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This paper presents an experimental method especially

adapted for the computation of structural power flow us-

ing spatially dense vibration data measured with scanning

laser Doppler vibrometers. In the proposed method, the op-

erational deflection shapes measured over the surface of the

structure are curve-fitted using a two-dimensional discrete

Fourier series approximation that minimizes the effects of

spatial leakage. From the wavenumber-frequency domain

data thus obtained, the spatial derivatives that are necessary

to determine the structural power flow are easily computed.

Divergence plots are then obtained from the computed in-

tensity fields. An example consisting of a rectangular alu-

minum plate supported by rubber mounts and excited by a

point force is used to appraise the proposed method. The pro-

posed method is compared with more traditional finite dif-

ference methods. The proposed method was the only to al-

low the localization of the energy source and sinks from the

experimental divergence plots.

Keywords: Power flow, structural intensity, plates, energy

flow, energy sinks, laser vibrometer
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1. Introduction

Predicting and measuring elastic waves propagating

through a structure can be of foremost importance in

vibroacoustic problems. The prediction and the mea-

surement of the propagating elastic waves within a

structure is usually referred to as structural power flow,

vibration intensity, or structural intensity, the latter

denominations coming from the analogy with acous-

tic intensity. The power flow to localized dampers or

to neighboring structures and supports can be cardi-

nal mechanisms through which structural vibration is

damped out, which partly explains the practical dif-

ficulty is estimating internal damping coefficients in

structures from ground vibration tests. It can also be

a key for solving structure borne noise problems, by

channeling vibrations to where they do not radiate

noise, instead of trying to suppress them.

Power flow refers to the active part of the vibration

energy. As the active energy is usually only a small

fraction of the total vibration energy, estimating it from

measured vibration is not simple. Measuring vibration

intensity is more elaborate than measuring acoustic in-

tensity. Sound propagates through compression-type

waves only, while vibration propagates through two

basic types of waves: compression and shear waves.

Depending on the geometry of the continuum, these

two basic types of waves combine into different types

of waves, such as bending, torsional, and longitudinal

waves, which must be measured. In the case of beams

and plates, bending waves play a major role, for they

are usually responsible for most of the sound radiated

from the structure surface.

Similarly to acoustic intensity, vibration intensity

measurements are also associated with cross mea-
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surements between closely-spaced transducers, which

are microphones in the former case and, usually, ac-

celerometers in the latter. Following the original work

by Noiseaux [8], many authors have investigated dif-

ferent ways of computing the bending vibration inten-

sity from measured accelerations in beams and plates

(see, for instance [4,7,11,13]). Most authors use finite-

difference approximations to compute the partial spa-

tial derivatives that are necessary to compute the power

flow.

In the case of flexural power flow in beams, an

analytical solution, valid for any homogeneous span

without discontinuities, external forces, or boundary

conditions, exists. Therefore, the assumption of far

field is not mandatory, and the near field effects can,

in theory, be taken into account when computing the

power flow from measurements. If the theoretical dis-

persion relation (wave number as a function of fre-

quency) is used, four adjacent acceleration measure-

ments, for instance, are sufficient to determine the

power flow. If the dispersion relation is to be esti-

mated, a minimum of five measurements are needed.

However, Bauman [2] has recently compared the ex-

isting finite-difference based methods, and concluded

that none succeed in adequately estimating the near-

field effects.

In the case of plates, a complete solution is not

available when there are boundaries with energy losses

[8], which are always present in power flow problems.

Therefore, an assumption of superposition of plane

waves propagating in different directions is usually

made. Furthermore, it is generally assumed that these

waves do not interact (free field). Thus, it becomes pos-

sible to compute the power flow with a finite differ-

ence approximation using as few as 3 measurements.

If one wants to obtain the wave numbers as well, in

two orthogonal directions, 5 measurements are neces-

sary.

More recent papers investigate the computation of

the power flow in plates without using the finite-

differences approximation. Pascal et al. [9,10] have

proposed the use of spatial Fourier transforms to com-

pute the power flow in the wavenumber domain. The

major advantage is the fact that it is not necessary to

make simplifying assumptions concerning the flexural

vibration field.

In this text, the basic formulation for the structural

power flow in plates and the methods for computing it

from measured accelerations using finite difference ap-

proximations will be reviewed. A method using a two-

dimensional Fourier series approximation is proposed.

The use of a two-dimensional discrete Fourier series

(DFT) interpolation in structural power flow computa-

tions is not new [5], but its use as an approximation to

allow non-equally spaced measurements and to avoid

leakage problems seem to be novel. The approxima-

tion is computed using the Regressive Discrete Fourier

Series (RDFS) previously developed by one of the au-

thors [1].

An example of a rectangular plate with a point force

and localized dampers will be used to illustrate the

above methods. Both numerical simulation and exper-

imental results are shown.

2. Basic relations

In this section, the basic theory of flexural power

flow in thin homogeneous flat plates is reviewed, so

that a coherent set of equations can be derived. The for-

mulae are well established in the literature, but there

are usually minor differences in the definitions used by

different authors, which nevertheless make the com-

parison between measured and computed quantities

difficult. The classical plate theory, which is the equiv-

alent in two dimensions of the Bernoulli–Euler beam

theory, is used here. Rotational inertia and shear defor-

mations are neglected. In the low frequency range, en-

compassing the first few tens of modes, these hypothe-

ses are reasonable.

The bending-wave equation in the classical plate

theory may be written as [5]:

D∇2∇2w(x, y, t) + ρh
∂

2w(x, y, t)

∂t2

= F (t)δ(x0, y0), (1)

where D = Eh3/(12(1 − υ2)) is the flexural stiffness,

E is the Young’s modulus, υ is the Poisson’s ratio, h is

the plate thickness, w(x, y, t) is the transverse displace-

ment, ρ is the mass density, F (t)δ(x0, y0) is a point ex-

ternal force, and ∇2 = ∂
2/∂x2 + ∂

2/∂y2 (Laplacian).

Assuming a solution of the type:

w(x, y, t) = ℜ
{

W (x, y,ω)eiωt
}

, (2)

where

W (x, y,ω) =

∑

m

Vm exp
(

−ik(x cosαm + y sinαm)
)

,

(3)
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and k4 = ω2ρh/D, with ℜ denoting the real part of a

complex quantity and i =
√
−1, it is possible to write:

∇2w = −k2w,

∂
2w

∂x2
= −k2

xw, (4)

∂
2w

∂y2
= −k2

yw,

where kx = k cos(α) and ky = k sin(α) are the dis-

persion relations in the orthogonal directions. Note that

k2 = k2
x + k2

y.

Equation (1) is derived from the equilibrium equa-

tions of a flat plate element, which can be expressed as

[5]:

∂Qx

∂x
+

∂Qy

∂y
= ρh

∂
2w

∂t2
− F (t),

∂Mx

∂x
+

∂Mxy

∂y
+ Qx = 0, (5)

∂My

∂y
+

∂Myx

∂x
+ Qy = 0.

The moments and shear forces may be expressed in

terms of the displacement w(x, y, t) as:

Mx = D

(

∂
2w

∂x2
+ υ

∂
2w

∂y2

)

,

My = D

(

∂
2w

∂y2
+ υ

∂
2w

∂x2

)

, (6)

Mxy = Myx = D(1 − υ)
∂

2w

∂x∂y
,

Qx = D
∂

∂x
(∇2w),

(7)

Qy = D
∂

∂y
(∇2w).

Substituting Eqs (6) and (7) into Eqs (5), Eq. (1) can

be obtained.

The power flow along the plate in each orthogonal

direction, x and y, has three components:

Px(x, y) = 〈Qxẇ〉T − 〈Mxyθ̇x〉T + 〈Mxθ̇y〉T ,
(8)

Py(x, y) = 〈Qyẇ〉T + 〈Myxθ̇y〉T − 〈My θ̇x〉T ,

where 〈 〉T denotes the time average, and:

θx =
∂w

∂y
, θy = −∂w

∂x
, θ̇ =

∂θ

∂t
. (9)

Substituting Eqs (6), (7) and (9) in Eqs (8) gives the

following expression for the power flow per unit length

in plates:

Px(x, y) = D

〈

∂

∂x
(∇2w)

∂w

∂t

−
(

∂
2w

∂x2
+ υ

∂
2w

∂y2

)

∂
2w

∂x∂t

− (1 − υ)
∂

2w

∂x∂y

∂
2w

∂y∂t

〉

T

,

(10)

Py(x, y) = D

〈

∂

∂y
(∇2w)

∂w

∂t

−
(

∂
2w

∂y2
+ υ

∂
2w

∂x2

)

∂
2w

∂y∂t

− (1 − υ)
∂

2w

∂x∂y

∂
2w

∂x∂t

〉

T

.

Assuming harmonic vibration and the wave super-

position of Eq. (3), one can formulate the time-average

power flow for each of the three components sepa-

rately. For this purpose we use Eqs (4) and the relation

∂w/∂t = iωw.

– Bending:

Expressing the power flow in terms of accelera-

tions ẅ:

P b
x(x, y) = D(k2

x + υk2
y)

〈

1

ω3
ẅ

(

i
∂ẅ

∂x

)〉

T

,

(11)

P b
y (x, y) = D(k2

y + υk2
x)

〈

1

ω3
ẅ

(

i
∂ẅ

∂y

)〉

T

.

– Shear:

PS
x (x, y) = −D(k2

x + k2
y)

〈

1

ω3

∂ẅ

∂x
(iẅ)

〉

T

,

(12)

PS
y (x, y) = −D(k2

x + k2
y)

〈

1

ω3

∂ẅ

∂y
(iẅ)

〉

T

.

– Torsion:
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P t
x(x, y) = −D(1 − υ)

〈

1

ω3

∂
2ẅ

∂x∂y

(

i
∂ẅ

∂y

)〉

T

,

P t
y(x, y) = −D(1 − υ)

〈

1

ω3

∂
2ẅ

∂y∂x

(

i
∂ẅ

∂x

)〉

T

.

(13)

– Note that it is important to keep the i next to the

term to which it is associated, as this will yield the

correct sign when taking the complex conjugate.

Some further assumptions can be made regarding

the torsion component in order to obtain a simpler for-

mulation. There are different ways of doing this, which

lead to different expressions for the power flow, when

associated with some form of approximation of the

spatial derivatives by finite differences.

The most commonly used assumption is the non in-

teraction of the superposed waves. Thus, the out-of-

plane displacements w(x, y, t) can be expressed by a

single two-dimensional wave:

w(x, y, t) =
(

A1e−ikxx + B1eikxx
)

×
(

A2e−ikyy + B2eikyy
)

eiωt (14)

and it is straightforward to show that:

∂
2w

∂x∂y

∂
2w

∂y∂t
= −k2

y

(

∂w

∂x

∂w

∂t

)

+ cst,

(15)
∂

2w

∂x∂y

∂
2w

∂x∂t
= −k2

x

(

∂w

∂y

∂w

∂t

)

+ cst.

The constant term is non-propagating, and, therefore,

can be neglected in the power flow expression. Instead

of using this relation, Pascal et al. [9,10] used the as-

sumption that there is no interaction between waves,

i.e., VnV
∗

m = 0 if n 6= m, in which case it can be

shown that ∇ × (w∇w∗) = 0. With this assumption,

Eqs (13) may be rewritten as:

P t
x(x, y) = D(1 − υ)k2

y

〈

1

ω3

∂ẅ

∂x
(iẅ)

〉

T

,

(16)

P t
y(x, y) = D(1 − υ)k2

x

〈

1

ω3

∂ẅ

∂y
(iẅ)

〉

T

.

The relation:

〈

x(t)y(t)〉T =
1

2
ℜ
{

X(ω)Y (ω)∗
}

, (17)

which can be applied to sinusoidal signals, as well
as to periodic, transient, or random signals may be
used to obtain frequency-domain formulas. It should
be noted that X(ω) is the Fourier transform, series, dis-
crete transform, or finite transform of x(t).

Using this relation, it is possible to write:

P b
x(x, y) = D

(

k2
x + υk2

y

)1

2
ℜ
{

1

ω3
Ẅ

(

i
∂Ẅ

∂x

)

∗
}

,

P b
y (x, y) = D

(

k2
y + υk2

x

)1

2
ℜ
{

1

ω3
Ẅ

(

i
∂Ẅ

∂y

)

∗
}

,

PS
x (x, y) = −D

(

k2
x + k2

y

)1

2
ℜ
{

1

ω3

∂Ẅ

∂x

(

iẄ
)

∗

}

,

PS
y (x, y) = −D

(

k2
x + k2

y

)1

2
ℜ
{

1

ω3

∂Ẅ

∂y

(

iẄ
)

∗

}

,

P t
x(x, y) = D(1 − υ)k2

y

1

2
ℜ
{

1

ω3

∂Ẅ

∂x

(

i Ẅ
)

∗

}

,

P t
y(x, y) = D(1 − υ)k2

x

1

2
ℜ
{

1

ω3

∂Ẅ

∂y

(

i Ẅ
)

∗

}

.

(18)

As ℜ{i( )} = −ℑ{( )} and ℑ(AB∗) = −ℑ(A∗B), it
is possible to add the three components and obtain a
simple expression for the total power flow in the two
directions:

Px(x, y) =
D(k2

x + υk2
y)

ω3
ℑ
{

Ẅ
∂Ẅ

∂x

∗}

,

(19)

Py(x, y) =
D(k2

y + υk2
x)

ω3
ℑ
{

Ẅ
∂Ẅ

∂y

∗}

.

This formulation, due to Meyer and Thomasson [7],
is not the most suitable for computing the power flow,
as it involves the wavenumbers in the orthogonal di-
rections, kx and ky, which, unlike k, do not have an
analytical expression, as they depend on the propaga-
tion direction. Therefore, to be able to use Eq. (19), one
has to determine first kx and ky. Another formulation,
due to Pascal et al. [9,10], yields a slightly different re-
sult which is more suitable for practical applications.
Starting from Eqs (10), and using the relation given by
Eq. (17), it is possible to write:

Px(x, y) =
D

2
ℜ
{

∂

∂x

(

∇2W
)∂W

∂t

∗

−
(

∂
2W

∂x2
+ υ

∂
2W

∂y2

)

∂
2W

∂x∂t
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− (1 − υ)
∂

2W

∂x∂y

∂
2W

∂y∂t

∗}

,

(20)

Py(x, y) =
D

2
ℜ
{

∂

∂y

(

∇2W
)∂W

∂t

∗

−
(

∂
2W

∂y2
+ υ

∂
2W

∂x2

)

∂
2W

∂y∂t

∗

− (1 − υ)
∂

2W

∂x∂y

∂
2W

∂x∂t

∗}

.

Substituting ∂W/∂t = Ẇ and W = −iẆ/ω in the
previous equation yields:

Px(x, y) =
D

2ω
ℑ
{

∂

∂x

(

∇2Ẇ
)

Ẇ ∗

−
(

∂
2Ẇ

∂x2
+ υ

∂
2Ẇ

∂y2

)

∂
2Ẇ

∂x

∗

− (1 − υ)
∂

2Ẇ

∂x∂y

∂
2Ẇ

∂y

∗}

,

Py(x, y) =
D

2ω
ℑ
{

∂

∂y

(

∇2Ẇ
)

Ẇ ∗

−
(

∂
2Ẇ

∂y2
+ υ

∂
2Ẇ

∂x2

)

∂
2Ẇ

∂y

∗

− (1 − υ)
∂

2Ẇ

∂x∂y

∂
2Ẇ

∂x

∗}

.

Now adding to Eq. (21) the null term

(

∂
2Ẇ

∂y2
− ∂

2Ẇ

∂y2

)

∂Ẇ

∂y

∗

and rearranging gives:

Px(x, y) =
D

2ω
ℑ
{

∂

∂x
(∇2Ẇ )Ẇ ∗ −∇2Ẇ

∂Ẇ

∂x

∗

− (1 − υ)

(

∂
2Ẇ

∂x∂y

∂Ẇ

∂y

∗

− ∂
2Ẇ

∂y2

∂Ẇ

∂x

∗)}

,

Py(x, y) =
D

2ω
ℑ
{

∂

∂y
(∇2Ẇ )Ẇ ∗ −∇2Ẇ

∂Ẇ

∂y

∗

− (1 − υ)

(

∂
2Ẇ

∂x∂y

∂Ẇ

∂x

∗

− ∂
2Ẇ

∂x2

∂Ẇ

∂y

∗)}

.

The last terms in the above expression may be shown
to be the x and y components of 1

2
∇×∇× (Ẇ∇Ẇ ∗),

so that it is possible to write:

~P (x, y) =
D

2ω
ℑ
{

∇(∇2Ẇ )Ẇ ∗ −∇2Ẇ∇Ẇ ∗

− (1 − υ)

2
∇×∇× (Ẇ∇Ẇ ∗)

}

. (21)

Using the hypotheses of propagating, non-interactive

waves, the third term in Eq. (21) vanishes, and the ex-

pression of the power flow is elegantly simplified to:

~P (x, y) =
√

Dρhℑ
{

Ẇ∇Ẇ ∗
}

(22)

which, in terms of accelerations, can be written as:

~P (x, y) =
D(k2

x + k2
y)

ω3
ℑ
{

Ẅ∇Ẅ ∗
}

. (23)

It is important to point out at this point that this result

does not agree exactly with Eqs (19). The difference is

a scalar coefficient which equals (k2
x +υk2

y)/(k2
x + k2

y)

in the x direction and (k2
y + υk2

x)/(k2
x + k2

y) in the y
direction.

Carniel [4] proposes a slightly different formulation,

which leads to a different finite-difference approxi-

mation. Starting from Eq. (21), assuming a free-field

propagation, and using Eqs (4), it is possible to write:

~P (x, y) = −D

ω3
ℑ
{

∇2Ẅ∇Ẅ ∗
}

. (24)

3. Finite difference approximations

Now we will introduce the finite difference approx-

imations in the derived formulae. This will yield the

mathematical expressions which can be used to com-

pute the power flow in plates using measured data.

Not only accelerometers can be used to measure

structural power flow. Strain gages [7], laser hologra-

phy [9], and laser vibrometry [3] have also been used.

In this study we will assume that only out-of-plane ac-

celerations or velocities at neighboring points can be

measured on a structure surface. This assumption is ap-

propriate whenever accelerometers or laser vibrome-

ters are used. The frequency domain formulation used

here makes it straightforward to transform velocities

into accelerations and vice-versa.

In this section we will use a basic measurement cell,

consisting of nine acceleration measurements arranged
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Fig. 1. Measurement cell configuration.

as a 3×3 matrix with spacing ∆x in the x direction and
∆y in the y direction. Figure 1 shows the measurement
cell and indicates the measurement point numbering
adopted.

The cross spectrum of two measured accelerations,
Ẅi and Ẅj , will be denoted by:

E
[

Ẅ ∗

i Ẅj

]

= Sij . (25)

Note that this is not rigorously the cross-power spec-
tral density. To know exactly how Sij(ω) should be in-

terpreted, one needs to have in mind that Ẅ (ω) is the
complex amplitude of a sinusoidal component, which
is equal to twice the corresponding complex Discrete
Fourier Transform (DFT) coefficient. Therefore, when
one is dealing with random signals, S(ω) of Eq. (25)
is four times the spectral density multiplied by the
frequency resolution ∆f , where f is the frequency in
Hertz. The finite difference approximations of the spa-
tial derivatives used here are:

∂Ẅ

∂x
=

Ẅ3 − Ẅ1

2∆x
(central) or

=
Ẅ3 − Ẅ2

∆x
(right),

∂Ẅ

∂y
=

Ẅ5 − Ẅ4

2∆y
(central) or

=
Ẅ5 − Ẅ2

∆y
(right), (26)

∇2Ẅ =
(

∆x2(W5 + W4 − 2W2)

+ ∆y2(W3 + W1 − 2W2)
)

/∆x2∆y2,

∂
2Ẅ

∂x∂y
=

(Ẅ6 + Ẅ9) − (Ẅ7 + Ẅ8)

4∆x∆y
.

Applying the above relations to the formulae derived
in the previous section, the different methods for com-
puting structural power flow in plates can be obtained.

Three-accelerometer, two cross-spectra method:
Starting from Eq. (23) and using the right side finite
differences in the first two equations in Eqs (26), it is
possible to write:

Px
∼=

√
Dρh

ω2∆x
ℑ{−S23},

(27)

Py
∼=

√
Dρh

ω2∆y
ℑ{−S25}.

Five-accelerometer, four cross-spectra method: Start-
ing from Eq. (23) and using the central finite differ-
ences in the first two equations in Eqs (26), it is possi-
ble to write:

Px
∼=

√
Dρh

2ω2∆x
ℑ{S21 − S23},

(28)

Py
∼=

√
Dρh

2ω2∆y
ℑ{S24 − S25}.

Five-accelerometer, ten cross-spectra method: Start-
ing from Eq. (24) and using the finite-difference ap-
proximations in Eqs (26), it is possible to write:

Px
∼= D

2ω2∆x3∆y2
ℑ
{

2∆y2(S21 − S23 + S13)

+ ∆x2
[

2(S21 − S23) + S53 + S43 + S15 + S14

]}

,
(29)

Py ≃ D

2ω2∆y3∆x2
ℑ
{

2∆x2(S24 − S25 + S45)

+ ∆y2
[

2(S24 − S25) + S35 + S43 + S15 + S41

]}

.

Nine-accelerometer, twenty cross-spectra method:
Starting from Eqs (11)–(13), and using the finite dif-
ference approximations in Eqs (26), it is possible to
write:

P b
x(x, y) =

D(k2
x + υk2

y)

4ω3∆x
ℑ
{

S21 − S23

}

,

(30a)

P b
y (x, y) =

D(k2
y + υk2

x)

4ω3∆y
ℑ
{

S24 − S25

}

,

PS
x (x, y) =

D(k2
x + k2

y)

4ω3∆x
ℑ
{

S21 − S23

}

,

(30b)

PS
y (x, y) =

D(k2
x + k2

y)

4ω3∆y
ℑ
{

S24 − S25

}

,
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P t
x(x, y) = − D(1 − υ)

16ω3∆x∆y2
ℑ
{

S56 + S59 − S57

−S58 − S46 − S49 + S47 + S48

}

,

(30c)

P t
y(x, y) = − D(1 − υ)

16ω3∆y∆x2
ℑ
{

S36 + S39 − S37

−S38 − S16 − S19 + S17 + S18

}

.

The dispersion relation can also be computed with

the finite-difference approximations above. Starting

from Eqs (4), one can write:

∂
2Ẅ

∂x2
= −k2

xẄ
∼= Ẅ3 + Ẅ1 − 2Ẅ2

∆x2
.

Pre and post multiplying this expression by Ẅ ∗

2 and

using Eq (25), it is straightforward to write:

S21 + S23 − 2S22
∼= −k2

x∆x2S22 (31)

or, finally,

kx =
1

∆x

√

2S22 − S21 − S23

S22

,

(32)

ky =
1

∆y

√

2S22 − S24 − S25

S22

,

where the expression for ky was obtained analogously.

The expression for k can be obtained with k2 = k2
x+k2

y

or using the finite-difference approximation for the

Laplacian. This expression is identical to the expres-

sion derived by Carniel [4] for beams. He has shown

that this estimation of the wavenumber may be cor-

rected to account for the finite length ∆x with:

kx =
2

∆x
sin−1

(

kx∆x
2

)

,

(33)

ky =
2

∆y
sin−1

(

ky∆y
2

)

.

The computed power flow may be compared with

the input power. If there is no energy dissipation within

the plate (no material damping), the power flow inte-

grated in a closed contour encompassing the excitation

point (without any dissipation device) must be equal to

the input power. The power input by an external, con-

centrated harmonic force F (t) is given by:

〈

Pin

〉

t
=

1

2
ℜ
{

F (ω)Ẇ (ω)∗
}

=
1

2
ℜ
{

F (ω)

(

Ẅ (ω)

iω

)

∗
}

=
1

2ω
ℑ{SFẄ (ω)

}

, (34)

where SFẄ (ω) is the cross spectrum between the exci-

tation force and the acceleration at the excitation point

location.

4. Regressive two-dimensional Fourier series

Two-dimensional velocity fields measured over the

surface of a structure at a given frequency, given by

amplitudes and phases measured relative to a refer-

ence signal (which can be the velocity at a given lo-

cation) are usually referred to as Operational Deflec-

tion Shapes (ODS) or, when the reference signal is

the input force, mobility shapes. ODS’s are frequently

measured over rectangular grids using scanning laser

Doppler vibrometers. If a two-dimensional Fourier se-

ries model is used to interpolate or approximate the

measured data, the partial spatial derivatives required

to compute the structural power flow may be easily

computed in the wavenumber domain.

Two-dimensional ODS’s measured over equally-

spaced rectangular grids, say Hmn(ω), can be inter-

polated using the two-dimensional Discrete Fourier

Transform (DFT). The difficulty with using the DFT is

that its implicit periodization introduces high-frequen-

cy components that account for the sharp edges present

in the wrapped-around data. This phenomenon is

known as leakage. In the data smoothing process, leak-

age is prejudicial, as it causes distortion of the low-

pass filtered data. When dealing with plate vibrations,

this problem does not exist for clamped boundaries, is

not too serious in the case of simply supported bound-

aries, but becomes critical in the case of free bound-

aries. It should be noted that the boundaries can be

actual boundary conditions or just measurement field

boundaries.

The usual way to reduce leakage is windowing, but

this technique is not suitable in the case of finite length,

spatial domain data. To overcome the leakage problem,

the proposed technique consists of representing the

data by a two-dimensional regressive discrete Fourier
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series (RDFS) proposed by Arruda [1], which will be

briefly reviewed here. Unlike the DFT, in the RDFS the

original length of the data is not assumed to be equal to

the signal period nor is the number of frequency lines

assumed to be equal to the number of data points. With

the two-dimensional, equally-spaced RDFS model, the

mobility shape Hmn (where the frequency dependency

is omitted for simplicity) is expressed as:

Hmn =

p
∑

k=−p

q
∑

l=−q

ZklW
mk
M W ln

N + εmn;

m = 0, . . . ,M − 1; n = 0, . . . ,N − 1; (35)

where Hmn represents the discretized data with con-

stant spatial resolutions ∆x and ∆y,WM = exp(i2π/M),

WN = exp(i2π/N), and εmn accounts for the noise and

higher frequency contents of H . Note that M 6= M and

N 6= N. The length of the data in x is M∆x, but the

period of the RDFS is M∆x > M∆x. Data reduction

is achieved because p ≪ M due to the expected low

wave number of the mobility shape surface. In the y
direction N∆y > N∆y and q ≪ N . The M × N data

in H are represented by a (2p+ 1)× (2q + 1) complex

matrix Z of elements Zkl.

The RDFS is an approximation instead of an inter-

polation of Hmn. Thus, the Euler–Fourier coefficients

cannot be calculated by the DFT. Rewriting Eq. (35) in

matrix form:

H = WMZWN + ε. (36)

The least-squares solution is given by:

Z =
(

WH
M WM

)

−1
WH

M HWH
N

(

WNWH
N

)

−1
, (37)

where the matrices to be inverted have a very small

size, (2p+1)×(2p+1) and (2q+1)×(2q+1), respec-

tively, and H denotes the matrix complex conjugate.

The smoothed data H(s) may be obtained from:

H(s)
= WMZWN, (38)

where WM and WN can be calculated for the desired

spatial resolution. The reduction of the data is achieved

as Z represents the data using only (2p + 1)(2q + 1)

values, instead of the original MN values. The formu-

lation of the RDFS for non-equally spaced data [1] can

be used in the place of the formulation above when the

mobility shapes are mapped over non-regular, arbitrary

grids, while the DFT is only applicable to equally-

Fig. 2. FE mesh of the rectangular plate indicating the location of the

rubber mounts (squares) and exciter (diamond).

spaced, rectangular grids. The spatial derivatives are

obtained simply by multiplying each coefficient Zkl

by the corresponding wavenumber, multiplied by the

imaginary unit to the appropriate power.

5. Numerical results

In order to compare the different methods for com-

puting the structural power flow in thin plates exposed

in the previous sections, the responses of a rectan-

gular plate with localized, “sky-hooked” springs and

dampers excited by point forces were simulated using

a Finite Element model. Rectangular, non-conforming

thin plate elements with polynomial interpolation func-

tions of incomplete quartic order were used [12].

The simulated plate is a 0.45 m × 0.40 m, 1 mm

thick aluminum plate. The plate was modeled with one

hundred finite elements, ten in each orthogonal direc-

tion. Different configurations with dampers attached

at different locations and excitation at different points

were simulated, but only one typical case, correspond-

ing to the experimental set-up shown in the next sec-

tion, is shown here.

Four rubber mounts were simulated using “sky-

hooked” springs and dash-pots attached at FE nodes.

The nodes where the rubber mounts are located are

indicated in Fig. 2. The values of the stiffness and

damping coefficients used in the simulation were ob-

tained from real cylindrical rubber mounts (1 cm di-

ameter, 1 cm long, with M4 bolts on each side) which
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were later used in the experimental setup. The rel-

evant stiffness and damping coefficients of the rub-

ber mounts were identified by mounting a block of

aluminum with known inertial characteristics on top

of it and measuring the resulting natural frequen-

cies. The identified longitudinal stiffness value was

1.0×105 N m−1 and the corresponding damping value

23 N s m−1. The estimated bending angular stiffness

value was 4.5 N m rad−1 and the corresponding damp-

ing value 2.0 × 10−3 N m s rad−1. A unity force ex-

citation, placed at the location indicated in Fig. 2, of

the plate was used as the energy source. The plate was

modeled without internal damping, such that all the en-

ergy dissipation occurs at the rubber mounts, which is a

reasonably realistic assumption for an aluminum plate

mounted on rubber isolators. Lumped masses were

added to account for the mass loading caused by the

rubber mounts and the shaker attachment on the plate.

The added mass values were roughly estimated from

the geometry and weight of the parts. The lumped-

mass values used in the FE model were 5 × 10−3 kg

translational mass and 5 × 10−9 kg m2 rotational in-

ertia for the rubber mounts and 3 × 10−3 kg transla-

tional mass and 2×10−6 kg m2 rotational inertia for the

shaker attachment (disk bonded to the structure, piezo-

electric force transducer, and stinger holder).

Initially the plate responses were computed in the

frequency range from 50 to 200 Hz with a 2 Hz fre-

quency resolution. These responses can be interpreted

as responses to a harmonic excitation at each fre-

quency, as responses to a constant amplitude multisine

excitation, or as responses to a white noise random ex-

citation, in which case the responses should be seen as

cross spectral densities between the response degrees

of freedom and the excitation force with unitary auto-

spectrum.

Guyan reduction was used to save computational

time when solving the eigenvalue problem. The re-

duced mass and stiffness matrices were assembled

into a generalized, non-proportionally damped double-

order model where the damping matrix was formed by

inserting damping diagonal elements. The stiffness of

the rubber mounts was modeled by adding their spring

constants to the corresponding stiffness matrix diag-

onal elements. The lumped masses due to the mass-

loading effect of the rubber mounts and shaker attach-

ment were also included by adding theirs values to the

appropriate diagonal elements of the mass matrix. Af-

ter solving the eigenproblem, the eigenvalues were ex-

panded to generate 3 degrees of freedom per node (one

transverse displacement and two orthogonal rotations),

Fig. 3. Driving-point mobility. — with and ++ without residual flex-

ibility compensation.

(a)

(b)

Fig. 4. Mobility ODS at 128 Hz. (a) FE prediction; (b) approximated

using a 2-D RDFS with p = q = 4, M/M = N/N = 1.5.

which were necessary to compute responses at arbi-

trary points using the FE interpolation functions.

Figure 3 shows the driving-point mobility in the fre-

quency range investigated. The FRF’s were computed

by modal superposition using the first 60 modes. The

influence of the residual flexibility of the higher or-

der modes in the frequency range of interest is very

small, as it can be seen in Fig. 3, where the FRF’s ob-

tained with and without residual flexibility compensa-

tion are plotted. Although this difference is small, it is

important to include the residual flexibility compensa-

tion when computing the power flow, as it was shown

by Gavric and Pavic [6].

The power flow was computed from the simulated

responses using the finite-difference methods exposed

previously, using the RDFS-based method proposed in
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(a) (b)

(c) (d)

Fig. 5. Structural power flow arrow maps and divergence plots computed from simulated ODS using FEM interpolation functions. (a) and (c)

Eq. (21); (b) and (d) Eq. (22).

this paper, and using the FE interpolation functions

directly. Typical results are shown and discussed in

what follows. The mobility ODS predicted using the

FE model was interpolated using the FE interpolation

functions to increase the spatial resolution from the

original 11× 11 to 46× 40 (the larger resolution along

the longer side of the plate, along the y direction).

Figure 4 shows the mobility ODS simulated with the

FE model at 128 Hz. Figure 5 and Fig. 6 show the

power flow computed at this frequency using the meth-

ods previously exposed. The arrows indicate the direc-

tion of the structural power flow and its relative mag-

nitude. To enhance the visualization of the power flow

pattern, square root magnitudes were used. With a lin-

ear magnitude scale the smaller arrows cannot be vi-

sualized and it becomes more difficult to understand

the flow pattern. To take the square root of the magni-

tude without changing the flow direction, the following

equations were used:

P = Px + iPy, P̄ =
√

|P | ei atan(Py/Px).

The magnitudes of the computed power flow are

verified later in plots of magnitude against frequency,
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Structural power flow at 128 Hz computed using different methods (a) RDFS and Eq. (21); (b) RDFS and Eq. (22); (c) finite differences

Eq. (27); (d) Eq. (28); (e) Eq. (29); (f) Eqs (30a)–(30c).
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Divergence plots obtained from the power flow computed with: RDFS approximation using (a) Eq. (21) and (b) Eq. (22); finite differences

using (c) Eq. (27); (d) Eq. (28); (e) Eq. (29); (f) Eqs (30a)–(30c).
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(a)

(b)

Fig. 8. Input power versus power flow across a closed path encircling the shaker location. (a) Power flow computed using Eq. (21); (b) using

Eq. (22).

comparing the input power with the power flow inte-
grated over a path encircling the excitation location.

Figure 5 shows the power flow arrow maps and the
divergence plots obtained from the simulated ODS us-

ing the FE interpolation functions directly. As the sec-
ond order derivatives of the interpolation function of
the finite element used are not continuous across ele-
ment borders, the higher order terms in Eq. (10) com-
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puted to take into account the near-field effects may

have significant errors. Therefore, the results computed

with the FE interpolation functions cannot be taken as

exact when comparing with results obtained with the

other methods. The power flow was computed with and

without the far field assumption using the FE interpo-

lation functions, Eqs (22) and (21), respectively.

In Fig. 6 it can be seen that the pattern of the power

flow is equivalent for all the methods used. A coarser

grid of 22 × 20 was used to improve the visualization

of the power flow arrow maps.

In this example, the location of the energy source

and the energy sinks are clearly indicated by the power

flow pattern. However, at higher frequencies, where the

power flow patterns can be much more complicated, it

may become difficult to localize sources and sinks. An-

other way to visualize sources and sinks is to compute

the power flow across a closed path around each loca-

tion on the structure surface. The resulting value is the

net power variation at the location, which is positive

if there is an energy source at the location, negative if

there is a sink, and zero if there is no source or sink.

This is equivalent to computing the divergence of the

vibration intensity field, which was proposed by Pascal

et al. [10], and, therefore, equivalent to computing a

spatial derivative of the computed intensity field. A fur-

ther derivative could amplify noise, but the averaging

effect of integrating along a closed path around each

location alleviates this problem. However, one must

have this in mind when interpreting the results. Fig-

ures 5 and 7 show divergence plots computed at 128 Hz

using the previously computed intensity fields (power

flow distributions).

It is clear from Figs 5(c)–(d) and Figs 7(a)–(b) that

the divergence plots computed from power flow fields

obtained using the far-field assumption indicate more

clearly the locations of the source and the sinks. This

is probably due to the problems involved in comput-

ing the higher-order derivatives of the near-field con-

tributions to the power flow, both using the FE non-

conforming interpolation functions and the RDFS ap-

proximation. The localization of the sinks is more diffi-

cult in this example, as the energy dissipation is spread

through four different locations, while the energy in-

put is all concentrated at one location. All the finite-

difference based methods produced divergence plots

(Figs 7(c)–(f)) that allow the localization of the source

and sinks.

In the RDFS approximation, as the area between the

rubber mounts has a higher wavenumber content, to

approximate it more exactly, more RDFS lines would

be needed. However, increasing the number of lines in

the RDFS tends to increase the errors at the sides of the

plate due to the minimized, but still present, leakage

effect. When using experimental data the effect of us-

ing a higher number of frequency lines is even worse,

as it increases the effect of noise in the spatial deriva-

tives. The influence of this leakage is more detrimen-

tal to the power flow computed using Eq. (22), for it

involves higher order derivatives.

Finally, to verify the magnitudes of the computed

power flow fields, the power integrated along a path en-

circling the shaker location is compared with the input

power computed from the driving-point impedance.

Figure 8 shows the input power and the power flow

computed over the whole frequency range investigated.

Results in Fig. 8 show that the inclusion of the near-

field effects improve the power flow amplitude preci-

sion near the shaker location (the path used consisted

of a rectangle of dimensions 8 × 8 cm). As expected,

the results obtained using the power flow computed un-

der the far-field assumption get poorer as the frequency

decreases. It also shows that the power flow computed

using the RDFS approximation is closer to the exact

input power value than the power flow computed using

the FE interpolation functions.

6. Experimental results

A system with the characteristics of the system used

in the numerical simulation was build and tested us-

ing a scanning laser Doppler vibrometer (LDV). The

shaker was attached to the back of the plate using

a small steel disk glued (Hotinger X-60 glue) to the

structure. A piezoelectric force transducer (2.27 mV/N,

PCB model 208A03) was screwed to the disk and con-

nected to the shaker using a stinger holder and a suit-

able stinger (1.5 mm diameter, 90 mm long made of

a copper alloy). The shaker used was a small modal-

analysis type shaker (Bruel & Kjaer model 4810).

The shaker was supported by a frame structure stand-

ing on tripods. The rubber mounts were attached to

a thick aluminum plate (355 × 129 × 8 mm) which

was bolted to a large steel block, measuring approxi-

mately 0.32 × 0.4 × 0.24 m. The characteristics of the

plate and rubber mounts have already been described

in the previous section. The scanning laser vibrometer

was standing on a tripod at approximately 2 m from

the structure, aiming at its center. The sensitivity of the

laser vibrometer (Ometron model VS100) was set to

100 mV/mm/s and the low pass filter cutoff frequency



J.R.F. Arruda and P. Mas / Localizing energy sources and sinks in plates 249

Fig. 9. Experimental setup.

was set to 5 kHz. Figure 9 shows a scheme of the ex-
perimental setup. The scanning hardware and software,
developed at the PMA Division of K.U. Leuven, was
programmed so as to scan a rectangular area with an
equally-spaced measurement grid of 46 × 40. It was
not necessary to compensate for the angular projection
error of the measured velocities, as the maximum error
given the plate dimensions and the distance between
the laser and the structure was of approximately six
percent.

The plate was excited with a sinusoidal force at
128 Hz and the magnitude and phase of the trans-
verse vibration velocities over its surface were mea-
sured relative to the force transducer signal with the
scanning LDV. Figure 10 shows the measured mobil-
ity ODS smoothed once using a median filter to re-
move outliers (noise “spikes”) and the surface approxi-
mated using a two-dimensional RDFS with p = q = 4,
M/M = N/N = 1.5. A very good agreement with the
corresponding ODS predicted with the FE model can
be observed (see Fig. 4). The correlation coefficient be-
tween the measured and predicted ODS’s is 0.95, al-
though no model updating procedure was used to try to
match the FE predictions to the measurements.

(a)

(b)

Fig. 10. Mobility ODS at 128 Hz. (a) measured; (b) approximated

using a 2-D RDFS with p = q = 4, M/M = N/N = 1.5.

Figure 11 shows the power flow computed from

the measured ODS using different methods. Finally,

Fig. 12 shows the divergence plots computed from the

power flow fields of the previous figure.

The power flow patterns in Fig. 11 are very simi-

lar to the power flow patterns computed for the sim-

ulated results, shown previously in Figs 5 and 6. The

power flow including near-field and wave interaction

effects, in Fig. 11(a) is similar to the power flow maps
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Structural power flow at 128 Hz computed from the measured ODS of Fig. 10 using the RDFS approximation with (a) Eq. (21) and

(b) Eq. (22); finite differences using (c) Eq. (27); (d) Eq. (28); (e) Eq. (29); (f) Eqs (30a)–(30c).
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. Divergence plots computed from the power flow fields shown in Fig. 11. RDFS approximation with (a) Eq. (21) and (b) Eq. (22); finite

differences using (c) Eq. (27); (d) Eq. (28); (e) Eq. (29); (f) Eqs (30a)–(30c).
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of Fig. 5(a) and Fig. 6(a). The difference with respect

to the power flow computed assuming free-field prop-

agation can be observed mainly in the region in be-

tween the rubber mounts. The finite difference approx-

imations produce power flow patterns which are sim-

ilar to the power flow computed with the RDFS un-

der the far field assumption. The more elaborate finite

difference schemes using 5 accelerations and 10 cross

spectra and using 9 accelerations and 20 cross spec-

tra yielded better results (see Figs 11(e)–(f)), probably

not because they involve higher order derivatives, but

because of the averaging effect of using more data to

compute the power flow.

Although the power flow fields computed using

the finite difference schemes seem qualitatively rea-

sonable, the divergence plots computed from them

are completely meaningless, as it can be seen in

Figs 12(c)–(f). The errors in the power flow ampli-

tudes cause large errors in the divergence computation.

Only the divergence plots computed using the RDFS

allow the localization of the source and sinks, espe-

cially the results obtained using the free-field assump-

tion. This was expected, as similar behavior was ob-

served with simulated data, i.e., the errors in the higher

order derivatives are such that including them in the

computation of the power flow is more detrimental

than beneficial.

7. Conclusions

Structural power flow measurements are difficult be-

cause the active part of the total vibration energy is

usually very small. The information about the active

power flow is in the spatial derivatives of the mea-

sured vibration field, and it is known that differentia-

tion causes noise amplification. In the case of flexural

power flow in thin plates, using the free-field assump-

tion allows the determination of the power flow using

only the first spatial derivative. Otherwise, to take into

account near-field effects, spatial derivatives up to the

third order are necessary.

A technique was proposed that takes advantage of

the spatially dense vibration measurements obtained

using scanning laser vibrometers. The measured op-

erational deflection shapes are approximated using

a two-dimensional discrete Fourier series with arbi-

trary fundamental period (not an interpolation like the

DFT). The arbitrary period minimizes leakage and al-

lows a dramatic low pass filtering of the data while

preserving its spatial information. From the obtained

wavenumber-frequency data it is straightforward to

compute the flexural power flow in plates.

The formulation of the problem of flexural power

flow in thin plates including finite difference imple-

mentations was reviewed. The proposed method was

appraised and compared with existing finite difference

schemes to compute the structural power flow.

It was shown that, although the technique allows in-

cluding near-field effects when computing the power

flow, the results obtained using the free-field assump-

tion were better, both when using simulated data and

experimental data. Especially, when a divergence field

is to be computed from the intensity field, the free-field

assumption becomes essential. Results obtained with

the proposed method were better than results obtained

using finite difference formulations, mainly when us-

ing experimental results.

The method presented is this paper can be used to

determine the structural power flow pattern and diver-

gence fields from operational deflection shapes mea-

sured with scanning laser vibrometers. The divergence

fields can be used to localize energy sources and sinks.

Also, by integrating the intensity field along a closed

path encircling the power sources and sinks, it is pos-

sible to determine the power injected or dissipated.
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