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Abstract. In this paper we aim to determine the location and orienta-
tion of a ground-level query image by matching to a reference database
of overhead (e.g. satellite) images. For this task we collect a new dataset
with one million pairs of street view and overhead images sampled from
eleven U.S. cities. We explore several deep CNN architectures for cross-
domain matching – Classification, Hybrid, Siamese, and Triplet networks.
Classification and Hybrid architectures are accurate but slow since they
allow only partial feature precomputation. We propose a new loss function
which significantly improves the accuracy of Siamese and Triplet embed-
ding networks while maintaining their applicability to large-scale retrieval
tasks like image geolocalization. This image matching task is challenging
not just because of the dramatic viewpoint difference between ground-
level and overhead imagery but because the orientation (i.e. azimuth)
of the street views is unknown making correspondence even more diffi-
cult. We examine several mechanisms to match in spite of this – train-
ing for rotation invariance, sampling possible rotations at query time, and
explicitly predicting relative rotation of ground and overhead images with
our deep networks. It turns out that explicit orientation supervision also

improves location prediction accuracy. Our best performing architectures
are roughly 2.5 times as accurate as the commonly used Siamese network
baseline.

Keywords: Image geolocalization · Image matching · Deep learning ·
Siamese network · Triplet network

1 Introduction

In this work we propose deep learning approaches to the problem of ground to
overhead image matching. Such approaches enable large scale image geolocaliza-
tion techniques to use widely-available overhead/satellite imagery to estimate
the location of ground level photos. This is in contrast to typical image geolocal-
ization which relies on matching “ground-to-ground” using a reference database
of geotagged photographs. It is comparatively easy (for humans and machines)
to determine if two ground level photographs depict the same location, but the
world is very non-uniformly sampled by tourists and street-view vehicles. On the
other hand, overhead imagery densely covers the Earth thanks to satellites and
other aerial surveys. Because of this widespread coverage, matching ground-level
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Fig. 1. Street-view to overhead-view image matching

photos to overhead imagery has become an attractive geolocalization approach
[18]. However, it is a very challenging task (even for humans) because of the
huge viewpoint variation and often lighting and seasonal variations, too. In this
paper we try to learn how to match urban and suburban images from street-view
to overhead-view imagery at fine-scale. As shown in Fig. 1, once the matching is
done, the results can be ranked to generate a location estimate for a ground-level
query.

To address cross-view geolocalization, the community has recently found
deep learning techniques to outperform hand-crafted features [19,33]. These
approaches adopt architectures from the similar task of face verification [7,28].
The method is as follows: a CNN, more specifically a Siamese architecture net-
work [5,7], is used to learn a common low dimensional feature representation for
both ground level and aerial image, where they can be compared to determine
a matching score. While being superior to non-deep approaches (or pre-trained
deep features), we show there is significant room for improvement.

To that end we study different deep learning approaches for match-
ing/verification and ranking/retrieval tasks. We develop better loss functions
using the novel distance based logistic (DBL) layer. To further improve the
performance, we show that good representations can be learned by incorporat-
ing rotational invariance (RI) and orientation regression (OR) during training.
Experiments are performed on a new large scale dataset which will be published
to encourage future research. We believe the findings here generalize to similar
matching and ranking problems.

1.1 Related Work

Image geolocalization uses recognition techniques from computer vision to
estimate the location (at city, region, or global scale) of ordinary ground level
photographs. Early work by Hays and Efros [12] studied the feasibility of this
task by leveraging millions GPS-tagged images from the Internet. In [36], image
localization is done efficiently by building a dataset of Google street-view images
from which SIFT features are extracted, indexed and used for localization of
a query image by voting. Lin et al. [18] propose the first ground-to-overhead
geolocalization method. No attempt is made to learn a common feature space or
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match directly across views. Instead, ground-to-ground matching to a reference
database of ground-overhead view pairs is used to predict the overhead features
of a ground-level query. Bansal et al. [3] match street-level images to aerial images
by proposing a feature which encodes facade structure self-similarity. Shan et al.
[26] propose a fully automated system that registers ground-based multi-view
Stereo models to aerial imagery using traditional multi-view and Structure from
Motion technique.

Deep learning has been successfully applied to a wide range of computer vision
tasks such as recognition of objects [16], places [37], faces [28]. Most recently,
“PlaNet” [32] made use of a large amount of geo-tagged images, quantized the
gps-coordinate into a number of regions and trained a CNN to classify an image’s
location into one of those regions. More relevant to this work is deep learning
applications in cross-view images matching [19,33]. The most similar published
work to ours is Lin et al. [19] which uses a Siamese network to learn a common
deep representation of street-view images and 45 degree aerial or bird’s eye
images. This representation is shown to be better than hand-crafted or off-the-
shelf CNN features for matching buildings’ facades from different angles. In [33],
Workman et al. show that by learning different CNNs for different scales (i.e.
using aerial images at certain scales), geolocalization can be done at the local or
continental level. Interestingly, they also showed that by fixing the representation
of ground-level image, which is 205 categories scores learned from the Places
database [37], the CNN will learn the same category scores for aerial images.
Most recently, Altwaijry et al. [2] use a deep attentive architecture to match
aerial images across wide baselines.

2 Dataset of Street View and Overhead Image Pairs

We study the problem of matching street-view image to overhead images for the
application of image geolocalization. To that end, we collect a large scale dataset
of street-view and overhead images. More specifically, we randomly queried
street-view panorama images from Google Map of the US. For each panorama,
we randomly made several crops and for each crop we queried Google Map for
the overhead image at the finest scale, resulting in an aligned pair of street-view
and overhead images. Note that we want to localize the scene depicted in the
image and not necessarily the camera. This is possible since Google panorama
images come with geo-tags and depth estimates. We performed this data collec-
tion procedure on 11 different cities in the US and produced more than 1 million
pairs of images. Some example matches in Miami are shown in Fig. 2. We make
this dataset available to the public.

Some similar attempts to collect a dataset for cross-view images matching
task are [19,33], but neither are publicly available. We expect that the result and
analysis here can be easily generalized across other datasets (or other applica-
tions like recognizing face or object instead of scene). While the technical aspects
are similar, there will be qualitative differences: when training on [19], the net-
work learns to match the facade which is visible from both views. On [33], the
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Fig. 2. On the left: visualization of the positions of all Miami’s panorama images that
we randomly collect for further processing. On the right: examples of produced street-
view and overhead pairs.

network learns to match similar categories of scenes or land cover types. And on
our dataset, the network learns to recognize different fine-grained street scenes.

3 Cross-View Matching and Ranking with CNN

Before considering the ranking/retrieval task, we start with the match-
ing/verification task formalized as following: during training phase, matched
pairs of street-view and overhead images are provided as positive examples (neg-
ative examples can be easily generated by pairing up non-matched images) to
learn a model. During testing, given a pair of images, the learned model is applied
to classify if the pair is a match or not.

We use deep CNNs which have been shown to perform better than tra-
ditional hand-crafted features, especially for problems with significant training
data available. We study 2 categories of CNNs (Fig. 3): the classification network
for recognizing matches and the representation learning networks for embedding
cross-view images into the same feature space. Note that the first category is
not practical for the large-scale retrieval application and is used as a loose upper
bound for comparison.

The second category includes the popular Siamese-like network and the
triplet network. We introduce another version of Siamese and triplet networks

Fig. 3. Different CNN architectures: on the left is the first category: the classifica-
tion network and the Siamese-classification hybrid network, on the right is the second
category: the Siamese network and the triplet network
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that use the distance based logistic layer, a novel loss function. For completeness
we also include the Siamese-classification hybrid network (which will belong to
the first category). In this section we will experiment with 6 networks in total.

3.1 Classification CNN for Image Matching

Since our task is basically classification, the first network we experiment with
is AlexNet [16], originally demonstrated for object classification (Fig. 3(a)). It
has 5 convolutional layers, followed by 3 fully-connected layers and a soft-max
layer for classification. We make several modifications: (1) the input will be a
6-channel image, a concatenation of a street-view image and an overhead image,
while the original AlexNet only takes 1-image input, (2) we double the number
of filters in the first convolutional layer, (3) we remove the division of filters
into 2 groups (this was done originally because of GPU memory limitation) and
(4) the softmax layer produces 2 outputs instead of 1000 because our task is
binary classification. Similar architectures have been used for comparing image
patches [35].

Training the CNN is done by minimizing this loss function:

L(A,B, l) = LogLossSoftMax(f(I), l) (1)

where A and B are the 2 input images, l ∈ {0, 1} is the label indicating if it’s
a match, I = concatenation(A,B) and f(.) is the AlexNet that outputs class
scores.

3.2 Siamese-Like CNN for Learning Image Features

The Siamese-like network, shown in Fig. 3(b), has been used for cross-view image
matching [19,33] and retrieval [4,29]. It consists of 2 separate CNNs. Each sub-
network takes 1 image as input and output a feature vector. Formally, given 2
images A and B, we can apply the learned network to produce the representa-
tion f(A) and f(B) that can be used for matching. This is done by computing
the distance between these 2 vectors and classifying it as a match if the distance
is small enough. During training, the contrastive loss is used:

L(A,B, l) = l ∗ D + (1 − l) ∗ max(0,m − D) (2)

where D is the squared distance between f(A) and f(B), and m is the margin
parameter that omits the penalization if the distance of non-matched pair is big
enough. This loss function encourages the two features to be similar if the images
are a match and separates them otherwise; this is visualized in Fig. 4(left).

In the original Siamese network [10], the subnetworks (f(A) and f(B)) have the
same architecture and share weights. In our implementation, each subnetwork
will be an AlexNet without weight sharing since the images are of different
domains: one is street view and the other is overhead.
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Fig. 4. Visualization of Siamese network training. We represent other instances
(matches and non-matches) relative to a fixed instance (called the anchor). Left:
with contrastive loss, matched instances keep being pulled closer, while non-matches
are pushed away until they are out of the margin boundary, Right: log-loss with
DBL: matched/nonmatched instances are pushed away from the “boundary” in the
inward/outward direction.

3.3 Siamese-Classification Hybrid Network

The hybrid network is similar to the Siamese in that the input images are
processed independently to produce output features and it is similar to the
classification network that the features are concatenated to jointly infer the
matching probability (Fig. 3(c)). Similar architectures have been used for used
for cross-view matching and feature learning [1,2,11,35].

Formally let AlexNet (f) is consist of 2 parts: the set of convolutional layers
(fconv) and the set of fully-connected layers (ffc), the loss function is:

L(A,B, l) = LogLossSoftMax(ffc(Iconv), l) (3)

Where Iconv = concatenation(fconv(A), fconv(B)). We expect this network
to approach the accuracy of the classification network, while being slightly more
efficient because intermediate features only need to be computed once per image.

3.4 Triplet Network for Learning Image Features

The fourth network that we call the triplet network or ranking network, shown
in Fig. 3(c), is popular for image feature learning and retrieval [23–25,30,31,34],
though its effectiveness has not been explored in cross-view image matching.
More specifically it aims to learn a representation for ranking relevance between
images. It consists of 3 separate CNNs instead of 2 in the Siamese network.
Formally, the network takes 3 images A, B and C as inputs, where (A,B) is a
match and (A,C) is not, and minimizes this hinge loss for triplet (which has been
explored before its application in deep learning [6,21]):

L(A,B,C) = max(0,m + D(A,B) − D(A,C)) (4)

Where D is the squared distances between the features f(A), f(B), f(C), and m
is the margin parameter to omit the penalization if the gap between 2 distances



500 N.N. Vo and J. Hays

Fig. 5. Visualization of triplet network training. Each straight line originating from
the anchor represents a triple. Left: with triplet/ranking loss, instances are pulled and
pushed until the difference between the match distance and the non-match distance
is bigger than the threshold, Right: log loss with DBL for triple. Similar to the rank-
ing loss, but instead of relying on the threshold, the “force” depends on the current
performance and confidence of the network.

is big enough. This loss layer encourages the distance of the more relevant pair
to be smaller than the less relevant pair (Fig. 5(left)).

In the context of image matching, a pair of matched images (as the anchor
and the match), plus a random image (as the non-match) is used as training
example. With the learned representation, matching can be done by thresholding
just like the Siamese network case.

3.5 Learning Image Representations with Distance-Based Logistic
Loss

Despite being intuitive to understand, common loss functions based on euclidean
distance might not be optimal for recognition. We instead advocate loss functions
similar to the standard softmax, log-loss.

For the Siamese network, instead of the contrastive loss, we define the dis-
tance based logistic (DBL) layer for pairs of inputs as:

p(A,B) =
1 + exp(−m)

1 + exp(D − m)
(5)

This outputs a value between 0 and 1, as the probability of the match given
the squared distance. Then we can use the log-loss like the classification case for
optimization:

L(A,B, l) = LogLoss(p(A,B), l) (6)

The behavior of this loss is visualized in Fig. 4(right). Notice the difference
from the traditional contrastive loss.

For the triplet network, we define the DBL for triple as following:

p(A,B,C) =
1

1 + exp(D(A,B) − D(A,C))
(7)
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This represents the probability that it’s a valid triple: B is more relevant to A
than C is to A (note that p(A,B,C) + p(A,C,B) = 1). Similarly the log-loss
function is used, so:

L(A,B,C) = log(1 + exp(D(A,B) − D(A,C))) (8)

The behavior of this loss is visualized in Fig. 5(right).
With this novel layer, we obtain Siamese and triplet DBL-Net that allow us

to optimize for the recognition accuracy more directly. As with the original loss
functions, the learned feature representation can be used for efficient matching
and ranking at test time (when the DBL layer is not involved).

4 Learning to Perform Rotation Invariant Matching

As we are considering the task of fine-grained street view to overhead view match-
ing, not only spatial but also orientation alignment is important, i.e. rotating
the overhead image according to the street-view’s orientation instead of keeping
the overhead image north oriented.

We aim to learn a rotation invariant (RI) representation of the overhead
images. Similarly, Ke et al. [15] studied the problem of shape recognition without
explicit alignment. In [20], nearby filters are untied to potentially allow pooling
on output of different filters. This helps to learn complex representation without
big filters or increasing the number of filters; however that doesn’t result in an
explicit RI property like we desire. Deep symmetry network [9] is capable of
encoding such a property, though its advantage is not significant when training
data is sufficient for traditional CNN to learn that on its own. More relevant, [8]
uses data augmentation and concatenation of features from different viewpoints.
However our training data comes with orientation aligned images (though not
the test sets), which can potentially provide stronger supervision during training.
In this section we explore techniques to take advantage of such information.

4.1 Partial Rotation Invariance by Data Augmentation

Training with multiple rotation samples: Rotation invariance (RI) can be
encouraged simply by performing random rotation of overhead training images.
Although invariance can help to a certain extent, there is a trade-off with discrim-
inative ability. We propose to control the amount of rotation that the matching
process will be invariant to, i.e. partial RI. Specifically this is done by adding
a random amount of rotation within a certain range to the aligned overhead
images. For example a 90◦ RI is achieved by rotating by an amount from −45◦

to 45◦; 360◦ RI means fully RI.

Testing with multiple rotation samples/crops: since we don’t know the
correct orientation alignment at test time, if our representation is only partially
rotation invariant, we have to test with multiple rotated version of the original
image to find the best one. For example: with 360◦ RI representation, 1 sample
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is enough, with 180◦ RI representation, at least 2 rotation samples (that are
180◦ apart) are needed. Similar to multi-crop in classification tasks, we find that
using more test time samples improves the result slightly (e.g. using 16 rotation
samples at test time even if the network was trained to be 90◦ RI).

Multi-orientation feature averaging: as we use more rotation samples than
needed, not only one but multiple of them should be good matches. For example
testing with 16 rotation, we expect 16 of the them are good matches under 360◦

RI range, 4 under 90◦ RI range, etc. Therefore it makes sense to, instead of
matching with a single best rotation (nearest neighbor), match with the best
sequence of rotations. We propose to, depending on the degree of RI, average
the features of multiple rotation samples during indexing time to obtain more
stable features. This technique is especially useful in full RI case: all samples are
averaged to produce a single feature, so the cost during query time is the same
as using 1 sample.

4.2 Learning Better Representations with Orientation Regression

Next we propose to add an auxiliary loss function for orientation regression,
where the amount of added rotation during training can be used as label for
supervision. As shown in Fig. 6, the features from the last hidden layer (fc7) are
concatenated, then we add 2 fully connected layers (one acting as hidden layer
and one as output layer) and use Euclidean distance as our loss function for
regression.

It is known that additional or ‘auxiliary’ losses can be very useful. For exam-
ple, ranking can be improved by adding a classification layer predicting category
[4,24] or attributes [13]. In [27], co-training of verification and classification is
done to obtain a good representation for faces. Somewhat differently, our aux-
iliary loss is not directly related to the main task and its label is randomly
generated by data augmentation. As the inference is done on 2 images jointly,
its effect on each individual’s representation can be difficult to interpret. The

Fig. 6. Network architecture with data augmentation by random rotation and an addi-
tional branch that performs orientation regression



Localizing and Orienting Street Views Using Overhead Imagery 503

motivation, beyond being able to predict query orientation, is that this will make
the network more orientation-aware and therefore produce a better feature rep-
resentation for the localization task.

5 Experiments

Data preparation: we use our dataset of more than 1 million matched pairs of
street-view and overhead-view images randomly collected from Google Maps of
11 different US cities (Sect. 2). We use all the cross-view pairs in 8 cities as
training data (a total of 900k examples) and the remaining 3 cities as 3 test sets
(around 70k examples per set).

We learn with mini-batch stochastic gradient descent, the standard optimiza-
tion technique for training deep networks. Our batch size is 128 (64 of which are
positive examples while 64 are negative examples). Training starts with a large
learning rate (experimentally chosen) and get smaller as the network converges.
The number of training iterations is 150k. We use Caffe framework [14].

Data augmentation: we apply random rotation of overhead images during
training and use multiple rotation samples during testing (described in Sect. 4).
The effect will be studied in detail in Sect. 5.2 We also apply a small amount of
random cropping and random scaling.

Image Ranking and Geolocalization. While we have thus far considered
location matching as a binary classification problem, our end goal is to use it for
geolocalization. This application can be framed as a ranking or retrieval problem:
given a query street view image and a repository of overhead images, one of which
is the match, we want to rank the overhead images according to their relevance
to the query so that the true match image is ranked as high as possible. The
ranking task is typically approached as following: the representation learning
networks are applied to the query image and the repository’s images to obtain
their feature vectors. Then these overhead images can be ranked by sorting
the distance from their features to the query image’s feature. The localization
is considered successful if the true match overhead image is ranked within a
certain top percentile.

Metrics: We measure both the classification and ranking performance on each
test set. The classification accuracy is computed by using the best threshold on
the each test set (random chance performance is 50 %). For the ranking task, we
use mean recall at top K% as our measurement (the percentage of cases in which
the correct overhead match of the query street view image is ranked within top
K percentile, chance performance is K%). Some ranking examples are shown in
Fig. 7.

5.1 Comparison of CNN Architectures

We train and compare 6 variants of CNN described in Sect. 3. All are initialized
from scratch (no pretraining), trained to be 90◦ RI, and tested with 16 rotation
samples. Quantitative comparisons are shown in the top of Table 1.
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Fig. 7. Ranking result examples on the Denver test set (reference set of 70k reference
images)

Table 1. Performance of different networks on different test sets

Task Classification (accuracy) Ranking (recall @top 1 %)

Test set Denver Detroit Seattle Denver Detroit Seattle

Section 5.1 experiment (90◦RI+16rots)

Classification network 90.0 87.8 87.7 N/A N/A N/A

Classification hybrid 91.5 88.7 89.4 N/A N/A N/A

Siamese network 85.6 83.2 82.9 21.6 21.9 17.7

Triplet network 88.8 86.8 86.4 43.2 39.5 35.3

Siamese DBL-Net 90.0 88.0 88.0 48.4 45.0 41.8

Triplet DBL-Net 90.2 88.4 87.6 49.3 47.1 40.0

Section 5.2 (360◦RI+OR)

DBL-Net + 16rots 91.5 90.1 88.7 54.8 52.7 45.5

DBL-Net + avg16 91.5 90.0 88.8 54.0 52.2 45.3

Section 5.3

Triplet eDBL-Net 91.7 89.9 89.3 59.9 57.8 51.4

Not surprisingly, both classification networks achieved better accuracy than
the representation learning Siamese and triplet networks. This is because they
jointly extract and exchange information from both input images. Somewhat
unexpectedly, in our experiments the hybrid network is the better of the two.
Even-though the ‘pure’ classification network should be capable of producing
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Fig. 8. Histograms of pairwise distances of features produced by the Siamese network-
contrastive loss (left) and the triplet network (right). Note the crowding near zero
distance for the Siamese network, which may explain poor performance for fine-grained
retrieval tasks when it is important to compare small distances.

the same mapping as the hybrid, it might have trouble learning to process both
images from the 1st layer.

Between the Siamese and triplet network, the triplet network outperforms
the Siamese by a surprisingly large margin on both tasks. While both networks
try to separate matches from non-matches, the contrastive loss function works
toward a secondary objective: drive the distance between matched pair as close
to 0 as possible (Fig. 8). Note that this might be a good property for the learned
representation to have; but for the task of matching and ranking we found that
this might compromise the main objective. One way to alleviate this problem is
to add another margin to the contrastive loss function to cut the loss when the
distance is small enough [17].

Analysis of Siamese and triplet network’s performance has helped us develop
the DBL layer. As the result, both DBL-Nets significantly outperform the origi-
nal networks. While the Siamese with DBL and triplet network with DBL have
comparable performances, it seems that the triplet DBL-Net is slightly better
at ranking. Note that for most of the experiments we have been conducting, the
performance of these two tasks strongly correlate. We use the triplet network
with DBL layer for all following experiments.

5.2 Rotation Invariance

We experiment with partial rotation invariance (RI) and orientation regression
(OR) (described in Sect. 4) for matching and ranking using the triplet DBL-Net.
The result is shown in Table 2.

As an upper bound, we train a network where overhead images are aligned
to the ground truth camera direction of the street view image (1GT). This
is not a realistic usage scenario for image geolocalization since camera azimuth
would typically be unknown. As expected, the network without RI performs very
well when true alignment is provided during testing (1GT), but performs poorly
otherwise. This baseline shows how challenging the problem has become because
of orientation ambiguity. As the degree of RI during training is increased, the
performance improves.

Observe that fewer numbers of test time rotated crops/samples doesn’t work
well if the amount of RI is limited. The full RI setting is the best when test-
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Table 2. Comparisons of different amount of partial rotation invariance (RI), with
and without orientation regression (OR), and different numbers of rotation samples
during test time. In this experiment, the triplet network with DBL layer is tested on
the Denver test set. 1GT*: in this setting, we test with 1 overhead image aligned using
the ground-truth orientation (so the network doesn’t have to be RI).

Task Classification (accuracy) Ranking (recall @top 1 %)

Number of test rotations 1 4 16 1GT* 1 4 16 1GT*

0◦ RI (no RI) 63.6 68.5 87.2 95.0 11.0 18.8 37.3 76.2

45◦ RI 70.9 86.2 89.9 N/A 19.3 36.8 48.1 N/A

90◦ RI 75.8 89.5 90.2 N/A 24.7 44.7 49.3 N/A

180◦ RI 82.7 89.2 89.6 N/A 31.2 43.0 45.6 N/A

360◦ RI (full RI) 87.7 88.5 88.9 N/A 36.8 40.0 41.9 N/A

90◦ RI + OR 74.3 88.6 89.4 N/A 23.1 43.4 47.4 N/A

360◦ RI + OR 90.9 91.3 91.5 N/A 50.9 53.2 54.8 N/A

360◦ RI + OR + avg16 91.5 N/A N/A N/A 54.0 N/A N/A N/A

ing with a single sample. As the number of rotations increase, the performance
improves, especially for the partially RI networks. Using 16 rotations, the 90◦ RI
network has the highest performance. It might be the best setting for compro-
mising between invariance and discriminate power (this might not be the case
when using hundreds of samples, but we found that it’s not computationally
practical and the improvement is not significant).

Orientation regression’s impact on the 360◦ RI network is surprisingly signif-
icant; its performance improves by 30 % (relatively). However OR doesn’t affect
90◦ RI network positively, suggesting that the 2 techniques might not comple-
ment each other. It’s interesting that the OR is useful even though its effect
during learning is not as intuitive to understand as partial RI. As a by-product,
the network can align matches. The orientation prediction has an average error
of 17◦ for the ground truth matching overhead image and is discussed more in
the supplemental document.

Finally we show the effect of applying multi-orientation feature averaging
on 360◦ RI + OR network. By averaging the feature of 16 samples, we obtain
comparable performance to exhaustively testing with 16 samples (result on all 3
test sets is shown in the 2nd part of Table 1). Though not shown here, applying
this strategy to partial RI networks also slightly improve their performances.

5.3 Triplet Sampling by Exhausting Mini-batch

To speed up the training of triplet networks with the triplet hinge loss, clever
triplet sampling and hard negative mining is usually applied [25,30,31]. This is
because the triplet not violating the margin does not contribute to the learning.
However it can skew the input distribution if not handled carefully (for instance,
only mine hardest examples); different schemes were used in [25,30,31].
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On the other hand, our DBL-log loss is practically a smoothed version of
the hinge loss. We propose to use every possible triplet in the mini-batch. We
experiment with using a mini-batch of 128 pairs of (matched) images. Since
each image in our data has a single unique match only, we can generate a total
of 256 * 127 triplets (256 different anchors, 1 match and 127 non-matches per
anchor). This is done within our exhausting DBL log loss layer implementation
(eDBL); hence the cost of processing the mini-batch is not much more expensive.
In a similar spirit, recent work [22] proposes a loss function that considers the
relationship between every examples in each training batch.

We train a triplet eDBL-Net+360◦RI+OR+avg16. Its effect is very positive:
the convergence is much faster, after around 30k iterations the network achieved
similar performance as in previous experiments where each network was trained
with 150k iterations using the same batch size. After 80k iterations, we achieve
even better ranking performance, shown at the bottom of Table 1.

6 Conclusion

We introduce a new large scale cross-view data of street scenes from ground level
and overhead. On this dataset, we have experimented with different CNN archi-
tectures extensively; the reported results and analysis can be generalized to other
ranking and embedding problems. The result indicates that the Siamese network
with contrastive loss is the least competitive even though it has been popular for
cross-view matching. Our proposed DBL layer has significantly improved repre-
sentation learning networks. Last but not least, we show how to further improve
ranking performance by incorporating supervised alignment information to learn
a rotational invariant representation.
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