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Localization and genus in group theory
and homotopy theory

Georg Peschke!

Abstract: When localizing the semidirect product of two groups, the effect on the factors is made explicit. As an application
in Topology, we show that the loop space of a based connected CW-complex is a P-local group, up to homotopy, if and

only if 11 X and the free homotopy groups [S¥~!, QX], k > 2, are P-local.

Introduction

The study of groups G in which the functions p, : G — G, p,(g) = ¢?, are, for certain
primes p, bijective, has a long history, see Malcev [9], Baumslag [1] and the references
there. After Sullivan [16], Bousfield-Kan [3], Hilton [5] and Hilton-Mislin-Roitberg [8] this
study appears now in the guise of localizing a group with respect to a given set of primes
P. In a P-local group the functions p, are bijective if n belongs to the multiplicative
closure of the set of primes P’, which is complementary to P.

According to Ribenboim [12, 13], there is a P-localizing functor from the category of
groups to the category of P-local groups, § — Gp. While the properties of this functor,
when restricted to the category of nilpotent groups, are well understood (see [5] and [7])
its properties in general are not clear at all.

For example, on nilpotent groups the P-localizing functor is exact, but not in general.
E.g., the exact sequence Z — S3 — Z/2 for the symmetric group of 3 elements gets sent
to Z/3 — 0 — 0, when localizing at 3. S5 is a semidirect product Z/3 x Z/2 and the
purpose of this paper is to investigate the effect of localization on semidirect products

G =H x R.

Since localization is functorial, Gp is again a semidirect product Gp = K X Rp.
Therefore, it is desirable to understand the relation between H and K. We will discover
that K is the P-localization of H with respect to the change of operator groups from R
to RP.

To explain this, we use the category gG of R-groups (i.e. groups on which the group
R acts on the left) and R-homomorphisms (i.e. group homomorphisms f : H — H' with
f(r.h) = r.f(h) for all h € H and r € R). Further a group homomorphism v: R — S
induces the change-of-operator-groups functor v* : ¢ — rG. For H € G, K € 4G,
a group homomorphism f : H — K is a y-homomorphism if f : H — v*K is an R-
homomorphism. We then construct a left adjoint ,Ad for v*; see (1.5).

Now ¢§G contains a subcategory ¢Gp consisting of such groups on which S acts P-
locally; see 1.2. Accordingly, we construct a left adjoint sLp : sG — sGp; see 1.6. The
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composite ,Lp := gLp yaa: rRG — s9p is left adjoint to the restriction of v* to sGp.
It then follows that (H x R)p = ( .LpH) x Rp, where e : R — Rp P-localizes.
Remarks

(1) The functor ,Ad is of independent interest. For example, let gAd correspond to the
unique homomorphism {1} — S. Then gAd provides the foundation for a theory of
S-groups by generators and relations.

(2) The problem of localizing semidirect products has also been studied by Casacuberta
[4] in the case where the normal subgroup H is abelian, and by A. Reynol when H is
finite abelian [11].

(3) Our study is also of interest in Topology; see (1.7) and (1.8).

It is a pleasure to acknowledge several useful conversations with K. Varadarajan. Also
I owe insight into the matter to correspondence with P. Hilton and C. Casacuberta.

1. We now take up the announced investigation. So let R be a group acting on
another group H via a homomorphism ¢ : R — Aut(H). The corresponding semidirect
product is denoted by H x4 R or H x R if there is no risk of confusion.

1.1 Lemma G = H x R is P-local if and only if the following two conditions hold:
(i) R is P-local;
(ii) For all » € R and n € P’, the function

prm: H— H, h — ho.(h)p2(h) - --- - Gpn-1(h)
is a bijection, where ¢, denotes the automorphism ¢(r) of H.

Proof This follows from (h,7)" = (prn(h),r"). O

The functions p,, have been used already by Baumslag in a setting involving wreath
products; see [2].

1.2 Definition R acts P-locally on H if, for all » € R and n € P’, the function p,,,
of (1.1) is a bijection.

The notion of a P-local action has independently been introduced by Rodicio [14].
Since p1,(h) = h", if R acts P-locally on H, then H is P-local. We write pGp for the
category of R-groups on which R acts P-locally.

It is straight forward to prove



1.3 Lemma Let
R——H Xy R—» R

|
Kr—KxyS—»§S
be a commuting diagram of split exact sequences of groups. Then 3 P-localizes in G if
and only if the following three conditions hold:
(i) v P-localizes in G;
(ii) S acts P-locally on K;

(iii) For all L € G on which S acts P-locally and every y-homomorphism v : H — L,
there is a unique S-homomorphism v/ : K — L, with v = /' «.

This suggests

1.4 Definition Let H € rG, K € 5§ and let v: R — S be a homomorphism. Then
a : H — K P-localizes with respect to ~ if and only if the following three conditions
hold:

(i) S acts P-locally on K;
(ii) « is a y-homomorphism;

(iii) « satisfies the universal property (1.3.iii) above.

Thus, Lemma 1.3 can be restated as

1.3° Lemma [ P-localizes in G if and only if v P-localizes in § and a P-localizes
with respect to 7. O

Now let v: R — S be given. The construction of a left adjoint functor ,Lp: rG —
inclusion *
sGp to the composite functor sGp —— 5§ ~ 5 »G is done in two steps.

1.5 Theorem 7*: g§ — Rg§ has a left adjoint ,Ad : g§ — $G.

1.6 Theorem  The inclusion functor ¢Gp — 59 has a left adjoint left inverse ¢Lp :
s — s5p.

It then follows from 1.3’ that (HxR)p = ( .LpH)xRp, wheree : R — Rp P-localizes.

Here is an interesting application of P-local actions in Topology.

1.7 Theorem  Let X be a based connected CW-complex. Then the two conditions
below are equivalent.

(i) m X and the free homotopy groups [S*™! QX], k > 2, are P-local;
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(ii) QX is P-local group up to homotopy; i.e. for each n € P’, the map p,, : QX — QX
pn(z) = 2", is a homotopy equivalence.

Proof “(ii) = (i)’ Recall that p, induces p, on QX and on all free homotopy
groups [S*71, QX], k > 2. If 5, is a homotopy equivalence, then p, is a bijection. Thus
QX =2 m X and [S*!, QX] are P-local.

(i) = (ii) Recall from [10] that wX is an H-semidirect product: QX ~ (2X)y x mX
and, as a consequence, that [Skil, OX] 2 mX xmX, for all k > 2. Since m X is P-local,
P, determines a bijection of the connected components of QX. Since (2X), is a simple
space, the restriction of p, to (2X)y x {r}, r € II; X, induces the homomorphism

T (QX)o x {r} =2 [SF1 (QX)o x {r}] — [S"7 (X)) x {r"}] =2 11 (QX)o x {r"}.

By hypothesis, this is a bijection. Thus, p,, is a homotopy equivalence. U

1.8 Corollary  The loop space of a P-local nilpotent CW-complex is a P-local group
up to homotopy.

Proof If X is a P-local nilpotent space, then 7 X is P-local. Furthermore, the groups
[Sk_l, QX], k > 2, are semidirect products of the P-local groups 7, X and 7 X with respect
to a nilpotent action of m X on m,X. By a result of Hilton [6], the groups [S**, X] are
P-local, for k > 2; compare also Roitberg [15]. Now apply (1.7). O

2 Proof of Theorem 1.5

We need the following lemma whose proof is a little tedious but straightforward.

2.1 Lemma Let R act on H via ¢ : R — Aut(H). Let
D = {rhr ¢, (h""):r€R, he H} C H=x*R.

Let H, D denote the normal closure of H, D in H * R. Then D is normal in H and H/D
is isomorphic to H.

O

Step 1 for the proof of (1.5): Construction of ,Ad
Let R act on H via ¢ : R — Aut(H) and consider the diagram

S H«R—+%R

1 ‘Id*’y 2 "Y

>T>H*ST»S

|

3
<

)



where 7, n’ are the canonical epimorphisms making the right hand square commute.
H := ker(r) and H:= ker(7'). Note that (Id * v)(H) C H and let 5 be the restriction of
Id x v to H. Then the left hand square also commutes.

By design, R acts on H by conjugation and S acts on H by conjugation and 7 is a
~v-homomorphism. Using (2.1), we relate these actions to the given action of R on H. We
have refined the method of HNN-extensions.

By (2.1), D C H. Let D be the normal closure of n(D) in H * S. Since (D) C
(H % S), D C H. Take K := JAd(H) = ﬁ/ﬁ Then 7 defines a: H =~ H/D — f[/
K.

The action of S on H by conjugation passes down to an action ¢ : S — Aut(K).
Explicitly, ws(ﬁﬁ) = shs~'D. The action of R on H by conjugation passes down to the
original action ¢, by (2.1). It is clear that « is a y-homomorphism.

H <
D=

Step 2: Verification of the universal property of a : H — K. Let S act on L via
6:S5 — Aut(L). Let v: H — L be a y-homomorphism. Consider the diagram

H H H xR R
\ X l/*"/ \‘
Id*y Y
a L« L LxS——|—»S
A e A
K Vi HxS S

The right hand prism commutes and induces homomorphisms 7, ¥ by restriction. Further

~

(D) C ker(u). Consequently, (D) C ker(u), showing that v factors through K with
V' K — L. Since 7 is an S-homomorphism, so is v/.

It is straightforward to check uniqueness of v/ on the generators xhz~! of K, where
r € H+xS, h € H That Ad is a functor is immediate. This completes the proof of
1.5). 0

It follows directly from the construction of ,Ad that

2.2 Proposition ., Ad preserves epimorphisms. 0

3 Proof of Theorem 1.6

Let
sUp == {K € sG:pspnisl-1lforall se€S, ne P}

s€p = {K € sG:psnisontoforal seS, ne P}
Then sGp := sUp N sEp is the category of S-groups on which S acts P-locally.



We construct functors g Vp sG — 5§, which create preimages for the functions p;
as well as sUp : ¢§ — sUp, which make preimages of the functions p,, unique.

Let S act on K via ¢ : S — Aut(K). Let FK denote the free group with basis
{ksn:ke K, se€S, neP}andlet EK := gAd(FK) denote the free S-group with that
basis. If 6 : S — Aut(£K) denotes the corresponding S-action, then S acts on K (K by
S35 sxb0; € Aut(K *«£K). Let N denote the S-invariant normal closure of the set
{psmksnk™ ke K, s€S, neP}in KxEK.

3.1 Definition g,/ K :=K x EK/N.

There is a canonical homomorphism ¢: K — S\/PK’ By design, im(¢) C im(ps,),
for all s € S and n € P'. Further, an S-homomorphism f : K — K’ induces the S-
homomorphism £f : €K — €K' via the function ks, — [f(k)]s, on bases. Hence, the
S-homomorphism (f x£f) : K*x (K — K'« K’ is defined. Passing to quotients, it yields
the S-homomorphism 5\/Pf : S\/PK — 5\/PK'.

3.2 Lemma  The following hold.
(i) S\/p $G — 5§ is a covariant functor.
(ii) s/ p preserves epimorphisms.

(iii) The homomorphism ¢ : K — ¢ \/PK defines a natural transformation of the identity
functor on ¢G to SV p-

(iv) If f: K — L is an S-homomorphism such that p;,, is (1-1) and onto im(f) for all
[ € L and n € P’, then there is a unique S-homomorphism f': g \/PK — L with

f=1r

Proof (i), (ii) and (iii) are straightforward from the construction.

(iv) The universal property of gAd yields a unique S-homomorphism d : (K — L
corresponding to the homomorphism FK — L, kg, +— p; ) f(k). Observe that ker(K *
EK — S\/PK) C ker(f*d). Hence f’ exists. Uniqueness of f’ follows from f”p,, = psnf”,
for any f” : S\/PK — L with f = f"t. O

3.3 Definition  Let K be any S-group.
SEPK = hm{K — S\/PK — ( S\/P)QK — . }
By induction, using lemma (3.2), we get

3.4 Proposition  The following hold:
(i) sEp: s — sEp is a covariant functor.

(ii) sEp preserves epimorphisms.



(iii) The canonical homomorphism 7 : K — g¢FEpK defines a natural transformation of
the identity functor on §G to sEp.

(iv) If f : K — L is an S-homomorphism and S acts P-locally on L, then there is a
unique S-homomorphism f': ¢EpK — L with f = f'r.

To make the functions p;,, of an S-group K (1-1), we factor out a suitable subgroup.
Let
sapK = N{ker(f: K - U):U € sUp, f any S-homomorphism}.

3.5 Definition UpK = K/ sapK.

It follows that sUpK € gUp. Further, if f: K — K’ is an S-homomorphism, then
f( sapK) C gsapK’'. So f induces sUpf : sUpK — sUpK'. The lemma below is a
direct consequence of this definition.

3.6 Lemma  The following hold
(i) sUp: sG— sUp is a covariant functor.

(ii) The canonical epimorphism o : K — gUpK defines a natural transformation of the
identity on 59 to SUP'

(iii) sUp preserves epimorphisms.

(iv) If f : K — L is an S-homomorphism and L € gUp, then there is a unique
homomorphism f': sUpK — L with f = f'o. sUp is left adjoint left inverse to the
inclusion functor sUp — ¢G. O

3.7 Definition  Let v: R — S be a group homomorphism. Let ,Lp := sUp sEp ,Ad :
Sr — sYp be the composite of the three functors.

Note that the natural transformations associated with sUp, sEp, ,Ad define a natural
transformation e (= ,ep) of the identity functor on g to gLp.

3.8 Proposition Let v: R — S be a group homomorphism.

(i) sLp : rS — sSp is a covariant functor which is left adjoint to the change-of-
operator-groups functor v*: ¢9p — gS.

(ii) sLp preserves epimorphisms.
Proof Combine (1.5),(2.2),(3.4),(3.6). O
This completes the proof of (1.6). O

The author is grateful to the referee for pointing out the connection of [2], [6], [14]
with the present paper.
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