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ABSTRACT

We propose two approaches of locally adaptive activation functions namely, layer-
wise and neuron-wise locally adaptive activation functions, which improve the
performance of deep and physics-informed neural networks. The local adapta-
tion of activation function is achieved by introducing scalable hyper-parameters
in each layer (layer-wise) and for every neuron separately (neuron-wise), and
then optimizing it using the stochastic gradient descent algorithm. Introduction of
neuron-wise activation function acts like a vector activation function as opposed to
the traditional scalar activation function given by fixed, global and layer-wise ac-
tivations. In order to further increase the training speed, an activation slope based
slope recovery term is added in the loss function, which further accelerate conver-
gence, thereby reducing the training cost. For numerical experiments, a nonlinear
discontinuous function is approximated using a deep neural network with layer-
wise and neuron-wise locally adaptive activation functions with and without the
slope recovery term and compared with its global counterpart. Moreover, solution
of the nonlinear Burgers equation, which exhibits steep gradients, is also obtained
using the proposed methods. On the theoretical side, we prove that in the proposed
method the gradient descent algorithms are not attracted to sub-optimal critical
points or local minima under practical conditions on the initialization and learn-
ing rate. Furthermore, the proposed adaptive activation functions with the slope
recovery are shown to accelerate the training process in standard deep learning
benchmarks using CIFAR-10, CIFAR-100, SVHN, MNIST, KMNIST, Fashion-
MNIST, and Semeion data sets with and without data augmentation.

1 INTRODUCTION

In recent years, research on neural networks (NNs) has intensified around the world due to their suc-
cessful applications in many diverse fields such as speech recognition (Hinton et al., 2012), computer
vision (Krizhevsky et al., 2012), natural language translation (Wu et al., 2016), etc. Training of NN
is performed on data sets before using it in the actual applications. Various data sets are available for
applications like image classification, which is a subset of computer vision. MNIST (LeCun et al.,
1998) and their variants like, Fashion-MNIST (Xiao et al., 2017), and KMNIST (Clanuwat et al.,
2018) are the data sets for handwritten digits, images of clothing and accessories, and Japanese
letters, respectively. Apart from MNIST, Semeion (Brescia, 1994) is a handwritten digit data set
that contains 1593 digits collected from 80 persons. SVHN (Netzer et al., 2011) is another data set
for street view house numbers obtained from house numbers in Google Street View images. CI-
FAR (Krizhevsky et al., 2009) is the popular data set containing color images commonly used to
train machine learning algorithms. In particular, the CIFAR-10 data set contains 50000 training and
10000 testing images in 10 classes with image resolution of 32x32. CIFAR-100 is similar to the
CIFAR-10, except it has 100 classes with 600 images in each class, which is more challenging than
the CIFAR-10 data set.

Recently, NNs have also been used to solve partial differential equations (PDEs) due to their ability
to effectively approximate complex functions arising in diverse scientific disciplines (cf., Physics-
informed Neural Networks (PINNs), (Raissi et al., 2019)). PINNs can accurately solve both forward
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problems, where the approximate solutions of governing equations are obtained, as well as inverse
problems, where parameters involved in the governing equation are inferred from the training data.

Highly efficient and adaptable algorithms are important to design the most effective NN which not
only increases the accuracy of the solution but also reduces the training cost. Various architec-
tures of NN like Dropout NN (Srivastava et al., 2014) are proposed in the literature, which can
improve the efficiency of the algorithm for specific applications. Activation function plays an im-
portant role in the training process of NN. In this work, we are particularly focusing on adaptive
activation functions, which adapt automatically such that the network can be trained faster. Various
methods are proposed in the literature for adaptive activation function, like the adaptive sigmoidal
activation function proposed by (Yu et al., 2002) for multilayer feedforward NNs, while (Qian et al.,
2018) focuses on learning activation functions in convolutional NNs by combining basic activation
functions in a data-driven way. Multiple activation functions per neuron are proposed (Dushkoff
& Ptucha, 2016), where individual neurons select between a multitude of activation functions. (Li
et al., 2013) proposed a tunable activation function, where only a single hidden layer is used and the
activation function is tuned. (Shen et al., 2004), used a similar idea of tunable activation function
but with multiple outputs. Recently, Kunc and Kléma proposed a transformative adaptive activation
functions for gene expression inference, see (Kunc & Kléma, 2019). One such adaptive activation
function is proposed (Jagtap & Karniadakis, 2019) by introducing scalable hyper-parameter in the
activation function, which can be optimized. Mathematically, it changes the slope of activation
function thereby increasing the learning process, especially during the initial training period. Due
to single scalar hyper-parameter, we call such adaptive activation functions globally adaptive activa-
tions, meaning that it gives an optimized slope for the entire network. One can think of doing such
optimization at the local level, where the scalable hyper-parameter are introduced hidden layer-wise
or even for each neuron in the network. Such local adaptation can further improve the performance
of the network. Figure 1 shows a sketch of a neuron-wise locally adaptive activation function based
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Figure 1: Schematic of LAAF-PINN for the Burgers equation. The left NN is the uninformed
network while the right one induced by the governing equation is the informed network. The two
NNs share hyper-parameters and they both contribute to the loss function.

physics-informed neural network (LAAF-PINN), where both the NN part along with the physics-
informed part can be seen. In this architecture, along with the output of NN and the residual term
from the governing equation, the activation slopes from every neuron are also contributing to the
loss function in the form of slope recovery term.

The rest of the paper is organized as follows. Section 2 presents the methodology of the proposed
layer-wise and neuron-wise locally adaptive activations in detail. This also includes a discussion on
the slope recovery term, expansion of parametric space due to layer-wise and neuron-wise introduc-
tion of hyper-parameters, its effect on the overall training cost, and a theoretical result for gradient
decent algorithms. Section 3 gives numerical experiments, where we approximate a nonlinear dis-
continuous function using deep NN by the proposed approaches. We also solve the Burgers equation
using the proposed algorithm and present various comparisons in appendix B. Section 4 presents
numerical results with various standard deep learning benchmarks using CIFAR-10, CIFAR-100,
SVHN, MNIST, KMNIST, Fashion-MNIST, and Semeion data sets. Finally, in section 5, we sum-
marize the conclusions of our work.
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2 METHODOLOGY

We use a NN of depth D corresponding to a network with an input layer, D−1 hidden-layers and an
output layer. In the kth hidden-layer, Nk number of neurons are present. Each hidden-layer of the
network receives an output zk−1 ∈ R

Nk−1 from the previous layer where an affine transformation
of the form

Lk(z
k−1) , w

k
z
k−1 + b

k (1)

is performed. The network weights w
k ∈ R

Nk×Nk−1 and bias term b
k ∈ R

Nk associated with
the kth layer are chosen from independent and identically distributed sampling. The nonlinear-
activation function σ(·) is applied to each component of the transformed vector before sending it as
an input to the next layer. The activation function is an identity function after an output layer. Thus,
the final neural network representation is given by the composition

uΘ(z) = (LD ◦ σ ◦ LD−1 ◦ . . . ◦ σ ◦ L1)(z),

where the operator ◦ is the composition operator, Θ = {wk,bk}Dk=1 represents the trainable pa-
rameters in the network, u is the output and z

0 = z is the input.

In supervised learning of solution of PDEs, the training data is important to train the neural network,
which can be obtained from the exact solution (if available) or from high-resolution numerical so-
lution given by efficient numerical schemes and it can be even obtained from carefully performed
experiments, which may yield both high- and low-fidelity data sets.

We aim to find the optimal weights for which the suitably defined loss function is minimized. In
PINN the loss function is defined as

J(Θ) = MSEF +MSEu (2)

where the mean squared error (MSE) is given by

MSEF =
1

Nf

Nf
∑

i=1

|F(xi
f , y

i
f , t

i
f )|

2, MSEu =
1

Nu

Nu
∑

i=1

|ui − u(xi
u, y

i
u, t

i
u)|

2.

Here {xi
f , y

i
f , t

i
f}

Nf

i=1 represents the residual training points in space-time domain, while

{xi
u, y

i
u, t

i
u}

Nu

i=1 represents the boundary/initial training data. The neural network solution must sat-
isfy the governing equation at randomly chosen points in the domain, which constitutes the physics-
informed part of neural network given by first term, whereas the second term includes the known
boundary/initial conditions, which must be satisfied by the neural network solution. The resulting
optimization problem leads to finding the minimum of a loss function by optimizing the parame-
ters like, weights and biases, i.e., we seek to find w

∗,b∗ = argminw,b∈Θ (J(w,b)). One can
approximate the solutions to this minimization problem iteratively by one of the forms of gradi-
ent descent algorithm. The stochastic gradient descent (SGD) algorithm is widely used in machine
learning community see, Ruder (2016) for a complete survey. In SGD the weights are updated as
w

m+1 = w
m − ηl∇wmJm(w), where ηl > 0 is the learning rate. SGD methods can be initialized

with some starting value w
0. In this work, the ADAM optimizer Kingma & Ba (2014), which is a

variant of the SGD method is used.

A deep network is required to solve complex problems, which on the other hand is difficult to train.
In most cases, a suitable architecture is selected based on the researcher’s experience. One can also
think of tuning the network to get the best performance out of it. In this regard, we propose the
following two approaches to optimize the adaptive activation function.

1. Layer-wise locally adaptive activation functions (L-LAAF)

Instead of globally defining the hyper-parameter a for the adaptive activation function, let us define
this parameter hidden layer-wise as

σ(ak Lk(z
k−1)).

This gives additional D− 1 hyper-parameters to be optimized along with weights and biases. Here,
every hidden-layer has its own slope for the activation function.

2. Neuron-wise locally adaptive activation functions (N-LAAF)
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One can also define such activation function at the neuron level as

σ(aki Lk(z
k−1)), ∀i = 1, 2, · · · , Nk

This gives additional
∑D−1

k=1 Nk hyper-parameters to be optimized. Neuron-wise activation function
acts as a vector activation function as opposed to scalar activation function given by L-LAAF and
global adaptive activation function (GAAF) approaches, where every neuron has its own slope for
the activation function.

The resulting optimization problem leads to finding the minimum of a loss function by optimizing
aki along with weights and biases, i.e., we seek to find (aki )

∗ = argmin(ak
i
)∈R+\{0} (J(aki )), ∀i =

1, 2, · · · , Nk. The process of training NN can be further accelerated by multiplying a with scaling
factor n > 1. The final form of the activation function is given by σ(naki Lk(z

k−1)). It is important
to note that the introduction of the scalable hyper-parameter does not change the structure of the
loss function defined previously. Then, the final adaptive activation function based neural network
representation of the solution is given by

u
Θ̂
(z) = (LD ◦ σ ◦ naD−1

i LD−1 ◦ σ ◦ naD−2
i LD−2 ◦ . . . ◦ σ ◦ na1iL1)(z).

In this case, the set of trainable parameters Θ̂ consists of {wk,bk}Dk=1 and {aki }
D−1
k=1 , ∀i =

1, 2, · · · , Nk. In all the proposed methods, the initialization of scalable hyper-parameters is done
such that naki = 1, ∀n.

2.1 LOSS FUNCTION WITH SLOPE RECOVERY TERM

The main motivation of adaptive activation function is to increase the slope of activation function,
resulting in non-vanishing gradients and fast training of the network. It is clear that one should
quickly increase the slope of activation in order to improve the performance of NN. Thus, instead
of only depending on the optimization methods, another way to achieve this is to include the slope
recovery term based on the activation slope in the loss function as

J̃(Θ̂) = MSEF +MSEu + S(a), (3)

where the slope recovery term S(a) is given by

S(a) =











1
1

D−1

∑D−1

k=1
N (ak)

for L-LAAF

1

1
D−1

∑D−1

k=1
N

(

∑Nk
i=1

ak
i

Nk

) for N-LAAF

where N is a linear/nonlinear operator. Although, there can be several choices of this operator,
including the linear identity operator, in this work we use the exponential operator. The main reason
behind this is that such term contributes to the gradient of the loss function without vanishing. The
overall effect of inclusion of this term is that it forces the network to increase the value of activation
slope quickly thereby increasing the training speed.

We now provide a theoretical result regarding the proposed methods. The following theorem states

that a gradient descent algorithm minimizing our objective function J̃(Θ̂) in equation 3 does not
converge to a sub-optimal critical point or a sub-optimal local minimum, for neither L-LAAF nor

N-LAAF, given appropriate initialization and learning rates. In the following theorem, we treat Θ̂ as
a real-valued vector. Let Jc(0) = MSEF +MSEu with the constant network uΘ(z) = uΘ(z′) =
c ∈ R

ND for all z, z′ where c is a constant.

Theorem 2.1. Let (Θ̂m)m∈N be a sequence generated by a gradient descent algorithm as Θ̂m+1 =

Θ̂m − ηm∇J(Θ̂). Assume that J(Θ̂0) < Jc(0) + S(0) for any c ∈ R
ND , J is differentiable,

and that for each i ∈ {1, . . . , Nf}, there exist differentiable function ϕi and input ρi such that

|F(xi
f , y

i
f , t

i
f )|

2 = ϕi(u
Θ̂
(ρi)). Assume that at least one of the following three conditions holds.

(i) (constant learning rate) ∇J is Lipschitz continuous with Lipschitz constant C (i.e., ‖∇J(Θ̂) −

∇J(Θ̂′)‖2 ≤ C‖Θ̂− Θ̂
′‖2 for all Θ̂, Θ̂′ in its domain), and ǫ ≤ ηm ≤ (2− ǫ)/C, where

ǫ is a fixed positive number.
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(ii) (diminishing learning rate) ∇J is Lipschitz continuous, ηm → 0 and
∑∞

m=0 ηm = ∞.

(iii) (adaptive learning rate) the learning rate ηm is chosen by the minimization rule, the limited
minimization rule, the Armjio rule, or the Goldstein rule (Bertsekas, 1997).

Then, for both L-LAAF and N-LAAF, no limit point of (Θ̂m)m∈N is a sub-optimal critical point or a
sub-optimal local minimum.

The initial condition J(Θ̂0) < Jc(0) + S(0) means that the initial value J(Θ̂0) needs to be less
than that of a constant network plus the highest value of the slope recovery term. Here, note that
S(1) < S(0). The proof of Theorem 2.1 is included in appendix A.

3 NEURAL NETWORK APPROXIMATION OF NONLINEAR DISCONTINUOUS

FUNCTION

In this section, we shall solve a regression problem of a nonlinear function approximation using
deep neural network. The Burgers equation using physics-informed neural network is solved in
appendix B. In this test case, a standard neural network (without physics-informed part) is used to
approximate a discontinuous function. In this case, the loss function consists of the data mismatch
and the slope recovery term as

J̃(Θ̂) =
1

Nu

Nu
∑

i=1

|ui − u(xi
u, y

i
u, t

i
u)|

2 + S(a).

The following discontinuous function with discontinuity at x = 0 location is approximated by a
deep neural network.

u(x) =

{

0.2 sin(6x) If x ≤ 0

1 + 0.1 x cos(18x) Otherwise.
(4)

Here, the domain is [−3, 3] and the number of training points used is 300. The activation function is
tanh, learning rate is 2.0e-4 and the number of hidden layers are four with 50 neurons in each layer.
Figure 2 shows the solution (first column), solution in frequency domain (second column) and point-
wise absolute error in log scale (third column). The solution by standard fixed activation function
is given in the first row, GAAF solution is given in second row, whereas the third row shows the
solution given by L-LAAF without and with (fourth row) slope recovery term. The solution given
by N-LAAF without slope recovery term is shown in the fifth row and with slope recovery term in the
sixth row. We see that the NN training speed increases for the locally adaptive activation functions
compared to fixed and globally adaptive activations. Moreover, both L-LAAF and N-LAAF with
slope recovery term accelerate training and yield the least error as compared to other methods.
Figure 3 (top) shows the variation of na for GAAF, whereas the second row, left and right shows
the layer-wise variation of nak for L-LAAF without and with the slope recovery term respectively.
The third row, left and right shows the variation of scaled hyper-parameters for N-LAAF without
and with the slope recovery term respectively, where the mean value of naki along with its standard
deviation (Std) are plotted for each hidden-layer. We see that the value of na is quite large with the
slope recovery term which shows the rapid increase in the activation slopes. Finally, the comparison
of the loss function is shown in figure 4 for standard fixed activation, GAAF, L-LAAF and N-LAAF
without the slope recovery (left) and for L-LAAF and N-LAAF with the slope recovery (right) using
a scaling factor of 10. The Loss function for both L-LAAF and N-LAAF without the slope recovery
term decreases faster, especially during the initial training period compared to the fixed and global
activation function based algorithms.

4 NUMERICAL RESULTS FOR DEEP LEARNING PROBLEMS

The previous sections demonstrated the advantages of adaptive activation functions with PINN for
physics related problems. One of the remaining questions is whether or not the advantage of adaptive
activations remains with standard deep neural networks for other types of deep learning applications.
To explore the question, this section presents numerical results with various standard benchmark
problems in deep learning. Figures 5 and 6 shows the mean values and the uncertainty intervals
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Figure 2: Discontinuous function: Neural network solution using standard fixed activation (first
row), GAAF (second row), L-LAAF without (third row) and with (fourth row) slope recovery term,
and N-LAAF without (fifth row) and with (sixth row) slope recovery term using the tanh activation.
First column shows the solution which is also plotted in frequency domain (zoomed-view) as shown
by the corresponding second column. Third column gives the point-wise absolute error in the log
scale for all the cases.
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Figure 3: Discontinuous function: comparison of variation of na for GAAF (top row), L-LAAF
without (second row, left) and with (second row, right) slope recovery term, and N-LAAF without
(third row, left) and with (third row, right) slope recovery term using tanh activation. In case of
N-LAAF, the mean value of naki along with its standard deviation (Std) are plotted for each hidden-
layer.
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Figure 4: Comparison of loss function for standard fixed activation, GAAF, L-LAAF and N-LAAF
without (left) and with (right) slope recovery term using scaling factor n = 10.

of the training losses for fixed activation function (standard), GAAF, L-LAAF, and N-LAAF, by
using the standard deep learning benchmarks. The solid and dashed lines are the mean values over
three random trials with random seeds. The shaded regions represent the intervals of 2×(the sample
standard deviations) for each method. Figures 5 and 6 consistently show that adaptive activation
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Figure 5: Training loss in log scale versus epoch without data augmentation.
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(a) Semeion (b) KMNIST (c) MNIST

(d) Fashion-MNIST (e) CIFAR-10 (f) CIFAR-100

(g) SVHN

Figure 6: Training loss in log scale versus epoch with data augmentation.

accelerates the minimization process of the training loss values. Here, all of GAAF, L-LAAF and
N-LAAF use the slope recovery term, which improved the methods without the recovery term.
Accordingly, the results of GAAF are also new contributions of this paper. In general, L-LAAF
improved against GAAF as expected. The standard cross entropy loss was used for training and
plots. We used pre-activation ResNet with 18 layers (He et al., 2016) for CIFAR-10, CIFAR-100,
and SVHN data sets, whereas we used a standard variant of LeNet (LeCun et al., 1998) with ReLU
for other data sets; i.e., the architecture of the variant of LeNet consists of the following five layers
(with the three hidden layers): (1) input layer, (2) convolutional layer with 64 5× 5 filters, followed
by max pooling of size of 2 by 2 and ReLU, (3) convolutional layer with 64 5×5 filters, followed by
max pooling of size of 2 by 2 and ReLU, (4) fully connected layer with 1014 output units, followed
by ReLU, and (5) Fully connected layer with the number of output units being equal to the number of
target classes. All hyper-parameters were fixed a priori across all different data sets and models. We
fixed the mini-batch size s to be 64, the initial learning rate to be 0.01, the momentum coefficient to
be 0.9 and we use scaling factor n = 1 and 2. The learning rate was divided by 10 at the beginning
of 10th epoch for all experiments (with and without data augmentation), and of 100th epoch for
those with data augmentation.

5 CONCLUSIONS

In this paper, we present two versions of locally adaptive activation functions namely, layer-wise and
neuron-wise locally adaptive activation functions. Such local activation functions further improve
the training speed of the neural network compared to its global predecessor. To further accelerate the
training process, an activation slope based slope recovery term is added in the loss function for both
layer-wise and neuron-wise activation functions, which is shown to enhance the performance of the
neural network. Various NN and PINN test cases like nonlinear discontinuous function approxima-
tion and Burgers equation respectively, and benchmark deep learning problems like MNIST, CIFAR,
SVHN etc are solved to verify our claim. Moreover, we theoretically prove that no sub-optimal crit-
ical point or local minimum attracts gradient descent algorithms in the proposed methods (L-LAAF
and N-LAAF) with the slope recovery term under only mild assumptions.
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A PROOF OF THEOREM 2.1

We first prove the statement by contradiction for L-LAAF. Suppose that the parameter vector Θ̂

consisting of {wk,bk}Dk=1 and {ak}D−1
k=1 is a limit point of (Θ̂m)m∈N and a sub-optimal critical

point or a sub-optimal local minimum.

Let ℓif := ϕi(u
Θ̂
(ρi)) and ℓiu := |ui − u

Θ̂
(xi

u, y
i
u, t

i
u)|

2. Let zi,kf and zi,ku be the outputs of the k-th

layer for ρi and (xi
u, y

i
u, t

i
u), respectively. Define

hi,k,j
f := nak(wk,jzi,k−1

f + bk,j) ∈ R,

and

hi,k,j
u := nak(wk,jzi,k−1

u + bk,j) ∈ R,

for all j ∈ {1, . . . , Nk}, where wk,j ∈ R
1×Nk−1 and bk,j ∈ R.

Following the proofs in (Bertsekas, 1997, Propositions 1.2.1-1.2.4), we have that ∇J(Θ̂) = 0 and

J(Θ̂) < Jc(0) + S(0), for all three cases of the conditions corresponding the different rules of the
learning rate. Therefore, we have that for all k ∈ {1, . . . , D − 1},

∂J(Θ̂)

∂ak
(5)

=
n

Nf

Nf
∑

i=1

Nk
∑

j=1

∂ℓif

∂hi,k,j
f

(wk,jzi,k−1
f + bk,j) +

n

Nu

Nu
∑

i=1

Nk
∑

j=1

∂ℓiu

∂hi,k,j
u

(wk,jzi,k−1
u + bk,j) +

∂S(a)

∂ak

=

Nk
∑

j=1

n

Nf

Nf
∑

i=1

∂ℓif

∂hi,k,j
f

(wk,jzi,k−1
f + bk,j) +

n

Nu

Nu
∑

i=1

∂ℓiu

∂hi,k,j
u

(wk,jzi,k−1
u + bk,j) +

∂S(a)

∂ak

= 0.

10



Under review as a conference paper at ICLR 2020

Furthermore, we have that for all k ∈ {1, . . . , D − 1} and all j ∈ {1, . . . , Nk},

∂J(Θ̂)

∂wk,j
(6)

=
nak

Nf

Nf
∑

i=1

∂ℓif

∂hi,k,j
f

(zi,k−1
f )⊤ +

nak

Nu

Nu
∑

i=1

∂ℓiu

∂hi,k,j
u

(zi,k−1
u )⊤,

= 0

and

∂J(Θ̂)

∂bk,j
=

nak

Nf

Nf
∑

i=1

∂ℓif

∂hi,k,j
f

+
nak

Nf

Nf
∑

i=1

∂ℓiu

∂hi,k,j
u

= 0. (7)

By combining equation 5–equation 7, for all k ∈ {1, . . . , D − 1},

0 = ak
∂J(Θ̂)

∂ak

=

Nk
∑

j=1

nak

Nf

Nf
∑

i=1

∂ℓif

∂hi,k,j
f

(wk,jzi,k−1
f + bk,j) +

nak

Nu

Nu
∑

i=1

∂ℓiu

∂hi,k,j
u

(wk,jzi,k−1
u + bk,j) + ak

∂S(a)

∂ak

=

Nk
∑

j=1

wk,j

(

∂J(Θ̂)

∂wk,j

)⊤

+ bk,j

(

∂J(Θ̂)

∂bk,j

)

+ ak
∂S(a)

∂ak

= ak
∂S(a)

∂ak
.

Therefore,

0 = ak
∂S(a)

∂ak′
= −ak(D − 1)

(

D−1
∑

k=1

exp(ak)

)−2

exp(ak),

which implies that for all ak = 0 since (D − 1)
(

∑D−1
k=1 exp(ak)

)−2

exp(ak) 6= 0. This implies

that J(Θ̂) = Jc(0) + S(0), which contradicts with J(Θ̂) < Jc(0) + S(0). This proves the desired
statement for L-LAAF.

For N-LAAF, we prove the statement by contradiction. Suppose that the parameter vector Θ̂ con-

sisting of {wk,bk}Dk=1 and {akj }
D−1
k=1 ∀j = 1, 2, · · · , Nk is a limit point of (Θ̂m)m∈N and a sub-

optimal critical point or a sub-optimal local minimum. Redefine

hi,k,j
f := nakj (w

k,jzi,k−1
f + bk,j) ∈ R,

and

hi,k,j
u := nakj (w

k,jzi,k−1
u + bk,j) ∈ R,

for all j ∈ {1, . . . , Nk}, where wk,j ∈ R
1×Nk−1 and bk,j ∈ R. Then, by the same proof steps, we

have that ∇J(Θ̂) = 0 and J(Θ̂) < Jc(0)+S(0), for all three cases of the conditions corresponding
the different rules of the learning rate. Therefore, we have that for all k ∈ {1, . . . , D − 1} and all
j ∈ {1, . . . , Nk},

∂J(Θ̂)

∂akj
(8)

=
n

Nf

Nf
∑

i=1

∂ℓif

∂hi,k,j
f

(wk,jzi,k−1
f + bk,j) +

n

Nu

Nu
∑

i=1

∂ℓiu

∂hi,k,j
u

(wk,jzi,k−1
u + bk,j) +

∂S(a)

∂akj

= 0.
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By combining equation 6–equation 8, for all k ∈ {1, . . . , D − 1} and all j ∈ {1, . . . , Nk}, ,

0 = akj
∂J(Θ̂)

∂akj

=
nakj
Nf

Nf
∑

i=1

∂ℓif

∂hi,k,j
f

(wk,jzi,k−1
f + bk,j) +

nakj
Nu

Nu
∑

i=1

∂ℓiu

∂hi,k,j
u

(wk,jzi,k−1
u + bk,j) + akj

∂S(a)

∂akj

= wk,j

(

∂J(Θ̂)

∂wk,j

)⊤

+ bk,j

(

∂J(Θ̂)

∂bk,j

)

+ akj
∂S(a)

∂akj

= akj
∂S(a)

∂akj
.

Therefore,

0 = akj
∂S(a)

∂ak′
= −2akj (D − 1)

(

D−1
∑

k=1

exp

(

∑Nk

i=1 a
k
i

Nk

))−2

exp

(

∑Nk

i=1 a
k
i

Nk

)

/Nk,

which implies that for all akj = 0 since (D− 1)

(

∑D−1
k=1 exp

(

∑Nk
i=1

ak
i

Nk

))−2

exp

(

∑Nk
i=1

ak
i

Nk

)

6= 0.

This implies that J(Θ̂) = Jc(0)+S(0), which contradicts with J(Θ̂) < Jc(0)+S(0). This proves
the desired statement for N-LAAF.

B APPENDIX: BURGERS EQUATION

The Burgers equation is one of the fundamental partial differential equation arising in various fields
such as nonlinear acoustics, gas dynamics, fluid mechanics etc, see Whitham (2011) for more details.
The Burgers equation was first introduced by H. Bateman, Bateman (1915) and later studied by J.M.
Burgers, Burgers (1948) in the context of theory of turbulence. Here, we consider the viscous
Burgers equation given by equation equation 9 along with its initial and boundary conditions. The
non-linearity in the convection term develops very steep solution due to small ǫ̃ value. We consider
the Burgers equation given by

ut + uux = ǫ̃uxx, x ∈ [−1, 1], t > 0 (9)

with initial condition u(x, 0) = − sin(πx), boundary conditions u(−1, t) = u(1, t) = 0 and ǫ̃ =
0.01/π. The analytical solution can be obtained using the Hopf-Cole transformation, see Basdevant
et al. (1986) for more details. The number of boundary and initial training points is 400, whereas the
number of residual training points is 10000. The activation function is tanh, learning rate is 0.0008
and the number of hidden layers are 6 with 20 neurons in each layer.

Figure 7 shows the evolution of frequency plots of the solution at three different times using the
standard fixed activation function (first row), global adaptive activation function (second row), L-
LAAF without (third row) and with (fourth row) slope recovery term, N-LAAF without (fifth row)
and with (sixth row) slope recovery term using scaling factor n = 10. Again, for both L-LAAF
and N-LAAF the frequencies are converging faster towards the exact solution (shown by black line)
with and without slope recovery term as compared to the fixed and global activation function based
algorithms.

Figure 8 shows the comparison of solution of the Burgers equation using the standard fixed activation
(first row), global adaptive activation function (second row), L-LAAF with slope regularization
(third row), and N-LAAF with slope regularization (fourth row) using n = 10. Columns from
left to right represent the solution t = 0.25, 0.5 and 0.75, respectively. As discussed in Jagtap
& Karniadakis (2019), t = 0.25 case needs large number of iterations for convergence, whereas
both t = 0.5 and 0.75 converges faster. Both L-LAAF and N-LAAF gives more accurate solution
compared to GAAF. Figure 9 shows the loss function for standard fixed, GAAF, L-LAAF and N-
LAAF without slope recovery term (top left) and with slope recovery term (top right). Loss function
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Figure 7: Comparison of solution of the Burgers equation in frequency domain using standard fixed
activation (first row), GAAF (second row), L-LAAF without (third row) and with (fourth row) slope
recovery term, N-LAAF without (fifth row) and with (sixth row) slope recovery term using n =
10. Columns (left to right) represent the solution in frequency domain at t = 0.25, 0.5 and 0.75,
respectively.
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Figure 8: Comparison of solution of the Burgers equation after 2000 iteration using standard fixed
activation (first row), GAAF (second row), L-LAAF with slope recovery term (third row), and N-
LAAF with slope recovery term (fourth row) using n = 10. Columns (left to right) represent the
solution t = 0.25, 0.5 and 0.75, respectively.

Figure 9: Comparison of loss function for standard fixed, GAAF, L-LAAF and N-LAAF without
slope recovery term (left) and L-LAAF and N-LAAF with slope recovery term (right).
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decreases faster for all adaptive activations, in particular GAAF. Even though it is difficult to see
from the actual solution plots given by figure 8, one can see from the table 1 that both L-LAAF and
N-LAAF gives smaller relative L2 error using slope recovery term.

Standard GAAF L-LAAF N-LAAF L-LAAF N-LAAF
w/o SRT w/o SRT with SRT with SRT

Rel. L2 error 1.9139e-01 9.5171e-02 8.8663e-02 9.1294e-02 7.6934e-02 8.3784e-02

Table 1: Burgers equation: Relative L2 error after 2000 iterations for fixed and all cases of adaptive
activation functions. Slope recovery term is abbreviated as SRT.
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Figure 10: Burgers equation: comparison of nak for L-LAAF for all six hidden-layers. First three
columns represent results for L-LAAF without slope recovery term whereas the last three columns
are with slope recovery term. In all simulations, the scaling factor n is 10.

Figure 10 shows the comparison of layer-wise variation of nak for L-LAAF with and without slope
recovery term. It can be seen that, the presence of slope recovery term further increases the slope of
activation function thereby increasing the training speed. Similarly, figure 11 shows the mean and
standard deviation of naki for N-LAAF with and without slope recovery term, which again validates
that with slope recovery term network training speed increases.
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Figure 11: Burgers equation: comparison of mean and standard deviation of naki for N-LAAF for
all six hidden-layers. First three columns represent resuls for N-LAAF without the slope recovery
term whereas the last three columns are with slope recovery term. In all simulations, the scaling
factor n is 10.
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