentangled
sets of shares for Bob; and Boby will lead to a failure in the checking phase. We leave
proving or disproving the security of this protocol, which we regard as plausible but
not obvious, to future work.

It is perhaps useful to note a connection of classical bit commitment with the party-
independent transfer task. Given a bit commitment scheme which consists of 1) Alice
handing a commitment to Bob, then 2) Alice later handing a reveal to Bob, which he
uses to access Alice’s committed bit, it is possible to construct a party-independent
transfer protocol.” In particular, Alice publicly announces her commitment to both
Bob; and Bob,, then hands the reveal to only one of the Bobs. However, it is known
that there are no unconditionally secure bit commitment schemes of this form [30, 31].

5 Discussion

In our first article on summoning [6], we argued that the summoning task gives an
operational setting in which to understand how quantum information can and cannot
move through spacetime. That setting was restricted however to asking if a quantum
system could be localized to collections of causal diamonds.

In this article we have generalized in a way that allows us to ask if a quantum system
is localized to a collection of arbitrary spacetime regions. We have defined the notion
of localized by allowing some party with no prior knowledge of the system unrestricted
access to the spacetime region. If they can later construct the system then we say
it was localized there; if they learn nothing about the system we say it is excluded.

5This was pointed out to the authors on the cryptography stack exchange [29].
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This is consistent with our previous definition of localization to a diamond, in that
completing the summoning task means in particular that the system was localized to
each diamond. However, the notion of localization implied by summoning is stronger
than the notion used in this article, since in summoning Alice must perform the data
processing needed to construct the system while within the diamond. In the localize
task this data processing can occur outside the region.

In the absence of gravity, where there are no known limits on the rate of computa-
tion, the strong and weak notions of localization coincide, at least for diamond-shaped
regions. In the presence of gravity Lloyd argued there is a limit on computational
speed [32] but there are counterexamples to his proposed bound [33]. It is nonetheless
plausible that computational speed is limited by quantum gravity, so one can imagine
a scenario where a quantum system is localized to a region in the weaker sense (in that
it is possible to construct it from systems that pass through that region) but not in
the strong sense (in that it is impossible to do so within the spatial-temporal extent of
that region due to gravitational constraints on computation). Thus, in the presence of
gravity these notions of localization plausibly become distinct. Attempts to resolve fun-
damental puzzles like the black hole information paradox [34, 12, 35] have also hinted
at this distinction, and indicate that it may be the stronger notion of localization for
which the no-cloning theorem applies.

Also in the context of gravity the holographic bound [36] makes tasks with suffi-
ciently small regions or sufficiently large numbers of regions impossible to complete,
since it places a limit on how many qubits may be localized to a region of a given area
without producing a black hole. Thus, we should understand the theorems given in this
work as applying only in the absence of gravity. It would be interesting to perform a
detailed study of exceptions to our theorems arising from gravitational physics.

By adding excluded regions to the localize task we have found a natural extension
of quantum secret sharing to a spacetime setting. Indeed, the conditions for completing
the localize-exclude task have close analogues in the conditions for constructing quan-
tum secret sharing schemes, and we can embed any quantum secret sharing scheme
as a carefully chosen localize-exclude task. The conditions on the start point in the
localize-exclude task are somewhat awkward from this perspective, but can be seen as
corresponding to certain trivial requirements in the secret sharing language.

Since the localize-exclude task corresponds so closely to quantum secret sharing,
we might expect that it doesn’t provide any new tools for the construction of crypto-
graphic protocols. From this perspective the state-assembly task is more interesting,
since there we can have an unauthorized set contain an authorized one. This violates
the monotonicity requirement that occurs in both localize-exclude and quantum secret
sharing.

We have given one proposed application that exploits this violation of monotonicity:
party-independent transfer. This proposal is in need of a more complete study. We
have not proven our proposed protocol is secure, nor considered what more practical
goals within cryptography this primitive may be used to achieve. It would also be
interesting to understand the relation of the proposed party-independent transfer task
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to established cryptographic primitives. We have already pointed out a connection
to bit commitment, but there may also be interesting relations to (for instance) the
spacetime analogues of oblivious transfer mentioned in the introduction.
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A Summoning, state-assembly and localization

In the main article we have discussed two related tasks: state-assembly and localize-
exclude. A third task, summoning, has also been considered in earlier work [6]. All
these tasks relate to how quantum information can move through spacetime; in this
appendix we clarify the relationships among these three tasks.

The summoning task was introduced by Kent [11] and expanded on later in [6].
There are various variations on its definitions, as we discuss below. We give the defini-
tion from [6] first.

Definition 15 A single-call single-return summoning task is a task involving two
interacting agencies, Alice and Bob. The task is defined by

i. A quantum system A, where Bob knows the state of the purification |V)ar and
holds the R system.

1. A start point s at which Bob gives Alice A
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1. A collection of causal diamonds D;, each of which is defined by a call point ¢; and
return point r;

At each call point ¢; Alice receives a classical bit b;. Alice is guaranteed that exactly
one bit will be 1, say by~ = 1, and the remainder will have b; = 0, but does not know
the value of i* in advance. To successfully complete the task, Alice should return the
system A to the point r;« such that by = 1.

To complete the summoning task Alice must send systems sufficient to reconstruct the
system through each diamond. Consequently, completing a summoning task with dia-
monds {D;} also completes an associated localize task with authorized regions < = D;.
However, the reverse is not true: completing the localize task implies some collection of
systems inside each authorized region can be used to construct the system, but doesn’t
require that this reconstruction can take place within the region. For instance, ex-
hibiting the system could require the application of a high complexity circuit, perhaps
requiring so many gates that gravitational speed limits would prevent their comple-
tion in the required time. Further, localize tasks deal with regions of arbitrary shape,
whereas in a summoning task only causal diamond shaped regions are discussed.

The basic restriction on when a summoning task may be completed is the no-
summoning theorem [11].

Theorem 16 A single-call single-return summoning task with two diamonds D, Dy is
impossible whenever Dy and Doy are causally disjoint.

Proof. Suppose there exists a protocol that returns the system to r; when there is a call
to ¢; and returns the system to r, when there is a call to ¢;. Then we can argue such
a protocol can be used to clone a quantum system, and consequently no such protocol
can exist. To see this, suppose there is a call to both ¢; and ¢;. Then since D; and
D are causally disjoint, Alice’s agent at D, cannot distinguish this case from the case
where ¢; receives a call and ¢y does not. By assumption then she returns the system to
r1. Similarly, Alice’s agent at Dy returns the system at r5. Alice has then handed over
two copies of the quantum system. m

The proof of the no-summoning theorem is similar to the proof of the no-assembly
theorem we gave in the main text, see theorem 11.

Similar to the localize task, summoning is possible whenever each pair of diamonds
are causally connected and every diamond has a point in the future light cone of the
start point.

Theorem 17 The single-call single-return summoning task is possible if and only if:

1. The return point of each diamond is in the causal future of the start point.
it. BEvery pair of diamonds (D;, D;) is causally connected.

We omit the proof of this theorem as it proceeds along now familiar lines: the many
diamond case is reduced to a two diamond case by use of an error-correcting code, which
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Figure 15: A summoning task on two diamonds in 2 + 1 dimensions. In this task 7 is in the
future light cone of ¢, but 73 is not in the future of ¢;. (In all figures, red arrows indicate causal
curves.) Additionally, 71 and ro are in the future light cone of s. To complete this summoning
task, Alice pre-shares entanglement between s and c;. At s, Alice teleports the A system using
the shared entanglement and then sends the classical teleportation data to both 71 and 7. At ¢y,
Alice routes the entangled particle she holds to ry if she receives by = 1, and routes the particle
to ro otherwise. This example is due to Kent [10].

can be constructed from the graph of causal connections among the regions. In the case
of two diamonds we complete the task using the teleportation protocol illustrated in
figure 15.

The summoning task as given above is “single-call” in that exactly one of the b; =
1, and “single-return” in that the system should be returned in full at the called-to
diamond. We can generalize this to allow for Alice to receive many calls (many b; = 1) in
two possible ways. First, we might specify that Alice return a subsystem at each called-
to diamond such that taken together these subsystems can be used to reproduce the A
system. In this case we have weakened the requirement on Alice — she need not hand
over the quantum system itself, just quantum information and classical instructions
sufficient for Bob to later construct the system. We will refer to this as many-call many-
return summoning. Alternatively, we can specify that Alice hand over the system itself
at one (but any one) of the called-to diamonds. We call this many-call single-return
summoning. This second case is treated by Adlam and Kent [7| and discussed further
in appendix B. The first case is closely related to the state-assembly task. We elaborate
on this relation in the remainder of this section.

We can collect the discussion in the last paragraph into a definition of the many-call
many-return summoning task.

Definition 18 A many-call many-return summoning task is a task involving two
interacting agencies, Alice and Bob. A task is defined by

i. A quantum system A, where Bob knows the state of the purification |V)ar and
holds the R system
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1. A start point s at which Bob gives Alice A

iii. A collection of authorized sets { <A, ..., o, } each consisting of one or more causal
diamonds, <f; = {D;1, ..., Dy, }

At the call point associated with each diamond Alice receives a bit b; from Bob. Alice
has a guarantee that the calls will be to one of the authorized sets of diamonds. Alice
15 required to return a collection of classical and quantum systems at the associated r;
which 1s sufficient to reconstruct A.

We characterize the many-call many-return summoning tasks which are possible and
those which are impossible in the following theorem.

Theorem 19 The many-call many-return summoning task is possible if and only if:

1. The return point of at least one diamond from each authorized set is in the causal
future of the start point.

ii. Every pair of authorized sets (<7, ;) is causally connected.

Again we omit the proof, which follows the pattern of using the error-correcting code
constructed from the graph of causal connections to reduce the many authorized set
case to the two authorized set case. In the case of two authorized sets we use that
the sets are causally connected, so in particular there exists a pair of causal diamonds
chosen across the sets which are causally connected. We then complete the summoning
task on these two diamonds using the teleportation protocol illustrated in figure 15.

From theorems 12 and 19 we find that state-assembly and summoning are possible
for exactly the same arrangements of authorized sets. This is interesting, as although
the tasks are similar they have one key distinction. In summoning Alice holds the A
system of an unknown quantum state | W) 4g, so can’t produce copies of the A system
due to the linearity of quantum mechanics; in state-assembly Alice holds a known
quantum state, but has the additional requirement that she hand over the A system at
most once. Thus, in the assembly task the requirement that Alice hand the system over
at most once replaces the no-cloning restriction. The system Alice holds is essentially
classical, since it is known to her and she may produce an arbitrary number of copies,
but this gives her no additional power. In this sense we can view the state-assembly
task as a classical analogue of the summoning task®.

In the main article we discussed the state-assembly task with unauthorized regions.
One could also consider a generalization of the summoning task with unauthorized
regions, but this generalization is less well motivated. In particular, in the summoning
task Bob both gives the system to Alice and requests it from her. It is unclear in what
circumstance Alice would want to hide the system Bob gave to her from Bob when
certain sets of calls are made. In the assembly setting this is more natural, since Alice
has herself prepared the system and may want to hide it from certain subsets of other
parties.

6Shortly before the publication of this manuscript reference [9] appeared, which also discusses a
classical version of the summoning task and its relation to the quantum one.
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B Many-call single-return summoning

In appendix A we discussed the many-call many-return summoning task, which we
found is closely related to the state-assembly task discussed in the main article. Many-
call many-return summoning is also interesting from the viewpoint of spacetime lo-
calization. In particular, completing the many-call many-return summoning task also
completes the localize task. However, a second generalization of summoning to include
many-calls is possible: we can consider a task with many calls but a single return, where
Alice receives several calls from Bob and must return the system in full at exactly one
(but any one) of the called-to diamonds.
We give a definition of the many-call single-return summoning task below.

Definition 20 A many-call single-return summoning task is a task involving two
interacting agencies, Alice and Bob, defined by:

i. A quantum system A, where Bob knows the state of the purification |V)ar and
holds the R system

1. A start point s at which Bob gives Alice system A

iti. A collection of authorized sets {<#, ..., %, } each consisting of one or more causal

diamonds, <t = {D;1, ..., D, }

At the call point associated with each diamond Alice receives a bit b; from Bob. Alice
has a guarantee that calls will be to one of the authorized sets. To successfully complete
the task, Alice must return the A system at exactly one of the called to diamonds.

As defined here, the many-call single-return summoning task is somewhat more general
than the task considered by Adlam and Kent. They considered in particular the case
where the set of authorized sets {7, ..., 4,} corresponds to every possible subset of
the diamonds. We refer to this as unrestricted-call single-return summoning.
Adlam and Kent characterized the full set of possible arrangements of diamonds for
this unrestricted-call single-return summoning task |7]. We recall their theorem here.

Theorem 21 (Adlam and Kent 15°) Summoning with unrestricted calls with the
requirement that Alice return the system at exactly one diamond is possible if and only
if the following two conditions are true:

i. Fvery return point r; is in the future light cone of the start point s.

it. For any subset {D;,, D;,, ..., D;, } of diamonds, there is at least one diamond D,
in the subset for which r;, is in the future light cone of all the c; in the subset.

Interestingly, condition (ii) above is stronger than the corresponding condition for sum-
moning with a single call. Adlam and Kent used this fact to argue against our inter-
pretation of summoning in terms of localization of quantum information [7]; they argue
that completing the summoning task depends on some resource provided to Alice by

Accepted in { Yuantum 2019-07-02, click title to verify 35



t
M
X

Figure 16: The three diamond task described in text. The known protocol for completing this
task makes use of quantum error-correction: The system is encoded into a ((2, 3)) secret sharing
scheme with one share sent to each of the call points ¢;. The shares are then routed to 711 mod 3
if b, =0, and to r; if b; = 1. This task is the simplest example of a summoning task which Alice
can complete if there is a guarantee Bob will make only one call, but not if Bob may make an
arbitrary number of calls.

Bob — a bit string of the form 000...010...000 — and thus that Alice is not localizing the
system to each diamond. Instead, she is only successfully responding to the summons
b; = 1 by exploiting her knowledge that certain other calls are b; = 0.

The simplest case where the conditions of many-call single-return summoning and
those for many-call many-return summoning differ is the three diamond task shown
in figure 16. Consider the arrangement of diamonds shown there, and take any set of
diamonds to be authorized. Then to complete the many-call many-return task Alice
encodes the system A into a ((2,3)) secret sharing scheme and sends one share to each
of the call points ¢;. She then routes each share according to the bits b; she receives at
each point; if b; = 0 she forwards the share to the next return point r;, 1, while if b; = 1
she sends the share to the return point r;. One can readily check that if one or two
calls are sent two shares will end up at a single return point, and the system is handed
over at a single diamond.

However, if a call is sent to all three diamonds, only one share ends up at each
diamond. Indeed, Adlam and Kent showed that the unrestricted-call single-return task
is impossible on this three diamond arrangement. This is interesting, but we argue it
does not indicate that the system cannot be localized to each diamond, at least using
the notion of localized we employ in this article. In the protocol using the ((2,3))
secret sharing scheme, two shares pass through each diamond when Bob sends no calls.
Someone with full access to the region enclosed by any one diamond can gather both
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these shares from the secret sharing scheme and later use them to construct the system.
Thus, in this sense the system is localized to all three diamonds.

When Bob sends a call, however, he may prevent the system from being reproduced

in certain diamonds. This is obvious in a more prosaic example: Suppose we have two
diamonds, with a diamond D, far in the causal future of the diamond D;. Then Bob
giving a call to D; results in Alice handing the system over to Bob there, and so she
does not produce the system in diamond D,. One thing that is interesting about the
three diamond task, as revealed by Adlam and Kent, is that in some cases Bob’s calls
can prevent the system from being reproduced in any diamond. In particular this can
happen in cases with cyclic connections among diamonds, as in the three diamond task.
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